1
|
Eroğlu CN, Feslihan E, Karaca B, Elasan S. Treatment of aphthous ulcers with photodynamic therapy: A randomized controlled clinical study. Photodiagnosis Photodyn Ther 2024; 49:104284. [PMID: 39029772 DOI: 10.1016/j.pdpdt.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND This study aims to assess whether photodynamic therapy (PDT) offers a clinically effective alternative for treating oral aphthous ulcers, contributing to the ongoing quest for methods to expedite their treatment process amidst the limited understanding of their etiology. MATERIALS AND METHOD The study involved thirty volunteers with aphthous ulcers, split equally between a control group and a PDT group. Patients in the PDT group received laser treatment using Indocyanine green upon admission, while the control group received no intervention. Lesion diameter was measured at presentation and on the 3rd, 5th, and 7th days for all patients, with wound healing assessed on the 7th day. Additionally, pain levels were evaluated using the Visual Analog Scale (VAS) preoperatively and on the 1st, 3rd, 5th, and 7th days for the PDT group, and on the corresponding days for the control group. RESULTS Lesion diameters in the PDT group showed a significant reduction over time (p = 0.001), particularly from preoperative to final measurements. The control group also exhibited a decrease, albeit slower (p = 0.001). The 7th-day healing scores favored the PDT group significantly (p = 0.012). VAS scores in the PDT group decreased significantly over time (p = 0.001), indicating pain reduction. A similar trend was observed in the control group, albeit slower. Between-group differences in healing data and pain data were statistically significant. CONCLUSION PDT proves effective in reducing aphthous ulcer diameters and pain intensity, facilitating faster healing than the control group. These results advocate for PDT as a viable treatment option for aphthous lesions.
Collapse
Affiliation(s)
- Cennet Neslihan Eroğlu
- Department of Oral & Maxillofacial Surgery, Akdeniz University, Faculty of Dentistry, 07058 Antalya, Turkey.
| | - Erkan Feslihan
- Department of Oral & Maxillofacial Surgery, Tekirdağ Namık Kemal University, Faculty of Dentisty, 59030 Tekirdag, Turkey
| | - Büşra Karaca
- Department of Oral & Maxillofacial Surgery, Akdeniz University, Faculty of Dentistry, 07058 Antalya, Turkey
| | - Sadi Elasan
- Department of Biostatistics, Yuzuncu Yil University, Faculty of Medicine, Van, Turkey
| |
Collapse
|
2
|
Mehravanfar H, Farhadian N, Abnous K. Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study. J Drug Target 2024; 32:820-837. [PMID: 38779708 DOI: 10.1080/1061186x.2024.2358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Indocyanine Green (ICG) as an agent for photodynamic therapy (PDT) of melanoma cancer has low quantum yield, short circulation half-life, poor photo-stability, and tendency to aggregation. PURPOSE N-doped carbon quantum dot (CQD) nanoparticle was applied to encapsulate ICG and overcome ICG obstacle in PDT with simultaneous cell imaging property. METHODS CQD was prepared using hydrothermal method. Cell culture study and In vivo assessments on C57BL/6 mice containing melanoma cancer cells was performed. RESULTS Results showed that CQD size slightly enhanced from 24.55 nm to 42.67 nm after ICG loading. Detection of reactive oxygen species (ROS) demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG to 28% for ICG@CQD. Confocal microscopy images approved more cellular uptake and more qualified cell imaging ability of ICG@CQD. In vivo assessments displayed obvious inhibitory effect of tumor growth for ICG@CQD in comparison to free ICG on the C57BL/6 mice. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in tumor region. Finally, ICG@CQD was proposed as an innovative nanocarrier for PDT and diagnosis.
