1
|
Abouir K, Varesio E, Déglon J, Samer C, Daali Y. Improving CYP2C19 phenotyping using stereoselective omeprazole and 5-hydroxy-omeprazole metabolic ratios. Basic Clin Pharmacol Toxicol 2024. [PMID: 39385496 DOI: 10.1111/bcpt.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Omeprazole (OME) is a CYP2C19 phenotyping probe, marketed as a racemic (S)/(R) mixture or as an S-enantiomer. Both CYP2C19 and CYP3A4 enzymes mediate (R)-OME hydroxylation to (R)-5-hydroxyomeprazole, while (S)-OME is exclusively hydroxylated via CYP2C19. This study investigates OME and its 5-hydroxymetabolite enantiomers' pharmacokinetics using data from two studies involving healthy volunteers. In Study A, volunteers received OME alone in Session 1, OME combined with voriconazole and fluvoxamine in Session 2 and finally OME with rifampicin in Session 3. In Study B, volunteers received OME alone in Session 1, OME combined with voriconazole in Session 2 and finally OME with fluvoxamine in Session 3. Despite low metabolic ratio values of (S)-OME, detectable modulation of CYP2C19 activity suggests both (R)- and (S)-OME isomers could effectively assess CYP2C19 activity. Further research is needed for precise cut-offs in different phenotype groups.
Collapse
Affiliation(s)
- Kenza Abouir
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
- School of Pharmaceutical Sciences; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julien Déglon
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital, Geneva University Hospital, Lausanne, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
- School of Pharmaceutical Sciences; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
- School of Pharmaceutical Sciences; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
3
|
Miura M, Tanaka S, Uchida S, Kamiya C, Katayama N, Hakamata A, Odagiri K, Inui N, Kawakami J, Watanabe H, Namiki N. Prediction of the Area under the Curve Using Limited-Point Blood Sampling in a Cocktail Study to Assess Multiple CYP Activities. Biol Pharm Bull 2021; 44:762-770. [PMID: 34078808 DOI: 10.1248/bpb.b20-00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cocktail study is an in vivo evaluation method to assess multiple CYP activities via a single trial and single administration of a cocktail drug that is a combination of multiple CYP substrates. However, multiple blood samples are required to evaluate the pharmacokinetics of a CYP probe drug. A limited-point sampling method is generally beneficial in clinical studies because of the simplified protocol and reduced participant burden. The aim of this study was to evaluate whether a limited-point plasma concentration analysis of CYP substrates in a cocktail drug could predict their area under the curve (AUC). We created prediction models of five CYP substrates (caffeine, losartan, omeprazole, dextromethorphan, and midazolam) using multiple linear regressions from the data of two cocktail studies, and then performed predictability analysis of these models using data derived from data in the co-administration with inducer (rifampicin) and inhibitors (fluvoxamine and cimetidine). For the administration of inhibitors, the AUC prediction accuracy (mean absolute error (MAE)) were <39.5% in Model 1 and <26.2% in Model 2 which were created using 1- and 4-point sampling data. MAE shows larger values in the administration of inducer in compared with the administration of inhibitors. The accuracy of the prediction in Model 2 could be acceptable for screening of inhibitions. MAE for caffeine, dextromethorphan, and midazolam were acceptable in the model that used 4 sampling points from all data. The use of this method could reduce the burden on the subject and make it possible to evaluate each AUC in a minimally invasive manner.
