1
|
Chapman CR. Ethical, legal, and social implications of genetic risk prediction for multifactorial disease: a narrative review identifying concerns about interpretation and use of polygenic scores. J Community Genet 2023; 14:441-452. [PMID: 36529843 PMCID: PMC10576696 DOI: 10.1007/s12687-022-00625-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Advances in genomics have enabled the development of polygenic scores (PGS), sometimes called polygenic risk scores, in the context of multifactorial diseases and disorders such as cancer, cardiovascular disease, and schizophrenia. PGS estimate an individual's genetic predisposition, as compared to other members of a population, for conditions which are influenced by both genetic and environmental factors. There is significant interest in using genetic risk prediction afforded through PGS in public health, clinical care, and research settings, yet many acknowledge the need to thoughtfully consider and address ethical, legal, and social implications (ELSI). To contribute to this effort, this paper reports on a narrative review of the literature, with the aim of identifying and categorizing ELSI relating to genetic risk prediction in the context of multifactorial disease, which have been raised by scholars in the field. Ninety-two articles, spanning from 1977 to 2021, met the inclusion criteria for this study. Identified ELSI included potential benefits, challenges and risks that focused on concerns about interpretation and use, and ethical obligations to maximize benefits, minimize risks, promote justice, and support autonomy. This research will support geneticists, clinicians, genetic counselors, patients, patient advocates, and policymakers in recognizing and addressing ethical concerns associated with PGS; it will also guide future empirical and normative research.
Collapse
Affiliation(s)
- Carolyn Riley Chapman
- Department of Population Health (Division of Medical Ethics), NYU Grossman School of Medicine, New York, NY, USA.
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, Science Building, 435 E. 30th St, 8th Floor, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Safarlou CW, Jongsma KR, Vermeulen R, Bredenoord AL. The ethical aspects of exposome research: a systematic review. EXPOSOME 2023; 3:osad004. [PMID: 37745046 PMCID: PMC7615114 DOI: 10.1093/exposome/osad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In recent years, exposome research has been put forward as the next frontier for the study of human health and disease. Exposome research entails the analysis of the totality of environmental exposures and their corresponding biological responses within the human body. Increasingly, this is operationalized by big-data approaches to map the effects of internal as well as external exposures using smart sensors and multiomics technologies. However, the ethical implications of exposome research are still only rarely discussed in the literature. Therefore, we conducted a systematic review of the academic literature regarding both the exposome and underlying research fields and approaches, to map the ethical aspects that are relevant to exposome research. We identify five ethical themes that are prominent in ethics discussions: the goals of exposome research, its standards, its tools, how it relates to study participants, and the consequences of its products. Furthermore, we provide a number of general principles for how future ethics research can best make use of our comprehensive overview of the ethical aspects of exposome research. Lastly, we highlight three aspects of exposome research that are most in need of ethical reflection: the actionability of its findings, the epidemiological or clinical norms applicable to exposome research, and the meaning and action-implications of bias.
Collapse
Affiliation(s)
- Caspar W. Safarlou
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Karin R. Jongsma
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Roel Vermeulen
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Department of Population Health Sciences, Utrecht University,
Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam,
Rotterdam, The Netherlands
| |
Collapse
|
3
|
Springer S, Özdemir V. Disinformation as COVID-19's Twin Pandemic: False Equivalences, Entrenched Epistemologies, and Causes-of-Causes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:82-87. [PMID: 35041538 DOI: 10.1089/omi.2021.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
We are currently facing and traversing in the thick of a twin pandemic: coronavirus disease 2019 (COVID-19) and disinformation. Disinformation is false information created and spread deliberately with the intention to mislead public opinion, obscure truths, and undermine trust in knowledge. The digital age we live in is quite different than the printing revolution and invention of the oil-based ink printing press centuries ago. Digital technologies can spread and repeat disinformation at extremely high speeds, while anyone, a qualified expert or not, and with internet access, can become an author. To fight disinformation, we ought to dismantle the entrenched and extractive epistemologies that act as upstream drivers and sites of disinformation production. Epistemology refers to the value-laden knowledge frames, overarching master narratives, and storylines, in which knowledge is produced. If the epistemologies in which we generate knowledge are false, then the knowledge products will be laden with disinformation. Moreover, the harms caused by disinformation can extend well beyond the immediate knowledge domain where disinformation has originated. This occurs when "false equivalence" is used as a form of rhetoric. False equivalence is a type of flawed sense making where equal weight is given to arguments with concrete material evidence, and those that are conjecture, untrue, or unjust. This article presents an analysis of the disinformation pandemic attendant to COVID-19, with an eye to its causes-of-causes: unchecked extractive epistemologies (e.g., technocracy), and the practice of false equivalence in pandemic discourses. We argue that holding the political agency of master narratives to account is essential (1) to fight the disinformation pandemic and (2) for prefigurative politics to build egalitarian and democratic societies in place of the instrumental/transactional relationships that typify the contemporary nation states and the neoliberal university whose ossified rituals lack the normative capacities for critical governance in a time of converging social, digital, and ecological crises. For liberation from disinformation, we should start with liberation from entrenched extractive epistemologies in science and society.