Collapse
Affiliation(s)
- Hadiseh Mehravanfar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Wang L, Qian Y. Heavy-atom-free BODIPY dendrimer: utilizing the spin-vibronic coupling mechanism for two-photon photodynamic therapy in zebrafish. J Mater Chem B 2024; 12:6175-6189. [PMID: 38831689 DOI: 10.1039/d4tb00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In this study, the heavy-atom-free BODIPY dendrimer TM4-BDP was synthesized for near-infrared photodynamic therapy, and was composed of a triphenylamine-BODIPY dimer and four 1-(2-morpholinoethyl)-1H-indole-3-ethenyl groups. The TM4-BDP could achieve near-infrared photodynamic therapy through two different photosensitive pathways, which include one-photon excitation at 660 nm and two-photon excitation at 1000 nm. In the one-photon excitation pathway, the TM4-BDP could generate singlet oxygen and superoxide radicals under 660 nm illumination. In addition, the one-photon PDT experiment in human nasopharyngeal carcinoma (CNE-2) cells also indicated that the TM4-BDP could specifically accumulate in lysosomes and show great cell phototoxicity with an IC50 of 22.1 μM. In the two-photon excitation pathway, the two-photon absorption cross-section at 1030 nm of TM4-BDP was determined to be 383 GM, which means that it could generate reactive oxygen species (ROS) under 1000 nm femtosecond laser excitation. Moreover, the two-photon PDT experiment in zebrafish also indicated the TM4-BDP could be used for two-photon fluorescence imaging and two-photon induced ROS generation in biological environments. Furthermore, in terms of the ROS generation mechanism, the TM4-BDP employed a novel spin-vibronic coupling intersystem crossing (SV-ISC) process for the mechanism of ROS generation and the femtosecond transient absorption spectra indicated that this novel SV-ISC mechanism was closely related to its charge transfer state lifetime. These above experiments of TM4-BDP demonstrate that the dendrimer design is an effective strategy for constructing heavy-atom-free BODIPY photosensitizers in the near-infrared region and lay the foundation for two-photon photodynamic therapy in future clinical trials.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Neetika, Sharma M, Thakur P, Gaur P, Rani GM, Rustagi S, Talreja RK, Chaudhary V. Cancer treatment and toxicity outlook of nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116870. [PMID: 37567383 DOI: 10.1016/j.envres.2023.116870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Diversified nanosystems with tunable physicochemical attributes have emerged as potential solution to globally devastating cancer by offering novel possibilities for improving the techniques of cancer detection, imaging, therapies, diagnosis, drug delivery and treatment. Drug delivery systems based on nanoparticles (NPs) with ability of crossing different biological barriers are becoming increasingly popular. Besides, NPs are utilized in pharmaceutical sciences to mitigate the toxicity of conventional cancer therapeutics. However, significant NPs-associated toxicity, off-targeted activities, and low biocompatibility limit their utilization for cancer theranostics and can be hazardous to cancer patients up to life-threatening conditions. NPs interact with the biomolecules and disturb their regular function by aggregating inside cells and forming a protein corona, and the formulation turns ineffective in controlling cancer cell growth. The adverse interactions between NPs and biological entities can lead to life-threatening toxicities. This review focuses on the widespread use of various NPs including zinc oxide, titanium oxide, silver, and gold, which serve as efficient nano-vehicles and demonstrate notable pharmacokinetic and pharmacodynamic advantages in cancer therapy. Subsequently, the mechanism of nanotoxicity attached with these NPs, alternate solutions and their prospect to revolutionize cancer theranostics are highlighted. This review will serve as guide for future developments associated with high-performance NPs with controlled toxicity for establishing them as modern-age nanotools to manage cancer in tailored manner.
Collapse
Affiliation(s)
- Neetika
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India.
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa, 52242, United States
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
5
|
Cervantes J, Chang YF, Dover JS, Hernandez Alvarez A, Chung HJ. Laser-Assisted and Device-Assisted Filler Delivery: A Histologic Evaluation. Dermatol Surg 2023; 49:865-870. [PMID: 37389474 DOI: 10.1097/dss.0000000000003870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND Lasers and devices are used to enhance transcutaneous delivery of fillers. However, little has been published on the histologic findings of this form of laser/device-assisted delivery to determine the optimal devices and fillers. OBJECTIVE To objectively evaluate the histological effects of laser-assisted and device-assisted filler delivery. METHODS Ex vivo human abdominoplasty skin samples were treated with fractional CO 2 laser (ECO 2 , 120 μm tip, 120 mJ), fractional radiofrequency microneedling (FRMN, Genius, 1.5 mm, 20 mJ/pin), and microneedling (2.0 mm). Immediately after poly- l -lactic acid (PLLA), hyaluronic acid gel, calcium hydroxylapatite, and black tissue marking dye were topically applied. After treatment, biopsies were collected for histologic evaluation. RESULTS Histology revealed that PLLA and black dye were found in greatest abundance, hyaluronic acid was found to a lesser extent, and calcium hydroxylapatite was least found within channels created by fractional CO 2 laser. Microneedling was effective only at delivering black dye, whereas FRMN failed to show significant channel formation or delivery of the studied products. CONCLUSION Among the devices and fillers studied, fractional CO 2 laser and PLLA proved to be the most effective combination for laser/device-assisted filler delivery. Neither microneedling nor FRMN was effective as devices to enhance filler delivery.