Collapse
Affiliation(s)
- Motoyasu Miura
- Department of Pharmacy Practice & Science, School of Pharmaceutical Sciences, University of Shizuoka.,Hospital Pharmacy, Hamamatsu University School of Medicine
| | - Shimako Tanaka
- Department of Pharmacy Practice & Science, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shinya Uchida
- Department of Pharmacy Practice & Science, School of Pharmaceutical Sciences, University of Shizuoka
| | - Chiaki Kamiya
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | - Naoki Katayama
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | - Akio Hakamata
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | - Keiichi Odagiri
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | - Naoki Inui
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | | | - Hiroshi Watanabe
- Department of Clinical Pharmacology & Therapeutics, Hamamatsu University School of Medicine
| | - Noriyuki Namiki
- Department of Pharmacy Practice & Science, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
4
|
Pippa LF, Vieira CP, Caris JA, Rocha A, Garcia CP, Rezende REF, Lanchote VL. Clinical treatment for hepatitis C reverses CYP2C19 inhibition. Br J Clin Pharmacol 2021; 87:4013-4019. [PMID: 33738827 DOI: 10.1111/bcp.14829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Infection by the hepatitis C virus (HCV) generates inflammatory response selectively modulating cytochrome P450 protein (CYP) activities. This study assessed the effect of chronic hepatitis C on CYP2C19 activity in patients with HCV. METHODS Patients with HCV infection (n = 23) at different fibrosis stages were allocated into groups 1 (F0/F1 and F2, mild to moderate fibrosis) and 2 (F3 and F4, advanced fibrosis stages). Phase 1 was conducted before the treatment with direct-acting antivirals (DAAs) and phase 2 after the sustained virological response. Participants were administered 2 mg of a single oral dose of omeprazole (OME) as probe drug in both phases. Metabolic ratios (MRs) (plasma samples collected at 4 h after OME administration) were calculated by dividing plasma concentrations of 5-hydroxyomeprazole by OME. RESULTS The MRs for group 1 were 0.45 (0.34-0.60, 90% confidence interval) and 0.69 (0.50-0.96) for phases 1 and 2, respectively, while the MRs for group 2 were 0.25 (0.21-0.31) and 0.41 (0.30-0.56) for phases 1 and 2, respectively. MRs were different (P < .05) between phases 1 and 2 for both groups, as well as between groups 1 and 2 in phase 1, but not in phase 2 (P > .05). CONCLUSIONS Both groups presented different MRs before and after treatment with DAAs, evidencing that CYP2C19 inhibition during inflammation was at least partially reversed after DAA treatment. Groups 1 and 2 were also found to be different in phase 1 but not phase 2, showing that CYP2C19 metabolic activity does not differ between groups after DAA treatment.
Collapse
Affiliation(s)
- Leandro Francisco Pippa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Pinto Vieira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juciene Aparecida Caris
- Department of Neurosciences and Behavioural Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Adriana Rocha
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camile Prates Garcia
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Rosamar Eulira Fontes Rezende
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.,Reference Centre, Hepatitis Outpatient Clinic, Municipal Health Secretary, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P, Peñas-Lledó EM, LLerena A. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. THE PHARMACOGENOMICS JOURNAL 2020; 21:140-151. [PMID: 33024249 DOI: 10.1038/s41397-020-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.
Collapse
Affiliation(s)
- Fernando de Andrés
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua
| | - Catalina Altamirano-Tinoco
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua
| | - Ronald Ramírez-Roa
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua.
| | | | - Pedro Dorado
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Eva M Peñas-Lledó
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain. .,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,Faculty of Medicine, University of Extremadura, Badajoz, Spain. .,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Zhang J, Guan Y, He L, Tao L, Zang Z, Zhu W, Chen L, Jin C. Influence of a combination of triptolide and ferulic acid on the activities of CYP450 enzymes and oxidative stress in HaCaT cells. Exp Ther Med 2020; 20:157. [PMID: 33093895 PMCID: PMC7571369 DOI: 10.3892/etm.2020.9286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Topical administration of triptolide (TP) is effective in the treatment of rheumatoid arthritis (RA), but it can also induce skin irritation. Previous studies have used data mining strategies to analyze the application of Tripterygium wilfordii in the treatment of RA and have shown that TP and ferulic acid (FA) can be used in combination due to their component compatibility. The aims of the present study were to investigate the mechanisms underlying the effects of TP treatment and to identify its effects on metabolism and oxidative damage in the skin. MTT assay results suggested that the HaCaT cell survival rate was significantly increased when the compatibility ratio of TP to FA was 1:100. Moreover, the combination of TP with FA (TP + FA) did not significantly affect the activities of the cytochrome P40 (CYP) enzymes CYP family 1 subfamily A member 2 (CYP1A2), CYP2E1 and CYP3A4, when used as a 'cocktail'. It was found that TP + FA significantly decreased the production levels of reactive oxygen species (ROS), superoxide dismutase and malondialdehyde in HaCaT cells, while significantly increasing levels of glutathione and catalase. In addition, TP + FA significantly increased nuclear factor erythroid 2-related factor 2 protein expression, compared with TP alone. Thus, the present results indicated that the underlying mechanism of TP + FA efficacy may be related to decreased ROS production level in HaCaT cells, increased production levels of key antioxidant factors and increased antioxidant activity of the epidermis, all of which were correlated with a protective effect against oxidative damage.