Collapse
Affiliation(s)
- Simon Springer
- Centre for Urban and Regional Studies, Discipline of Geography and Environmental Studies, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, Australia
| | - Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA
| |
Collapse
|
4
|
Şardaş S, Özdemir V. Pharmacogenomics for Clinical Trials of COVID-19 Medicines: Why Is This Important Now? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:679-680. [PMID: 34699259 DOI: 10.1089/omi.2021.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Semra Şardaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA
| |
Collapse
|
5
|
Özdemir V, Arga KY, Aziz RK, Bayram M, Conley SN, Dandara C, Endrenyi L, Fisher E, Garvey CK, Hekim N, Kunej T, Şardaş S, Von Schomberg R, Yassin AS, Yılmaz G, Wang W. Digging Deeper into Precision/Personalized Medicine: Cracking the Sugar Code, the Third Alphabet of Life, and Sociomateriality of the Cell. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:62-80. [PMID: 32027574 DOI: 10.1089/omi.2019.0220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Precision/personalized medicine is a hot topic in health care. Often presented with the motto "the right drug, for the right patient, at the right dose, and the right time," precision medicine is a theory for rational therapeutics as well as practice to individualize health interventions (e.g., drugs, food, vaccines, medical devices, and exercise programs) using biomarkers. Yet, an alien visitor to planet Earth reading the contemporary textbooks on diagnostics might think precision medicine requires only two biomolecules omnipresent in the literature: nucleic acids (e.g., DNA) and proteins, known as the first and second alphabet of biology, respectively. However, the precision/personalized medicine community has tended to underappreciate the third alphabet of life, the "sugar code" (i.e., the information stored in glycans, glycoproteins, and glycolipids). This article brings together experts in precision/personalized medicine science, pharmacoglycomics, emerging technology governance, cultural studies, contemporary art, and responsible innovation to critically comment on the sociomateriality of the three alphabets of life together. First, the current transformation of targeted therapies with personalized glycomedicine and glycan biomarkers is examined. Next, we discuss the reasons as to why unraveling of the sugar code might have lagged behind the DNA and protein codes. While social scientists have historically noted the importance of constructivism (e.g., how people interpret technology and build their values, hopes, and expectations into emerging technologies), life scientists relied on the material properties of technologies in explaining why some innovations emerge rapidly and are more popular than others. The concept of sociomateriality integrates these two explanations by highlighting the inherent entanglement of the social and the material contributions to knowledge and what is presented to us as reality from everyday laboratory life. Hence, we present a hypothesis based on a sociomaterial conceptual lens: because materiality and synthesis of glycans are not directly driven by a template, and thus more complex and open ended than sequencing of a finite length genome, social construction of expectations from unraveling of the sugar code versus the DNA code might have evolved differently, as being future-uncertain versus future-proof, respectively, thus potentially explaining the "sugar lag" in precision/personalized medicine diagnostics over the past decades. We conclude by introducing systems scientists, physicians, and biotechnology industry to the concept, practice, and value of responsible innovation, while glycomedicine and other emerging biomarker technologies (e.g., metagenomics and pharmacomicrobiomics) transition to applications in health care, ecology, pharmaceutical/diagnostic industries, agriculture, food, and bioengineering, among others.
Collapse
Affiliation(s)
- Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York.,Senior Advisor and Writer, Emerging Technology Governance and Responsible Innovation, Toronto, Ontario, Canada
| | - K Yalçın Arga
- Health Institutes of Turkey, Istanbul, Turkey.,Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Mustafa Bayram
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, Gaziantep, Turkey
| | - Shannon N Conley
- STS Futures Lab, School of Integrated Sciences, James Madison University, Harrisonburg, Virginia
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laszlo Endrenyi
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Erik Fisher
- School for the Future of Innovation in Society and the Consortium for Science, Policy and Outcomes, Arizona State University, Tempe, Arizona
| | - Colin K Garvey
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Palo Alto, California
| | - Nezih Hekim
- Department of Biochemistry, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domzale, Slovenia
| | - Semra Şardaş
- Faculty of Pharmacy, İstinye University, İstanbul, Turkey
| | - Rene Von Schomberg
- Directorate General for Research and Innovation, European Commission, Brussel, Belgium.,Technical University Darmstadt, Darmstadt, Germany
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Gürçim Yılmaz
- Writer and Editor, Cultural Studies, and Curator of Contemporary Arts, İstanbul, Turkey
| | - Wei Wang
- Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
6
|
Überall M, Werner-Felmayer G. Integrative Biology and Big-Data-Centrism: Mapping out a Bioscience Ethics Perspective with a S.W.O.T. Matrix. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:371-379. [PMID: 31259670 DOI: 10.1089/omi.2019.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In current biomedicine, omics technologies drive systems-oriented modes of research to achieve a more holistic and personalized view of health and disease. This shift in scientific approach co-occurs with an era of biocapitalism characterized by markets for biomaterial (e.g., DNA, cells, and tissues) as exploitable resources, high-throughput technologies as tools, and "Big Data" as currency. Prediagnostics and genomics-based analyses successfully entered the public domain more or less unfiltered, offering numerous business opportunities envisioning individuals to contribute to the health sector by providing biomaterial and data as well as by using technology, thus becoming participants and informed coproducers of health. Exploring strengths and weaknesses, as well as opportunities and threats by S.W.O.T. analysis, we highlight some chances, pitfalls, and biases of this sector from a bioscience ethics stance. We conclude that the shift from diagnostic to predictive interpretation of data that comes along with integrative biology seems to escape the general and sometimes the experts' awareness. Moreover, rapid translation into products for the global health market is based on marketable views on health and disease that in turn affect basic research through, for example, funding policies and the research questions being asked. Along with this, biological reductionism is revived fuelling simplified understandings of the genotype phenotype relationship in terms of biology and the human dimension in a broader sense, as well as visions of achieving human perfection through novel biotechnologies.