Collapse
Affiliation(s)
- Jessica Cervantes
- Harvard Combined Dermatology Residency Training Program, Boston, Massachusetts
| | - Yu-Feng Chang
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jeffrey S Dover
- SkinCare Physicians, Chestnut Hill, Massachusetts
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Hye Jin Chung
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
6
|
Wu Y, Chen Z, Shen D, He Z, Lv J, Li H, Yang M, Tan J, Yuan J, Gao J, Yuan Z. A Lysosome-Targeted Near-Infrared Fluorescent Probe with Excellent Water Solubility for Surgery Navigation in Breast Cancer. ACS OMEGA 2023; 8:12481-12488. [PMID: 37033849 PMCID: PMC10077528 DOI: 10.1021/acsomega.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
To get a tumor-targeted contrast agent for imaging guide resection of tumors, we designed a novel fluorescent probe based on the heptamethine cyanine core, Cy7-MO, which has excellent water solubility and near-infrared photophysical and lysosomal targeting properties. The chemical structure of Cy7-MO was characterized by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The toxicity of Cy7-MO was evaluated by cell counting kit-8. Then, a cellular-level study was conducted to evaluate the suborganelle localization in 4T1-Luc1 cells, and it was also used for surgical navigation in orthotopic breast tumor resection in vivo. The results showed that Cy7-MO was well targeted to lysosomes. Importantly, the Cy7-MO probe was found to be well tolerable and exhibited excellent biocompatibility. Moreover, the orthotopic breast tumor margin was clearly visualized through fluorescence guiding of Cy7-MO. Finally, the correct tumor tissues were completely removed, and a negative margin was obtained successfully, which demonstrated an enhanced precision of surgery.
Collapse
Affiliation(s)
- Yumei Wu
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Zhengjun Chen
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Dan Shen
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Zhiquan He
- Morphological
Laboratory, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Jiajia Lv
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Hongyu Li
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Mingyan Yang
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Jun Tan
- Department
of Histology and Embryology, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
| | - Jianrong Yuan
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Jie Gao
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Zeli Yuan
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou
Province, School of Pharmacy, Zunyi Medical
University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| |
Collapse
|
7
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
8
|
Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022; 291:121875. [PMID: 36335717 DOI: 10.1016/j.biomaterials.2022.121875] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT) is a promising localized cancer treatment modality. It has been used successfully to treat a range of dermatological conditions with comparable efficacy to conventional treatments. However, some drawbacks limit the clinical utility of PDT in treating deep-seated tumors. Notably, the penetration limitation of UV and visible light, commonly applied to activate photosensitizers, makes PDT incompetent in treating deep-seated tumors. Development in light delivery technologies, especially fiber optics, led to improved clinical strategies for accessing deep tissues for irradiation. However, PDT efficacy issues remained partly due to light penetration limitations. In this review, we first summarized the current PDT applications for deep-seated tumor treatment. Then, the most recent progress in advanced techniques to overcome the light penetration limitation in PDT, including using functional nanomaterials that can either self-illuminate or be activated by near-infrared (NIR) light and X-rays as transducers, and implantable light delivery devices were discussed. Finally, current challenges and future opportunities of these technologies were discussed, which we hope may inspire the development of more effective techniques to enhance PDT efficacy against deep-seated tumors.
Collapse
|
9
|
Wu PY, Shen ZC, Jiang JL, Zhang BC, Zhang WZ, Zou JJ, Lin JF, Li C, Shao JW. A multifunctional theranostics nanosystem featuring self-assembly of alcohol-abuse drug and photosensitizers for synergistic cancer therapy. Biomater Sci 2022; 10:6267-6281. [PMID: 36128848 DOI: 10.1039/d2bm00803c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.
Collapse
Affiliation(s)
- Peng-Yu Wu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Zhi-Chun Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jia-Li Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wen-Zhong Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jun-Jie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Juan-Fang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
10
|
Shao F, Pan Z, Long Y, Zhu Z, Wang K, Ji H, Zhu K, Song W, Song Y, Song X, Gai Y, Liu Q, Qin C, Jiang D, Zhu J, Lan X. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J Nanobiotechnology 2022; 20:243. [PMID: 35614462 PMCID: PMC9131648 DOI: 10.1186/s12951-022-01444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.