Collapse
Affiliation(s)
- Jianlin Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Liangfei He
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Ling Tao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Zhenhzong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Chen Jin
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
7
|
Peñas-LLedó E, Terán E, Sosa-Macías M, Galaviz-Hernández C, Gil JP, Nair S, Diwakar S, Hernández I, Lara-Riegos J, Ramírez-Roa R, Verde I, Tarazona-Santos E, Molina-Guarneros J, Moya G, Rägo L, LLerena A. Challenges and Opportunities for Clinical Pharmacogenetic Research Studies in Resource-limited Settings: Conclusions From the Council for International Organizations of Medical Sciences-Ibero-American Network of Pharmacogenetics and Pharmacogenomics Meeting. Clin Ther 2020; 42:1595-1610.e5. [PMID: 32782137 DOI: 10.1016/j.clinthera.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The symposium Health and Medicines in Indigenous Populations of America was organized by the Council for International Organizations of Medical Sciences (CIOMS) Working Group on Clinical Research in Resource-Limited Settings (RLSs) and the Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF). It was aimed to share and evaluate investigators' experiences on challenges and opportunities on clinical research and pharmacogenetics. METHODS A total of 33 members from 22 countries participated in 2 sessions: RIBEF studies on population pharmacogenetics about the relationship between ancestry with relevant drug-related genetic polymorphisms and the relationship between genotype and phenotype in Native Americans (session 1) and case examples of clinical studies in RLSs from Asia (cancer), America (diabetes and women health), and Africa (malaria) in which the participants were asked to answer in free text their experiences on challenges and opportunities to solve the problems (session 2). Later, a discourse analysis grouping common themes by affinity was conducted. FINDINGS The main result of session 1 was that the pharmacogenetics-related ancestry of the population should be considered when designing clinical studies in RLSs. In session 2, 21 challenges and 20 opportunities were identified. The social aspects represent the largest proportion of the challenges (43%) and opportunities (55%), and some of them seem to be common. IMPLICATIONS The main discussion points were gathered in the Declaration of Mérida/T'Hó and announced on the Parliament of Extremadura during the CIOMS-RIBEF meeting in 4 of the major Latin American autochthonous languages (Náhualth, Mayan, Miskito, and Kichwa). The declaration highlighted the following: (1) the relevance of population pharmacogenetics, (2) the sociocultural contexts (interaction with traditional medicine), and (3) the education needs of research teams for clinical research in vulnerable and autochthonous populations.
Collapse
Affiliation(s)
- Eva Peñas-LLedó
- INUBE Extremadura Biosanitary University Research Institute, University of Extremadura, Badajoz, Spain; University of Conscientiousness Project, Campus PHI, Acebo, Extremadura, Spain
| | | | - Marta Sosa-Macías
- Instituto Politécnico Nacional, CIIDIR Unidad Durango, Durango, Mexico
| | | | | | | | | | | | | | | | | | - Eduardo Tarazona-Santos
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Graciela Moya
- Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Lembit Rägo
- CIOMS Council for International Organizations of Medical Sciences, Geneva, Switzerland
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, University of Extremadura, Badajoz, Spain; University of Conscientiousness Project, Campus PHI, Acebo, Extremadura, Spain.
| |
Collapse
|
8
|
Coelho EB, Cusinato DAC, Ximenez JP, Lanchote VL, Struchiner CJ, Suarez-Kurtz G. Limited Sampling Modeling for Estimation of Phenotypic Metrics for CYP Enzymes and the ABCB1 Transporter Using a Cocktail Approach. Front Pharmacol 2020; 11:22. [PMID: 32174823 PMCID: PMC7057125 DOI: 10.3389/fphar.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
Plasma concentration data points (n = 2,640) from 16 healthy adults were used to develop and validate limited sampling strategies (LSS) for estimation of phenotypic metrics for CYP enzymes and the ABCB1 transporter, using a cocktail of subtherapeutic doses of the selective probes caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A), losartan (CYP2C9), omeprazole (CYP2C19), and fexofenadine (ABCB1). All-subsets linear regression modelling was applied to estimate the AUC0–12h for caffeine, fexofenadine, and midazolam, and the AUC0–12h ratio of metoprolol: α-OH metoprolol and omeprazole:5-OH omeprazole. LSS-derived metrics were compared with the parameters’ ‘best estimates’ obtained by non-compartmental analysis using all plasma concentration data points. The correlation coefficient (R2) was used to identify the LSS equations that provided the best fit for n timed plasma samples, and the jack-knife statistics was used as an additional validation procedure for the LSS models. Single time-point LSS models provided R2 values greater than 0.95 (R2 > 0.95) for the AUC0–12h ratio of metoprolol:α-OH metoprolol and omeprazole:5-OH omeprazole, whereas 2 time-point models were required for R2 > 0.95 for the AUC0–12h of caffeine, fexofenadine, and midazolam. Increasing the number of sampling points to three led to minor increases in R2 and/or the bias or prediction of the estimates. In conclusion, the LSS models provided accurate prediction of phenotypic indices for CYP1A2, CYP2C19, CYP2D6, CYP3A, and ABCB1, when using subtherapeutic doses of selective probes for these enzymes and transporter.