Collapse
Affiliation(s)
- Martina Überall
- 1Scientific Community "Nutrition & Health," Pedagogical University of Innsbruck, Innsbruck, Austria.,2Department of Science, Geography, Computer Science and Mathematics Education, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
7
|
Özdemir V. Not All Intelligence is Artificial: Data Science, Automation, and AI Meet HI. ACTA ACUST UNITED AC 2019; 23:67-69. [DOI: 10.1089/omi.2019.0003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Vural Özdemir
- Senior Advisor, Writer and Researcher, Technology, Society and Democracy, Toronto, Canada
- School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University), Kerala, India
| |
Collapse
|
8
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 2018; 8:454. [PMID: 30370195 PMCID: PMC6195494 DOI: 10.1007/s13205-018-1473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
With the continuous increase in the population of developing countries and decline of natural resources, there is an urgent need to qualitatively and quantitatively augment crop productivity by using new tools and technologies for improvement of agriculturally important traits. The new scientific and technological omics-based approaches have enabled us to deal with several issues and challenges faced by modern agricultural system and provided us novel opportunities for ensuring food and nutritional security. Recent developments in sequencing techniques have made available huge amount of genomic and transcriptomic data on model and cultivated crop plants including Arabidopsis thaliana, Oryza sativa, Triticum aestivum etc. The sequencing data along with other data generated through several omics platforms have significantly influenced the disciplines of crop sciences. Gene discovery and expression profiling-based technologies are offering enormous opportunities to the scientific community which can now apply marker-assisted selection technology to assess and enhance diversity in their collected germplasm, introgress essential traits from new sources and investigate genes that control key traits of crop plants. Utilization of omics science and technologies for crop productivity, protection and management has recently been receiving a lot of attention; the majority of the efforts have been put into signifying the possible applications of various omics technologies in crop plant sciences. This article highlights the background of challenges and opportunities for augmentation of crop productivity through interventions of omics technologies in India.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Present Address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
9
|
Özdemir V, Kolker E. Precision Nutrition 4.0: A Big Data and Ethics Foresight Analysis—Convergence of Agrigenomics, Nutrigenomics, Nutriproteomics, and Nutrimetabolomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:69-75. [DOI: 10.1089/omi.2015.0193] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vural Özdemir
- Faculty of Communications and Office of the President, International Technology and Innovation Policy, Gaziantep University, Gaziantep, Turkey
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University), Amritapuri, Kollam, Kerala, India
- Data-Enabled Life Sciences Alliance (DELSA Global), Seattle, Washington
| | - Eugene Kolker
- Data-Enabled Life Sciences Alliance (DELSA Global), Seattle, Washington
- CDO Analytics, Seattle Children's, Seattle, Washington
- Departments of Biomedical Informatics and Medical Education and Pediatrics, University of Washington, Seattle, Washington
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts
| |
Collapse
|
10
|
Pavlidis C, Nebel JC, Katsila T, Patrinos GP. Nutrigenomics 2.0: The Need for Ongoing and Independent Evaluation and Synthesis of Commercial Nutrigenomics Tests' Scientific Knowledge Base for Responsible Innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:65-8. [PMID: 26689492 DOI: 10.1089/omi.2015.0170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nutrigenomics is an important strand of precision medicine that examines the bidirectional interactions of the genome and nutritional exposures, and attendant health and disease outcomes. This perspectives article presents the new concept of "Nutrigenomics 2.0," so as to cultivate and catalyze the next generation research and funding priorities for responsible and sustainable knowledge-based innovations. We further contextualize our recent study of the 38 genes included in commercially available nutrigenomics tests, and offer additional context in relation to the 2014 American Academy of Nutrition and Dietetics position. Finally, we make a call in the best interest of the nutrigenomics science community, governments, global society, and commercial nutrigenomics test providers that new evidence evaluation and synthesis platforms are created concerning nutrigenomics tests before they become commercially available. The proposed assessment and synthesis of nutrigenomics data should be carried out on an ongoing dynamic basis with periodic intervals and/or when there is a specific demand for evidence synthesis, and importantly, in ways that are transparent where conflict of interests are disclosed fully by the involved parties, be they scientists, industry, governments, citizens, social scientists, or ethicists. We submit that this will cultivate responsible innovation, and business models that are sustainable, robust, and stand the test of time and context.