Collapse
Affiliation(s)
- Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, 643000, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ke Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, 300467, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China.
| |
Collapse
|
11
|
Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2022; 14:pharmaceutics14051075. [PMID: 35631660 PMCID: PMC9143284 DOI: 10.3390/pharmaceutics14051075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022] Open
Abstract
It is more than sixty years since the era of modern photodynamic therapy (PDT) for cancer began. Enhanced selectivity for malignant cells with a reduced selectivity for non-malignant cells and good biocompatibility along with the limited occurrence of side effects are considered to be the most significant advantages of PDT in comparison with conventional therapeutic approaches, e.g., chemotherapy. The phenomenon of multidrug resistance, which is associated with drug efflux transporters, was originally identified in relation to the application of chemotherapy. Unfortunately, over the last thirty years, numerous papers have shown that many photosensitizers are the substrates of efflux transporters, significantly restricting the effectiveness of PDT. The concept of a dynamic nanoplatform offers a possible solution to minimize the multidrug resistance effect in cells affected by PDT. Indeed, recent findings have shown that the utilization of nanoparticles could significantly enhance the therapeutic efficacy of PDT. Additionally, multifunctional nanoplatforms could induce the synergistic effect of combined treatment regimens, such as PDT with chemotherapy. Moreover, the surface modifications that are associated with nanoparticle functionalization significantly improve the target potential of PDT or chemo-PDT in multidrug resistant and cancer stem cells.
Collapse
|
12
|
Yun WS, Park JH, Lim DK, Ahn CH, Sun IC, Kim K. How Did Conventional Nanoparticle-Mediated Photothermal Therapy Become "Hot" in Combination with Cancer Immunotherapy? Cancers (Basel) 2022; 14:cancers14082044. [PMID: 35454950 PMCID: PMC9029053 DOI: 10.3390/cancers14082044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Photothermal therapy (PTT) has become effective through the development of nanoparticle-based photoabsorbers with various functions, such as targeting properties, high light-to-heat conversion, and photostability. Conventional nanoparticle-mediated PTT has attained localized efficiency in cancer treatment by heat-induced apoptosis or necrosis of cancer cells. Currently, such treatment methods evolve into cancer immunotherapy through the induction of immunogenic cell death (ICD). Damage-associated molecular patterns from dead cells by nanoparticle-mediated PTT activate immune cells for systemic anti-cancer effect. In this review, we investigate various nanoparticle-based PTT and compare its methodology to clarify how it undergoes a transition from thermotherapy to immunotherapy. Abstract One of the promising cancer treatment methods is photothermal therapy (PTT), which has achieved good therapeutic efficiency through nanoparticle-based photoabsorbers. Because of the various functions of nanoparticles, such as targeting properties, high light-to-heat conversion, and photostability, nanoparticle-mediated PTT successfully induces photothermal damage in tumor tissues with minimal side effects on surrounding healthy tissues. The therapeutic efficacy of PTT originates from cell membrane disruption, protein denaturation, and DNA damage by light-induced heat, but these biological impacts only influence localized tumor areas. This conventional nanoparticle-mediated PTT still attracts attention as a novel cancer immunotherapy, because PTT causes immune responses against cancer. PTT-induced immunogenic cell death activates immune cells for systemic anti-cancer effect. Additionally, the excellent compatibility of PTT with other treatment methods (e.g., chemotherapy and immune checkpoint blockade therapy) reinforces the therapeutic efficacy of PTT as combined immunotherapy. In this review, we investigate various PTT agents of nanoparticles and compare their applications to reveal how nanoparticle-mediated PTT undergoes a transition from thermotherapy to immunotherapy.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
| | - Ji-Ho Park
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea; (J.-H.P.); (C.-H.A.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
| | - Cheol-Hee Ahn
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea; (J.-H.P.); (C.-H.A.)
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Seoul 02792, Korea
- Correspondence: (I.-C.S.); (K.K.)