Collapse
Affiliation(s)
- Eduardo Barbosa Coelho
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - João Paulo Ximenez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Guilherme Suarez-Kurtz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Coordenação de Pesquisa Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Tornio A, Filppula AM, Niemi M, Backman JT. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin Pharmacol Ther 2019; 105:1345-1361. [PMID: 30916389 PMCID: PMC6563007 DOI: 10.1002/cpt.1435] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Many drug-drug interactions (DDIs) are based on alterations of the plasma concentrations of a victim drug due to another drug causing inhibition and/or induction of the metabolism or transporter-mediated disposition of the victim drug. In the worst case, such interactions cause more than tenfold increases or decreases in victim drug exposure, with potentially life-threatening consequences. There has been tremendous progress in the predictability and modeling of DDIs. Accordingly, the combination of modeling approaches and clinical studies is the current mainstay in evaluation of the pharmacokinetic DDI risks of drugs. In this paper, we focus on the methodology of clinical studies on DDIs involving drug metabolism or transport. We specifically present considerations related to general DDI study designs, recommended enzyme and transporter index substrates and inhibitors, pharmacogenetic perspectives, index drug cocktails, endogenous substrates, limited sampling strategies, physiologically-based pharmacokinetic modeling, complex DDIs, methodological pitfalls, and interpretation of DDI information.
Collapse
Affiliation(s)
- Aleksi Tornio
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Naranjo MEG, Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Fariñas H, Rodeiro I, Terán E, Grazina M, Moya GE, López-López M, Sarmiento AP, Calzadilla LR, Ramírez-Roa R, Ortiz-López R, Estévez-Carrizo FE, Sosa-Macías M, Barrantes R, LLerena A. Interethnic Variability in CYP2D6, CYP2C9, and CYP2C19 Genes and Predicted Drug Metabolism Phenotypes Among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population Pharmacogenomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:575-588. [PMID: 30183544 DOI: 10.1089/omi.2018.0114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacogenetic variation in Latin Americans is understudied, which sets a barrier for the goal of global precision medicine. The RIBEF-CEIBA Network Consortium was established to characterize interindividual and between population variations in CYP2D6, CYP2C9, and CYP2C19 drug metabolizing enzyme genotypes, which were subsequently utilized to catalog their "predicted drug metabolism phenotypes" across Native American and Ibero American populations. Importantly, we report in this study, a total of 6060 healthy individuals from Ibero-America who were classified according to their self-reported ancestry: 1395 Native Americans, 2571 Admixed Latin Americans, 96 Afro-Latin Americans, 287 white Latin Americans (from Cuba), 1537 Iberians, and 174 Argentinean Ashkenazi Jews. Moreover, Native Americans were grouped into North-, Central-, and South Amerindians (from Mexico, Costa Rica, and Peru, respectively). All subjects were studied for the most common and functional CYP2D6, CYP2C9, and CYP2C19 allelic variants, and grouped as genotype-predicted poor or ultrarapid metabolizer phenotypes (gPMs and gUMs, respectively). Native Americans showed differences from each ethnic group in at least two alleles of CYP2D6, CYP2C9, and CYP2C19. Native Americans had higher frequencies of wild-type alleles for all genes, and lower frequency of CYP2D6*41, CYP2C9*2, and CYP2C19*17 (p < 0.05). Native Americans also showed less CYP2C19 gUMs than the rest of the population sample. In addition, differences within Native Americans (mostly North vs. South) were also found. The interethnic differences described supports the need for population-specific personalized and precision medicine programs for Native Americans. To the best of our knowledge, this is the largest study carried out in Native Americans and other Ibero-American populations analyzing CYP2D6, CYP2C9, and CYP2C19 genetic polymorphisms. Population pharmacogenomics is a nascent field of global health and warrants further research and education.