Collapse
Affiliation(s)
- Cristiana Pavlidis
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Jean-Christophe Nebel
- 2 Faculty of Science, Engineering and Computing, School of Computing and Information Systems, Kingston University , London, United Kingdom
| | - Theodora Katsila
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - George P Patrinos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| |
Collapse
|
11
|
Özdemir V, Kolker E, Hotez PJ, Mohin S, Prainsack B, Wynne B, Vayena E, Coşkun Y, Dereli T, Huzair F, Borda-Rodriguez A, Bragazzi NL, Faris J, Ramesar R, Wonkam A, Dandara C, Nair B, Llerena A, Kılıç K, Jain R, Reddy PJ, Gollapalli K, Srivastava S, Kickbusch I. Ready to put metadata on the post-2015 development agenda? Linking data publications to responsible innovation and science diplomacy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:1-9. [PMID: 24456464 DOI: 10.1089/omi.2013.0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metadata refer to descriptions about data or as some put it, "data about data." Metadata capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user. As the pursuit of knowledge broadens in the 21(st) century from traditional "science of whats" (data) to include "science of hows" (metadata), we analyze the ways in which metadata serve as a catalyst for responsible and open innovation, and by extension, science diplomacy. In 2015, the United Nations Millennium Development Goals (MDGs) will formally come to an end. Therefore, we propose that metadata, as an ingredient of responsible innovation, can help achieve the Sustainable Development Goals (SDGs) on the post-2015 agenda. Such responsible innovation, as a collective learning process, has become a key component, for example, of the European Union's 80 billion Euro Horizon 2020 R&D Program from 2014-2020. Looking ahead, OMICS: A Journal of Integrative Biology, is launching an initiative for a multi-omics metadata checklist that is flexible yet comprehensive, and will enable more complete utilization of single and multi-omics data sets through data harmonization and greater visibility and accessibility. The generation of metadata that shed light on how omics research is carried out, by whom and under what circumstances, will create an "intervention space" for integration of science with its socio-technical context. This will go a long way to addressing responsible innovation for a fairer and more transparent society. If we believe in science, then such reflexive qualities and commitments attained by availability of omics metadata are preconditions for a robust and socially attuned science, which can then remain broadly respected, independent, and responsibly innovative. "In Sierra Leone, we have not too much electricity. The lights will come on once in a week, and the rest of the month, dark[ness]. So I made my own battery to power light in people's houses." Kelvin Doe (Global Minimum, 2012) MIT Visiting Young Innovator Cambridge, USA, and Sierra Leone "An important function of the (Global) R&D Observatory will be to provide support and training to build capacity in the collection and analysis of R&D flows, and how to link them to the product pipeline." World Health Organization (2013) Draft Working Paper on a Global Health R&D Observatory.
Collapse
Affiliation(s)
- Vural Özdemir
- 1 Office of the President, Gaziantep University , Gaziantep, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9923-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ozdemir V, Endrenyi L, Aynacıoğlu S, Bragazzi NL, Dandara C, Dove ES, Ferguson LR, Geraci CJ, Hafen E, Kesim BE, Kolker E, Lee EJD, Llerena A, Nacak M, Shimoda K, Someya T, Srivastava S, Tomlinson B, Vayena E, Warnich L, Yaşar U. Bernard Lerer: recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine (Pacific Rim Association for Clinical Pharmacogenetics). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:211-21. [PMID: 24649998 DOI: 10.1089/omi.2014.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article announces the recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine by the Pacific Rim Association for Clinical Pharmacogenetics (PRACP): Bernard Lerer, professor of psychiatry and director of the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. The Werner Kalow Responsible Innovation Prize is given to an exceptional interdisciplinary scholar who has made highly innovative and enduring contributions to global omics science and personalized medicine, with both vertical and horizontal (transdisciplinary) impacts. The prize is established in memory of a beloved colleague, mentor, and friend, the late Professor Werner Kalow, who cultivated the idea and practice of pharmacogenetics in modern therapeutics commencing in the 1950s. PRACP, the prize's sponsor, is one of the longest standing learned societies in the Asia-Pacific region, and was founded by Kalow and colleagues more than two decades ago in the then-emerging field of pharmacogenetics. In announcing this inaugural prize and its winner, we seek to highlight the works of prize winner, Professor Lerer. Additionally, we contextualize the significance of the prize by recalling the life and works of Professor Kalow and providing a brief socio-technical history of the rise of pharmacogenetics and personalized medicine as a veritable form of 21(st) century scientific practice. The article also fills a void in previous social science analyses of pharmacogenetics, by bringing to the fore the works of Kalow from 1995 to 2008, when he presciently noted the rise of yet another field of postgenomics inquiry--pharmacoepigenetics--that railed against genetic determinism and underscored the temporal and spatial plasticity of genetic components of drug response, with invention of the repeated drug administration (RDA) method that estimates the dynamic heritabilities of drug response. The prize goes a long way to cultivate transgenerational capacity and broader cognizance of the concept and practice of responsible innovation as an important criterion of 21(st) century omics science and personalized medicine. A new call is presently in place for the 2016 PRACP Werner Kalow prize. Nominations can be made in support of an exceptional individual interdisciplinary scholar, or alternatively, an entire research team, from any region in the world with a record of highly innovative contributions to global omics science and/or personalized medicine, in the spirit of responsible innovation. The application process is straightforward, requiring a signed, 1500-word nomination letter (by the applicant or sponsor) submitted not later than May 31, 2015.
Collapse
Affiliation(s)
- Vural Ozdemir
- 1 Pacific Rim Association for Clinical Pharmacogenetics, Associate Member Society of the International Union of Basic and Clinical Pharmacology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bragazzi NL. Rethinking psychiatry with OMICS science in the age of personalized P5 medicine: ready for psychiatome? Philos Ethics Humanit Med 2013; 8:4. [PMID: 23849623 PMCID: PMC4120773 DOI: 10.1186/1747-5341-8-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/20/2013] [Indexed: 06/02/2023] Open
Abstract
The Diagnostic and Statistical Manual of Mental Disorders (DSM) is universally acknowledged as the prominent reference textbook for the diagnosis and assessment of psychiatric diseases. However, since the publication of its first version in 1952, controversies have been raised concerning its reliability and validity and the need for other novel clinical tools has emerged. Currently the DSM is in its fourth edition and a new fifth edition is expected for release in 2013, in an intense intellectual debate and in a call for new proposals. Since 1952, psychiatry has undergone many changes and is emerging as unique field in the medical area in which a novel approach is being demanded for properly treating patients: not the classical “one-size-fits-all” approach, but a more targeted and tailored diagnosis and therapeutics, taking into account the complex interactions among genes and their products, environment, culture and the psychological apparatus of the subject. OMICS sciences, being based on high-throughput technologies, are systems biology related fields (like genomics, proteomics, transcriptomics and so on). In the frame of the P5 medicine (personalized, participatory, predictive, preventive, psycho-cognitive), they could establish links between psychiatric diseases, which are disorders with a final common symptomatology with vastly heterogeneous biological, environmental and sociological underpinnings, and by understanding the psychiatric diseases beyond their classic symptomatic or syndromal definitions using OMICS research, one can have a broader picture and unprecedented links and reclassification of psychiatric nosology. Importantly, by understanding the basis of heterogeneity in diseases through OMICS research, one could also personalize treatment of psychiatric illnesses. In this manuscript, we discuss a gap in the current psychiatric research, namely the missing logical link among OMICS, personalized medicine and reclassification of diseases. Moreover, we explore the importance of incorporating OMICS-based quantitative dimensional criteria, besides the classical qualitative and categorical approach.