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Seoul 02792, Korea
- Correspondence: (I.-C.S.); (K.K.)
| |
Collapse
|
13
|
Li Y, Du L, Li F, Deng Z, Zeng S. Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14944-14952. [PMID: 35317558 DOI: 10.1021/acsami.1c24172] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Upconversion nanoparticles (UCNPs) emerged as promising near-infrared (NIR) light-triggered nanotransducers for photodynamic therapy (PDT). However, the traditionally used 980 nm excitation source could cause an overheating effect on biological tissues, and the single photosensitizer (PS) loading could not efficiently utilize multiradiation UC luminescence, resulting in a limited efficiency of PDT in tumor tissues with hypoxia characteristics. Herein, 808 nm light-responsive Nd-sensitized UCNPs@mSiO2@MnO2 core-shell NPs were designed as light nanotransducers with efficient UC emission at 550 and 650 nm for PDT and downshifting luminescence at 1525 nm for second NIR (NIR-II) imaging. UC emission was fully utilized by loading dual PSs, rose bengal (RB), and zinc phthalocyanine (ZnPc), thus significantly improving the reactive oxide species (ROS) generation efficiency. Moreover, a manganese dioxide (MnO2) shell with ultrasensitive biodegradability in an acidic tumor microenvironment (TME) can generate an amount of oxygen molecules, alleviating the symptoms of hypoxia and then improving the efficacy of PDT. Meanwhile, the biodegraded Mn2+ ions can further strengthen T1-weighted magnetic resonance imaging (MRI). This work presented a new multifunctional theranostic agent for combining NIR-II/MRI imaging and 808 nm light-triggered PDT to combat the limitations of cancer therapy.
Collapse
Affiliation(s)
- Youbin Li
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Linman Du
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| | - Fei Li
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiming Deng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| | - Songjun Zeng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
14
|
Near IR-plasmon enhanced guided fluorescence and thermal imaging of tissue subsurface target using ICG-labeled gold nanourchin and protein contrast agent: implication of stability. Lasers Med Sci 2022; 37:2145-2156. [PMID: 34993706 DOI: 10.1007/s10103-021-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
A dual-function nanocomposite agent (NCA) was prepared for deep tissue fluorescence and thermal imaging. The results showed that a combination of some agents such as gold nanourchins (GNU) and indocyanine green (ICG) can have spectral overlapping and hence some peak broadening. Despite 83% and 92% loss of NCA fluorescence after tissue layers L1 and L2, respectively, there was sufficient signal detected for imaging the target buried under the tissue. No fluorescence was detected after L3. A significant contribution was made by GNU for both the fluorescence signal due to the plasmon-enhanced fluorescence (PEF) effect and the thermal heating because of local surface plasmon resonance (LSPR) due to its sharp tips. In the first case, PEF occurred within the first 40 s then followed by a gradual quenching by 23% in 4 min and 72% in the following 6 min. During the second quenching time, the emission signal was blue shifted by 10 nm. Of the three samples, sample 2 (S2) indicated the highest temperature rise ≈ 60 °C in 50 s; sample 3 (S3) produced the lowest temperature of ≈ 33 °C in 250 s after the first layer, thus showing BSA acting as a heat sink. Both the heating and cooling time are determined by the thermal properties of the material such as conductivity and diffusivity. Finally, despite the advantages of PEF, the photostability and quenching rate of a dye molecule must be considered in a dynamic detection monitoring system to account and compensate for the effect of contrast agent quality variation.
Collapse
|
15
|
Güney Akkurt M, Gülsoy M. Polylactide nanoparticles encapsulating indocyanine green for photothermal therapy of prostate cancer cells. Photodiagnosis Photodyn Ther 2021; 37:102693. [PMID: 34921985 DOI: 10.1016/j.pdpdt.2021.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study is to investigate the in vitro phototherapeutic potential of indocyanine green (ICG) loaded polylactide (PLA) nanoparticles on prostate cancer cells. Many attempts at designing drug delivery systems against cancer were made that incorporates ICG as a photothermal, photodynamic or imaging agent. However, most of these systems contain at least one more drug, making it hard to assess the effects of ICG alone. METHODS Nanoparticles (ICGNP) were prepared via nanoprecipitation. The effects of phase volume ratio and ICG concentration on size, loading capacity and encapsulation efficiency were explored. Photothermal and photodynamic properties of ICGNP were examined. PC-3 cells were used for cell viability tests. Irradiation was achieved via custom built 809-nm computer controlled diode laser at 1 W/cm2 (up to 600 J/cm2). Data were analyzed by ANOVA followed by Tukey's test (p ≤ 0.05). RESULTS ICGNP exhibited mean size of 300 nm with low polydispersity, and zeta potential of -14 mV. Upon laser irradiation, ICGNP were capable of causing temperature increase and producing singlet oxygen. On PC-3 cells, ICGNP were proved to be as effective as free ICG in inducing cell death. The measured temperature increase in culture medium and experiments with singlet oxygen quenchers suggest that the decrease in cell viability was mainly the result of photothermal action. CONCLUSIONS ICGNP was effective as a photothermal agent on PC-3 cells but further improvements are required to increase ICG loading capacity for it to be useful on a wide range of cell types.