Collapse
Affiliation(s)
- María-Eugenia G Naranjo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,4 Faculdade Uninassau , Manaus, Brazil
| | - Eva M Peñas-Lledó
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Eduardo Tarazona-Santos
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,5 PRISMA , Lima, Peru
| | - Humberto Fariñas
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Idania Rodeiro
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,6 Instituto de Ciencias del Mar , La Habana, Cuba
| | - Enrique Terán
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,7 Universidad San Francisco de Quito , Quito, Ecuador
| | - Manuela Grazina
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,8 UC, CNC-Center for Neuroscience and Cell Biology, FMUC-Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Graciela E Moya
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,9 Universidad Católica de Argentina , Buenos Aires, Argentina
| | - Marisol López-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,10 Universidad Autónoma Metropolitana , Ciudad de México, Mexico
| | - Alba P Sarmiento
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,11 Pontifica Universidad Javeriana , Bogotá, Colombia
| | - Luis R Calzadilla
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,12 Centro Comunitario de SaludMental de la Habana Vieja, La Habana, Cuba
| | - Ronald Ramírez-Roa
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,13 Universidad Nacional Autónoma de Nicaragua , León, Nicaragua
| | - Rocío Ortiz-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,14 Tecnológico de Monterrey , Monterrey, Mexico
| | - Francisco E Estévez-Carrizo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,15 Universidad de Montevideo , Montevideo, Uruguay
| | - Martha Sosa-Macías
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,16 Instituto Politécnico Nacional , Durango, Mexico
| | - Ramiro Barrantes
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,17 Universidad de Costa Rica , San José, Costa Rica
| | - Adrián LLerena
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | | |
Collapse
|
11
|
Fuhr U, Hsin CH, Li X, Jabrane W, Sörgel F. Assessment of Pharmacokinetic Drug-Drug Interactions in Humans: In Vivo Probe Substrates for Drug Metabolism and Drug Transport Revisited. Annu Rev Pharmacol Toxicol 2018; 59:507-536. [PMID: 30156973 DOI: 10.1146/annurev-pharmtox-010818-021909] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic parameters of selective probe substrates are used to quantify the activity of an individual pharmacokinetic process (PKP) and the effect of perpetrator drugs thereon in clinical drug-drug interaction (DDI) studies. For instance, oral caffeine is used to quantify hepatic CYP1A2 activity, and oral dagibatran etexilate for intestinal P-glycoprotein (P-gp) activity. However, no probe substrate depends exclusively on the PKP it is meant to quantify. Lack of selectivity for a given enzyme/transporter and expression of the respective enzyme/transporter at several sites in the human body are the main challenges. Thus, a detailed understanding of the role of individual PKPs for the pharmacokinetics of any probe substrate is essential to allocate the effect of a perpetrator drug to a specific PKP; this is a prerequisite for reliably informed pharmacokinetic models that will allow for the quantitative prediction of perpetrator effects on therapeutic drugs, also in respective patient populations not included in DDI studies.
Collapse
Affiliation(s)
- Uwe Fuhr
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Chih-Hsuan Hsin
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Xia Li
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Wafaâ Jabrane
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany
| |
Collapse
|
12
|
Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations. Sci Rep 2018; 8:12726. [PMID: 30143732 PMCID: PMC6109098 DOI: 10.1038/s41598-018-31191-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
In a one-way cross-over study, we investigated the effect of Khat, a natural amphetamine-like psychostimulant plant, on catalytic activities of five major drug-metabolizing cytochrome P450 (CYP) enzymes. After a one-week Khat abstinence, 63 Ethiopian male volunteers were phenotyped using cocktail probe drugs (caffeine, losartan, dextromethorphan, omeprazole). Phenotyping was repeated after a one-week daily use of 400 g fresh Khat leaves. Genotyping for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A5 were done. Urinary cathinone and phenylpropanolamine, and plasma probe drugs and metabolites concentrations were quantified using LC-MS/MS. Effect of Khat on enzyme activities was evaluated by comparing caffeine/paraxanthine (CYP1A2), losartan/losartan carboxylic acid (CYP2C9), omeprazole/5-hydroxyomeprazole (CYP2C19), dextromethorphan/dextrorphan (CYP2D6) and dextromethorphan/3-methoxymorphinan (CYP3A4) metabolic ratios (MR) before and after Khat use. Wilcoxon-matched-pair-test indicated a significant increase in median CYP2D6 MR (41%, p < 0.0001), and a marginal increase in CYP3A4 and CYP2C19 MR by Khat. Repeated measure ANOVA indicated the impact of CYP1A2 and CYP2C19 genotype on Khat-CYP enzyme interactions. The median MR increased by 35% in CYP1A2*1/*1 (p = 0.07) and by 40% in carriers of defective CYP2C19 alleles (p = 0.03). Urinary log cathinone/phenylpropanolamine ratios significantly correlated with CYP2D6 genotype (p = 0.004) and CYP2D6 MR (P = 0.025). Khat significantly inhibits CYP2D6, marginally inhibits CYP3A4, and genotype-dependently inhibit CYP2C19 and CYP1A2 enzyme activities.