Collapse
|
15
|
Misra N, Panda PK. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:173-86. [PMID: 23496307 DOI: 10.1089/omi.2012.0094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India
| | | |
Collapse
|
16
|
Higdon R, Haynes W, Stanberry L, Stewart E, Yandl G, Howard C, Broomall W, Kolker N, Kolker E. Unraveling the Complexities of Life Sciences Data. BIG DATA 2013; 1:42-50. [PMID: 27447037 DOI: 10.1089/big.2012.1505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.
Collapse
Affiliation(s)
- Roger Higdon
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Winston Haynes
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Larissa Stanberry
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Elizabeth Stewart
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Gregory Yandl
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Chris Howard
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
- 5 Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
| | - William Broomall
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Natali Kolker
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
| | - Eugene Kolker
- 1 Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington
- 2 High-throughput Analysis Core, Center for Developmental Therapeutics, Seattle Children's Research Institute , Seattle, Washington
- 3 Predictive Analytics, Seattle Children's , Seattle, Washington
- 4 Data-Enabled Life Sciences Alliance (DELSA Global) , Seattle, Washington
- 6 Departments of Biomedical Informatics & Medical Education and Pediatrics, University of Washington , Seattle, Washington
| |
Collapse
|
17
|
OMICS 2.0: A Practice Turn for 21st Century Science and Society. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:1-4. [DOI: 10.1089/omi.2012.0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Abstract
BACKGROUND Pharmacogenetics has emerged as a new tool for the optimization of drug therapy. Although the pharmacogenetics concept was first recognized at least 50 years ago, clinical testing to determine pharmacogenetic traits is still relatively rare, and many hurdles are markedly slowing its development. There is a lot of literature and speculation about potential ethical challenges in genetic and pharmacogenetic testing, yet few researchers have actually examined the attitudes of health care professionals regarding the clinical application of these tests. OBJECTIVE In this article, we aim to review the current literature on health care professionals' perceptions of the role of pharmacogenetic data and describe the attitudes of medical students when faced with a clinical pharmacogenetic testing scenario. METHODS A group of 59 third-year medical students from the American University of Beirut Medical Center were asked to answer a questionnaire about pharmacogenetic testing after being exposed to a clinical scenario of a patient who was diagnosed with mild Alzheimer Disease (AD) and hence was a candidate for therapy with one of the acetylcholinesterase (AChE) inhibitors. RESULTS The students indicated that they would respect patients' confidentiality and inform them about the test results and therapeutic plan, but they would not be as open about bad prognoses. They did not agree on the therapeutic plan that would follow a pharmacogenetic test result and were uncertain about potential patient discrimination in insurability. CONCLUSION Our and others' findings demonstrate the existence and seriousness of several challenges pertaining to pharmacogenetic applications in the clinical setting. Further training and education are needed for health care professionals, since they are the ones who will most probably request these tests in the near future.
Collapse
|
19
|
Ozdemir V, Faraj SA, Knoppers BM. Steering vaccinomics innovations with anticipatory governance and participatory foresight. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:637-46. [PMID: 21848419 DOI: 10.1089/omi.2011.0087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccinomics is the convergence of vaccinology and population-based omics sciences. The success of knowledge-based innovations such as vaccinomics is not only contingent on access to new biotechnologies. It also requires new ways of governance of science, knowledge production, and management. This article presents a conceptual analysis of the anticipatory and adaptive approaches that are crucial for the responsible design and sustainable transition of vaccinomics to public health practice. Anticipatory governance is a new approach to manage the uncertainties embedded on an innovation trajectory with participatory foresight, in order to devise governance instruments for collective "steering" of science and technology. As a contrast to hitherto narrowly framed "downstream impact assessments" for emerging technologies, anticipatory governance adopts a broader and interventionist approach that recognizes the social construction of technology design and innovation. It includes in its process explicit mechanisms to understand the factors upstream to the innovation trajectory such as deliberation and cocultivation of the aims, motives, funding, design, and direction of science and technology, both by experts and publics. This upstream shift from a consumer "product uptake" focus to "participatory technology design" on the innovation trajectory is an appropriately radical and necessary departure in the field of technology assessment, especially given that considerable public funds are dedicated to innovations. Recent examples of demands by research funding agencies to anticipate the broad impacts of proposed research--at a very upstream stage at the time of research funding application--suggest that anticipatory governance with foresight may be one way how postgenomics scientific practice might transform in the future toward responsible innovation. Moreover, the present context of knowledge production in vaccinomics is such that policy making for vaccines of the 21st century is occurring in the face of uncertainties where the "facts are uncertain, values in dispute, stakes high and decisions urgent and where no single one of these dimensions can be managed in isolation from the rest." This article concludes, however, that uncertainty is not an accident of the scientific method, but its very substance. Anticipatory governance with participatory foresight offers a mechanism to respond to such inherent sociotechnical uncertainties in the emerging field of vaccinomics by making the coproduction of scientific knowledge by technology and the social systems explicit. Ultimately, this serves to integrate scientific and social knowledge thereby steering innovations to coproduce results and outputs that are socially robust and context sensitive.