Collapse
|
13
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
14
|
Denisenko NP, Sychev DA, Sizova ZM, Smirnov VV, Ryzhikova KA, Sozaeva ZA, Grishina EA. Urine metabolic ratio of omeprazole in relation to CYP2C19 polymorphisms in Russian peptic ulcer patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:253-259. [PMID: 29033601 PMCID: PMC5628683 DOI: 10.2147/pgpm.s141935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND CYP2C19 is known to be the main enzyme of biotransformation of proton pump inhibitors (PPIs), whereas the CYP2C19 gene is highly polymorphic. Genotyping and phenotyping together represent more reliable data about patient's CYP2C19 activity. PURPOSE The aim of the study was to investigate the applicability of urine metabolic ratio of omeprazole for CYP2C19 phenotyping in Russian peptic ulcer patients with different CYP2C19 genotypes. PATIENTS AND METHODS A total of 59 patients (19 men and 40 women) aged 18-91 years (mean age 53.5±15.1 years) from four Moscow clinics who were diagnosed with an endoscopically and histologically proven peptic ulcer or had a history of endoscopically and histologically proven ulcers in the past were recruited. Peripheral venous blood (6 mL) was collected for DNA extraction, and real-time polymerase chain reaction was performed for the analysis of CYP2C19*2G681A (rs4244285), CYP2C19*3G636A (rs4986893) and CYP2C19*17C-806T (rs12248560) polymorphisms. Urine samples of patients were collected in the morning between 6 am and 9 am, before food or drug intake, after at least 3 days of twice daily (b.i.d.) omeprazole intake. Omeprazole and 5-hydroxyomeprazole concentrations in the urine were measured using high-performance liquid chromatography with mass spectrometry. RESULTS Of the 59 patients, there were 27 (45.8%) extensive metabolizers (EMs; CYP2C19*1/*1), 16 (27.1%) ultrarapid metabolizers (UMs; CYP2C19*1/*17, CYP2C19*17/*17), 14 (23.7%) intermediate metabolizers (IMs; CYP2C19*1/*2, CYP2C19*2/*17, CYP2C19*3/*17) and two (3.4%) poor metabolizers (PMs; CYP2C19*2/*2). Median metabolic ratio (25%-75% percentiles) were 1.03 (0.69-1.36) for EMs, 1.95 (1.33-2.68) for UMs, 1.40 (0.78-2.13) for IMs+PMs and 1.26 (0.82-1.99) for the whole sample. A statistically significant difference in metabolic ratio (Mann-Whitney U test) was found between UMs and EMs (p=0.001) and in the multiple comparison Kruskal-Wallis test (p=0.005). CONCLUSION We found a connection between particular CYP2C19 genotypes and urine metabolic ratio of omeprazole in Russian peptic ulcer patients. This method needs to be improved as in our modification it worked mainly for UMs and did not differentiate all patients according to omeprazole biotransformation activity.
Collapse
Affiliation(s)
- Natalia P Denisenko
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia.,Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia.,Department of Social Expertise, Urgent and Outpatient Therapy, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia
| | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Zhanna M Sizova
- Department of Social Expertise, Urgent and Outpatient Therapy, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia
| | - Valeriy V Smirnov
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia.,Laboratory of Clinical Pharmacology, National Research Centre, Institute of Immunology, Federal Medical Biological Agency, Moscow, Russia
| | - Kristina A Ryzhikova
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Zhannet A Sozaeva
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Elena A Grishina
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| |
Collapse
|
15
|
de Andrés F, Sosa-Macías M, Ramos BPL, Naranjo MEG, LLerena A. CYP450 Genotype/Phenotype Concordance in Mexican Amerindian Indigenous Populations–Where to from Here for Global Precision Medicine? ACTA ACUST UNITED AC 2017; 21:509-519. [DOI: 10.1089/omi.2017.0101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fernando de Andrés
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | | | | | - María-Eugenia G. Naranjo
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| |
Collapse
|
16
|
Yılmaz ŞG, Llerena A, De Andrés F, Karakaş Ü, Gündoğar H, Erciyas K, Kimyon S, Mete A, Güngör K, Özdemir V. Water pipe (Shisha, Hookah, Arghile) Smoking and Secondhand Tobacco Smoke Effects on CYP1A2 and CYP2A6 Phenotypes as Measured by Caffeine Urine Test. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:177-182. [PMID: 28253085 DOI: 10.1089/omi.2016.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Public policies to stop or reduce cigarette smoking and exposure to secondhand smoke and associated diseases have yielded successful results over the past decade. Yet, the growing worldwide popularity of another form of tobacco consumption, water pipe smoking, has received relatively less attention. To the best of our knowledge, no study to date has evaluated the effects of water pipe smoking on cytochrome P450 (CYP450) activities and drug interaction potential in humans, whereas only limited information is available on the impact of secondhand smoke on drug metabolism. In a sample of 99 healthy volunteers (28 water pipe smokers, 30 secondhand tobacco smoke exposed persons, and 41 controls), we systematically compared CYP1A2 and CYP2A6 enzyme activities in vivo using caffeine urine test. The median self-reported duration of water pipe smoking was 7.5 h/week and 3 years of exposure in total. The secondhand smoke group had a median of 14 h of self-reported weekly exposure to tobacco smoke indoor where a minimum of five cigarettes were smoked/hour for a total of 3.5 years (median). Analysis of variance did not find a significant difference in CYP1A2 and CYP2A6 activities among the three study groups (p > 0.05). Nor was there a significant association between the extent of water pipe or secondhand smoke exposure and the CYP1A2 and CYP2A6 activities (p > 0.05). Further analysis in a subsample with smoke exposure more than the median values also did not reveal a significant difference from the controls. Although we do not rule out an appreciable possible impact of water pipe smoke and secondhand smoke on in vivo activities of these two drug metabolism pathways, variability in smoke constituents from different tobacco consumption methods (e.g., water pipe) might affect drug metabolism in ways that might differ from that of cigarette smoke. Further studies in larger prospective samples are recommended to evaluate water pipe and secondhand tobacco smoke effects on CYP450 function, particularly at higher smoke exposure conditions.