Collapse
Affiliation(s)
- Vural Ozdemir
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
20
|
Ozdemir V, Pang T, Knoppers BM, Avard D, Faraj SA, Zawati MH, Kolker E. Vaccines of the 21st century and vaccinomics: data-enabled science meets global health to spark collective action for vaccine innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:523-7. [PMID: 21848418 DOI: 10.1089/omi.2011.03ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Suzuki Y, Sugai T, Fukui N, Watanabe J, Ono S, Inoue Y, Ozdemir V, Someya T. CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol 2011; 25:908-14. [PMID: 20547595 DOI: 10.1177/0269881110370504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The CYP2D6 enzyme is a capacity-limited high-affinity drug elimination pathway that metabolizes numerous psychiatric medicines. The capacity-limited nature of this enzyme suggests that drug dose may serve as an important factor that influence genotype-phenotype associations. However, dose dependency of CYP2D6 genotype contributions to drug elimination, and its interaction with environmental factors (e.g., smoking) did not receive adequate attention in translational study designs. Fluvoxamine is a selective serotonin reuptake inhibitor antidepressant. Fluvoxamine concentration is one of the factors previously linked to clinical remission in moderate to severe depression. We investigated the joint effect of smoking (an inducer of CYP1A2) and CYP2D6 genotype on interindividual variability in fluvoxamine steady-state concentration. Fluvoxamine concentration was measured in 87 patients treated with 50, 100, 150 or 200 mg/d. While CYP2D6 genotype significantly influenced fluvoxamine concentration in all four dose groups (p < 0.05), the percentage variance explained (R²) by CYP2D6 decreased as the dose of fluvoxamine increased. Smoking status (nonsmokers vs. smoking 20 or more cigarettes/d) significantly affected fluvoxamine concentration in the 50 mg/d group only (p = 0.005). Together, CYP2D6 genotype and smoking status explained 23% of the variance in fluvoxamine concentration but only at the low 50 mg/d dose group. These findings contribute to evidence-based and personalized choice of fluvoxamine dose using smoking status and CYP2D6 genetic variation. Additionally, these data lend evidence for drug dose as an important variable in translational pharmacogenetic study design and pharmaceutical phenotype associations with capacity-limited drug metabolism pathways such as CYP2D6.
Collapse
Affiliation(s)
- Yutaro Suzuki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Toma I, St Laurent G, McCaffrey TA. Toward knowing the whole human: next-generation sequencing for personalized medicine. Per Med 2011; 8:483-491. [DOI: 10.2217/pme.11.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sequencing of the human genome, combined with brilliant technical advances in microarrays and computing, opened the genomic era of personalized medicine. The next generation of genomics is now being driven by massively parallel sequencers that are effectively high definition genetic analyzers capable of sequencing an entire human genome 30-times over in approximately a week for several thousand US dollars. Likewise, these next-generation sequencers, sometimes called deep sequencers, can sequence RNA transcriptomes to render unprecedented, high definition views of transcript sequence, SNP haplotypes, rare variants, splicing, exon boundaries and RNA editing. Presently, next-generation sequencing platforms can be grouped into ‘discovery’ platforms, which provide broad sequence coverage, but require days per sample, versus ‘diagnostic’ platforms, which provide a fraction of the coverage, but require only hours for sequencing. As these technologies converge, it will be possible to sequence a human genome in a matter of hours for a few hundred US dollars. While presenting considerable technical challenges in handling the massive data generated, next-generation sequencing platforms offer unparalleled opportunities for biological insights, target discovery and clinical diagnostics to accelerate personalized medicine in the coming years.