Collapse
Affiliation(s)
- Şenay Görücü Yılmaz
- 1 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University , Gaziantep, Turkey
| | - Adrián Llerena
- 2 CICAB Clinical Research Centre, Extremadura University Hospital and Medical School , Badajoz, Spain
| | - Fernando De Andrés
- 2 CICAB Clinical Research Centre, Extremadura University Hospital and Medical School , Badajoz, Spain
| | - Ümit Karakaş
- 3 Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University , Mersin, Turkey
| | - Hasan Gündoğar
- 4 Department of Periodontology, Faculty of Dentistry, Gaziantep University , Gaziantep, Turkey
| | - Kamile Erciyas
- 4 Department of Periodontology, Faculty of Dentistry, Gaziantep University , Gaziantep, Turkey
| | - Sabit Kimyon
- 5 Department of Ophthalmology, Faculty of Medicine, Gaziantep University , Gaziantep, Turkey
| | - Alper Mete
- 5 Department of Ophthalmology, Faculty of Medicine, Gaziantep University , Gaziantep, Turkey
| | - Kıvanç Güngör
- 5 Department of Ophthalmology, Faculty of Medicine, Gaziantep University , Gaziantep, Turkey
| | - Vural Özdemir
- 6 Faculty of Communications, Gaziantep University , Gaziantep, Turkey
| |
Collapse
|
17
|
Dorado P, González I, Naranjo MEG, de Andrés F, Peñas-Lledó EM, Calzadilla LR, LLerena A. Lessons from Cuba for Global Precision Medicine: CYP2D6 Genotype Is Not a Robust Predictor of CYP2D6 Ultrarapid Metabolism. ACTA ACUST UNITED AC 2017; 21:17-26. [DOI: 10.1089/omi.2016.0166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pedro Dorado
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Idilio González
- Centro de Salud Mental, Área de Salud Zafra-Llerena, Servicio Extremeño de Salud, Llerena, Spain
| | - María Eugenia G. Naranjo
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Fernando de Andrés
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Eva María Peñas-Lledó
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | | | - Adrián LLerena
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| |
Collapse
|
18
|
De Andrés F, Terán S, Hernández F, Terán E, LLerena A. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype–Phenotype Concordance and Discordance in the Ecuadorian Population. ACTA ACUST UNITED AC 2016; 20:699-710. [DOI: 10.1089/omi.2016.0148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fernando De Andrés
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Santiago Terán
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Francisco Hernández
- Facultad de Ciencias Médicas, Universidad Estatal de Guayaquil, Guayaquil, Ecuador
| | - Enrique Terán
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| |
Collapse
|
19
|
Sosa-Macías M, Teran E, Waters W, Fors MM, Altamirano C, Jung-Cook H, Galaviz-Hernández C, López-López M, Remírez D, Moya GE, Hernández F, Fariñas H, Ramírez R, Céspedes-Garro C, Tarazona-Santos E, LLerena A. Pharmacogenetics and ethnicity: relevance for clinical implementation, clinical trials, pharmacovigilance and drug regulation in Latin America. Pharmacogenomics 2016; 17:1741-1747. [PMID: 27790935 DOI: 10.2217/pgs-2016-0153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congress of Pharmacogenetics and Personalized Medicine. Ethnicity, clinical implementation and regulatory environment (MESTIFAR 2016 Quito) Quito, Ecuador, 19-21 May 2016. The Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF) was created in 2006 with the main aim of promoting personalized medicine and collaborative pharmacogenetics research in Spanish- and Portuguese-speaking countries in America and the Iberian Peninsula. The final goal of this initiative was the inclusion of Latin American populations that may benefit from the implementation of personalized medicine in drug therapy. Several initiatives have been promoted including the MESTIFAR project, which aimed to analyze the ethnicity, genotype and/or metabolic phenotype in Ibero-American populations. To date, 6060 healthy volunteers have been analyzed; among them, 2571 were admixed, 1824 were Caucasians, 1395 were Native Americans, 174 were Jews and 96 were Afro-descendants. Due to the large genetic variability within Latin Americans, ethnicity may be a relevant factor for the clinical implementation of personalized medicine. Moreover, the present status of clinical implementation and the future perspectives of pharmacogenetics, pharmacovigilance and clinical trials for drug regulation in Latin America compared with the EMA-Pharmacogenomics Working Party and the US FDA initiatives were analyzed.