Collapse
Affiliation(s)
- Ian Toma
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St NW, Ross Hall 443, Washington, DC 20037, USA
| | - Georges St Laurent
- Immunovirology–Biogenesis Group, University of Antioquia, AA 1226, Medellin, Colombia
- St Laurent Institute, 1 Kendall Square, Cambridge, MA, USA
| | | |
Collapse
|
23
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
24
|
Reddy PJ, Jain R, Paik YK, Downey R, Ptolemy AS, Ozdemir V, Srivastava S. Personalized Medicine in the Age of Pharmacoproteomics: A Close up on India and Need for Social Science Engagement for Responsible Innovation in Post-Proteomic Biology. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:67-75. [PMID: 22279515 PMCID: PMC3264661 DOI: 10.2174/187569211794728850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Panga Jaipal Reddy
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rekha Jain
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Biomedical Proteome Research Center, and Department of Biomedical Sciences, World Class University Program, Yonsei University, Seoul, Korea
| | | | - Adam S. Ptolemy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Vural Ozdemir
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
25
|
Liu Z, Ma Y, Yang J, Qin H. Upregulated and Downregulated Proteins in Hepatocellular Carcinoma: A Systematic Review of Proteomic Profiling Studies. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:61-71. [PMID: 20726783 DOI: 10.1089/omi.2010.0061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhihua Liu
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanlei Ma
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianjun Yang
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huanlong Qin
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Ozdemir V, Armengaud J, Dubé L, Aziz RK, Knoppers BM. Nutriproteomics and Proteogenomics: Cultivating Two Novel Hybrid Fields of Personalized Medicine with Added Societal Value. ACTA ACUST UNITED AC 2010; 8:240-244. [PMID: 21399751 DOI: 10.2174/187569210793368230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Vural Ozdemir
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
27
|
Dimitrov DV. The human gutome: nutrigenomics of the host-microbiome interactions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 15:419-30. [PMID: 21121704 DOI: 10.1089/omi.2010.0109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Demonstrating the importance of the gut microbiota in human health and well-being represents a major transformational task in both medical and nutritional research. Owing to the high-throughput -omics methodologies, the complexity, evolution with age, and individual nature of the gut microflora have been more thoroughly investigated. The balance between this complex community of gut bacteria, food nutrients, and intestinal genomic and physiological milieu is increasingly recognized as a major contributor to human health and disease. This article discusses the "gutome," that is, nutritional systems biology of gut microbiome and host-microbiome interactions. We examine the novel ways in which the study of the human gutome, and nutrigenomics more generally, can have translational and transformational impacts in 21st century practice of biomedicine. We describe the clinical context in which experimental methodologies, as well as data-driven and process-driven approaches are being utilized in nutrigenomics and microbiome research. We underscore the pivotal importance of the gutome as a common platform for sharing data in the emerging field of the integrated metagenomics of gut pathophysiology. This vision needs to be articulated in a manner that recognizes both the omics biotechnology nuances and the ways in which nutrigenomics science can effectively inform population health and public policy, and vice versa.
Collapse
|
28
|
Holmes C, McDonald F, Jones M, Ozdemir V, Graham JE. Standardization and omics science: technical and social dimensions are inseparable and demand symmetrical study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:327-32. [PMID: 20455752 DOI: 10.1089/omi.2010.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Standardization is critical to scientists and regulators to ensure the quality and interoperability of research processes, as well as the safety and efficacy of the attendant research products. This is perhaps most evident in the case of "omics science," which is enabled by a host of diverse high-throughput technologies such as genomics, proteomics, and metabolomics. But standards are of interest to (and shaped by) others far beyond the immediate realm of individual scientists, laboratories, scientific consortia, or governments that develop, apply, and regulate them. Indeed, scientific standards have consequences for the social, ethical, and legal environment in which innovative technologies are regulated, and thereby command the attention of policy makers and citizens. This article argues that standardization of omics science is both technical and social. A critical synthesis of the social science literature indicates that: (1) standardization requires a degree of flexibility to be practical at the level of scientific practice in disparate sites; (2) the manner in which standards are created, and by whom, will impact their perceived legitimacy and therefore their potential to be used; and (3) the process of standardization itself is important to establishing the legitimacy of an area of scientific research.
Collapse
Affiliation(s)
- Christina Holmes
- Technoscience and Regulation Research Unit, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | |
Collapse
|
29
|
Interobserver diagnostic variability at "moderate" agreement levels could significantly change the prognostic estimates of clinicopathologic studies: evaluation of the problem using evidence from patients with diffuse lung disease. Ann Diagn Pathol 2010; 14:88-93. [PMID: 20227013 DOI: 10.1016/j.anndiagpath.2009.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/24/2022]
Abstract
Does interobserver diagnostic variability (IODV) influence the accuracy of prognostic estimates of clinicopathologic studies? "Best evidence" from usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) patients was used to investigate the effects of IODV. Systematic literature review identified studies of UIP and NSIP providing "best evidence." Survival proportions from studies were compared using chi(2) and meta-analysis. Interobserver diagnostic variability was simulated in the data arbitrarily at 5% to 30% intervals. The various "diagnoses" were evaluated with kappa, and chi(2) statistics were used to evaluate the interobserver agreement and compare survival proportions. The survival proportions for UIP and NSIP patients in 7 retrospective level III studies ranged from 11% to 58% and 39% to 100%, respectively. Analysis of simulation results with kappa and chi(2) statistics showed that IODV greater than 10% resulted in significantly different survival proportion estimations. Interobserver diagnostic variability at moderate agreement levels significantly influences prognostic estimates. Evaluation and minimization of IODV in future clinicopathologic studies are indicated.
Collapse
|
30
|
McBride CM, Bowen D, Brody LC, Condit CM, Croyle RT, Gwinn M, Khoury MJ, Koehly LM, Korf BR, Marteau TM, McLeroy K, Patrick K, Valente TW. Future health applications of genomics: priorities for communication, behavioral, and social sciences research. Am J Prev Med 2010; 38:556-565. [PMID: 20409503 DOI: 10.1016/_j.amepre.2010.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/30/2009] [Accepted: 01/13/2010] [Indexed: 05/22/2023]
Abstract
Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public's genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges.
Collapse
Affiliation(s)
- Colleen M McBride
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McBride CM, Bowen D, Brody LC, Condit CM, Croyle RT, Gwinn M, Khoury MJ, Koehly LM, Korf BR, Marteau TM, McLeroy K, Patrick K, Valente TW. Future health applications of genomics: priorities for communication, behavioral, and social sciences research. Am J Prev Med 2010; 38:556-65. [PMID: 20409503 PMCID: PMC4188632 DOI: 10.1016/j.amepre.2010.01.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/30/2009] [Accepted: 01/13/2010] [Indexed: 02/07/2023]
Abstract
Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public's genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges.
Collapse
Affiliation(s)
- Colleen M McBride
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rahmioğlu N, Ahmadi KR. Classical twin design in modern pharmacogenomics studies. Pharmacogenomics 2010; 11:215-26. [DOI: 10.2217/pgs.09.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Response to medication is highly variable, unpredictable and, at times, may be fatal. All drugs are more effective in certain groups of the population while showing no or minimal benefit in other groups. Although the current data on the subject are piecemeal, anecdotal evidence suggests that, in line with other common multifactorial traits, a myriad of genomic as well as environmental factors underpin population variability in drug response. Pharmacogenomics is the study of how variations in the human genome affect the variability in response to medication. Efforts to personalize treatment based on results from pharmacogenomics studies have the potential to increase efficacy, lower the overall cost of treatment, and decrease the incidence of adverse drug reactions, and are one of the major challenges of the modern era. The classical twin design has traditionally been used to assess the relative contribution of genetic and environmental factors to population variation in common, complex phenotypes, including drug response. Twins are not commonly regarded as providing the optimal design in genomic studies. However, we argue that, through their precise ‘matching’ for confounding variables (age, sex, cohort and common environmental effects), their amenability to numerous nonclassical study designs (genome-wide association studies or the role of epigenetic factors), and the availability of large, established registries worldwide, the twin model represents a flexible study design for systems-biology studies of drug response in humans. In this review, we describe the ‘classical twin model’ and its application in traditional pharmacogenetics studies, discuss the value of the twin design in the modern systems biology era, and highlight the potential of existing twin registries in formulating future strategies in pharmacogenomics research. We argue that the usefulness of this design goes beyond its traditional applications. Moreover, the flexibility of the model in concert with the amenability of large, established registries of twins worldwide to the collecting of new phenotypes will mean that the study of identical and nonidentical twins will play a considerable role in shaping our understanding of the important factors that underpin population variability in common, complex phenotypes, including response to medication.
Collapse
Affiliation(s)
- Nilüfer Rahmioğlu
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, 1st Floor, South Wing, Block 4, Westminster Bridge Road, London, SE1 7EH, UK
| | - Kourosh R Ahmadi
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, 1st Floor, South Wing, Block 4, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
33
|
Abstract
Information about personalized medicine abounds, yet it is difficult to comprehensively search for information on this topic due to the broadness of the term “personalized medicine, ” the variety of terms that are used to describe this concept, the vast amount of pertinent journal articles and Web sites, and the fast pace of developments in this field, A selected list of Web sites is provided as a starting place for information about concepts, terminology, projects, databases, tools, and stakeholders related to personalized medicine.
Collapse
Affiliation(s)
- Nancy F Stimson
- University of California, San Diego, Biomedical Library, 0699, 9500 Gilman Drive, La Jolla, CA 92093-0699, USA.
| |
Collapse
|
34
|
Ozdemir V, Husereau D, Hyland S, Samper S, Salleh MZ. Personalized Medicine Beyond Genomics: New Technologies, Global Health Diplomacy and Anticipatory Governance. ACTA ACUST UNITED AC 2009; 7:225-230. [PMID: 20613883 DOI: 10.2174/187569209790112283] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- V Ozdemir
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
35
|
Ozdemir V. What to do when the risk environment is rapidly shifting and heterogeneous? Anticipatory governance and real-time assessment of social risks in multiply marginalized populations can prevent IRB mission creep, ethical inflation or underestimation of risks. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2009; 9:65-68. [PMID: 19882466 DOI: 10.1080/15265160903197671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Vural Ozdemir
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C3J7.
| |
Collapse
|
36
|
Ozdemir V, Motulsky AG, Kolker E, Godard B. Genome-environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:1-6. [PMID: 19290807 DOI: 10.1089/omi.2009.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relationships between food, nutrition science, and health outcomes have been mapped over the past century. Genomic variation among individuals and populations is a new factor that enriches and challenges our understanding of these complex relationships. Hence, the confluence of nutritional science and genomics-nutrigenomics--was the focus of the OMICS: A Journal of Integrative Biology in December 2008 (Part 1). The 2009 Special Issue (Part 2) concludes the analysis of nutrigenomics research and innovations. Together, these two issues expand the scope and depth of critical scholarship in nutrigenomics, in keeping with an integrated multidisciplinary analysis across the bioscience, omics technology, social, ethical, intellectual property and policy dimensions. Historically, the field of pharmacogenetics provided the first examples of specifically identifiable gene variants predisposing to unexpected responses to drugs since the 1950s. Brewer coined the term ecogenetics in 1971 to broaden the concept of gene-environment interactions from drugs and nutrition to include environmental agents in general. In the mid-1990s, introduction of high-throughput technologies led to the terms pharmacogenomics, nutrigenomics and ecogenomics to describe, respectively, the contribution of genomic variability to differential responses to drugs, food, and environment defined in the broadest sense. The distinctions, if any, between these newer fields (e.g., nutrigenomics) and their predecessors (e.g., nutrigenetics) remain to be delineated. For nutrigenomics, its reliance on genome-wide analyses may lead to detection of new biological mechanisms governing host response to food. Recognizing "genome-environment interactions" as the conceptual thread that connects and runs through pharmacogenomics, nutrigenomics, and ecogenomics may contribute toward anticipatory governance and prospective real-time analysis of these omics fields. Such real-time analysis of omics technologies and innovations is crucial, because it can influence and positively shape them as these approaches develop, and help avoid predictable pitfalls, and thus ensure their effective and ethical application in the laboratory, clinic, and society.
Collapse
Affiliation(s)
- Vural Ozdemir
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|