Collapse
Affiliation(s)
- Martha Sosa-Macías
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Instituto Politéctico Nacional-CIIDIR, Unidad Durango, Academia de Genómica, Durango, Mexico
| | - Enrique Teran
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - William Waters
- Comité de Ética en Seres Humanos, Universidad San Francisco de Quito, Quito, Ecuador
| | - Martha M Fors
- Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
| | - Catalina Altamirano
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidad Nacional Autónoma de Nicaragua, León, Facultad de Medicina, Nicaragua
| | - Helgi Jung-Cook
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Carlos Galaviz-Hernández
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Instituto Politéctico Nacional-CIIDIR, Unidad Durango, Academia de Genómica, Durango, Mexico
| | - Marisol López-López
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Xochimilco, México
| | - Diadelis Remírez
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Centro para el Control Estatal de Medicamentos, La Habana, Cuba
| | - Graciela E Moya
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Francisco Hernández
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Ciencias Médicas, Universidad Estatal de Guayaquil, Guayaquil, Ecuador
| | - Humberto Fariñas
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Ronald Ramírez
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidad Nacional Autónoma de Nicaragua, León, Facultad de Medicina, Nicaragua
| | - Carolina Céspedes-Garro
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Genetics Section, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Tarazona-Santos
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Biologia Geral, Belo Horizonte, Brazil
| | - Adrián LLerena
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| |
Collapse
|
20
|
Puris E, Pasanen M, Gynther M, Häkkinen MR, Pihlajamäki J, Keränen T, Honkakoski P, Raunio H, Petsalo A. A liquid chromatography-tandem mass spectrometry analysis of nine cytochrome P450 probe drugs and their corresponding metabolites in human serum and urine. Anal Bioanal Chem 2016; 409:251-268. [PMID: 27734142 DOI: 10.1007/s00216-016-9994-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Cocktail phenotyping using specific probe drugs for cytochrome P450 (CYP) enzymes provides information on the real-time activity of multiple CYPs. We investigated different sample preparation techniques and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with simple protein precipitation for the analysis of nine CYP probe drugs and their metabolites in human serum and urine. Specific CYP probe drugs (melatonin, CYP1A2; nicotine, CYP2A6; bupropion, CYP2B6; repaglinide, CYP2C8; losartan, CYP2C9; omeprazole, CYP2C19 and CYP3A4; dextromethorphan, CYP2D6; chlorzoxazone, CYP2E; midazolam, CYP3A4) and their main metabolites, with the exception of 3'-hydroxyrepaglinide, were quantified in human serum and urine using the developed LC-MS/MS method. The analytical method was fully validated showing high selectivity, linearity, acceptable accuracy (85-115 %) and precision (2-19 %) and applied to a pharmacokinetic study in four healthy volunteers after oral administration of drugs given as a cocktail. All probe drugs and their metabolites (totally 19 analytes) were detected and quantified from human serum and urine over the time range of 1 to 6 h after oral administration. Therefore, the proposed method is applicable for drug interaction and CYP phenotyping studies utilizing a cocktail approach. Graphical Abstract Workflow overwiew of cocktail CYP-phenotyping study.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Markku Pasanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.,Department of Clinical Nutrition and Obesity Center, Kuopio University Hospital, P.O. Box 1627, 70211, Kuopio, Finland
| | - Tapani Keränen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.,National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Aleksanteri Petsalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
21
|
Panza F, Lozupone M, Stella E, Lofano L, Gravina C, Urbano M, Daniele A, Bellomo A, Logroscino G, Greco A, Seripa D. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders. Expert Rev Neurother 2016; 16:1357-1369. [DOI: 10.1080/14737175.2016.1204913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesco Panza
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy.,b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Madia Lozupone
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Eleonora Stella
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Lucia Lofano
- e Psychiatric Unit, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy
| | - Carolina Gravina
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Maria Urbano
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Antonio Daniele
- f Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Antonello Bellomo
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Giancarlo Logroscino
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Antonio Greco
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Davide Seripa
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| |
Collapse
|