Collapse
Affiliation(s)
- Melike Güney Akkurt
- Bogaziçi University,Institute Of Biomedical Engineering, Kandilli Kampüs, 34684 Cengelköy, Istanbul, Turkey; Istanbul Medeniyet University, Biomedical Engineering Department, Kuzey Kampüs, D100 Karayolu Yanyol, 34700 Üsküdar, İstanbul, Turkey.
| | - Murat Gülsoy
- Bogaziçi University,Institute Of Biomedical Engineering, Kandilli Kampüs, 34684 Cengelköy, Istanbul, Turkey.
| |
Collapse
|
16
|
Effectiveness of antimicrobial photodynamic therapy with indocyanine green against the standard and fluconazole-resistant Candida albicans. Lasers Med Sci 2021; 36:1971-1977. [PMID: 34331604 DOI: 10.1007/s10103-021-03389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an alternative approach. The current study aimed to investigate the efficacy of aPDT with indocyanine green (ICG) against two Candida albicans (C. albicans) strains. In this in vitro study, the inoculum of standard ATCC 10,231 (S) and fluconazole-resistant (FR) strains were adjusted to the turbidity of a 0.5 McFarland standard. Each strain was allocated into 4 groups: S1 and FR1) control groups, S2 and FR2) ICG-treated groups (1 µg/mL), S3 and FR3) laser-irradiated groups (wavelength: 810 nm; mode: continuous-wave; output power: 300 mW; spot size: 4.5 mm; exposure time: 120 s; radiation dose: 228 J/cm2), S4 and FR4) ICG-mediated-aPDT groups. After treatments, the number of colony-forming units per milliliter (CFU/mL) was calculated. Using the XTT reduction assay, the effects of each treatment on Candida biofilm formation were evaluated. Data were analyzed using SPSS software version 22. In both strains, the maximum number of CFUs was observed in the control group, followed by ICG-treated, laser-irradiated, and ICG-mediated-aPDT groups. In ATCC 10,231 strain, the XTT assay exhibited significant difference between ICG-mediated-aPDT and control groups (p < 0.0001). However, the ICG, laser, and ICG-mediated-aPDT groups in fluconazole-resistant strain showed significant differences when compared with the control (p < 0.05). The mean Candida CFUs and the XTT assay did not show any significant difference between the ATCC 10,231 and fluconazole-resistant strains with respect to each treatment. Data suggest ICG-mediated-aPDT could diminish Candida CFUs in laboratory; however, further studies are warranted to confirm its efficacy and safety to be applied in clinics.
Collapse
|
17
|
Andisheh-Tadbir A, Yaghoubi A, Tanideh N, Mardani M. The effect of indocyanine green-mediated photodynamic therapy in healing of experimentally induced oral mucosal traumatic ulcer in rat. Lasers Med Sci 2021; 36:611-618. [PMID: 32654066 DOI: 10.1007/s10103-020-03096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/01/2020] [Indexed: 11/25/2022]
Abstract
Photodynamic therapy (PDT) is a promising approach for the healing of ulcerative lesions. This study aimed to investigate the effect of PDT using indocyanine green (ICG) in the healing of the experimentally induced oral mucosal traumatic ulcer in rat. Sixty adult male Sprague-Dawley rats were recruited in this experimental study. The ulceration was surgically made in the left cheek mucosa, and the rats were randomly assigned into four equal groups (n = 15). Oral ulcers in groups 1 and 2 were treated with the sterile saline solution (0.9%) and ICG (1 mg/ml). In group 3, laser irradiation was applied using the 810 nm diode laser in the continuous-wave mode for 30 s (light dose: 55 J/cm2, power: 300 mW, spot size: 4.5 mm). Following the topical application of ICG (1 mg/ml) in group 4, laser irradiation was performed in the same way as the previous group. After 24 h, treatments were repeated once more in all groups. The healing process was histopathologically assessed at the 3rd, 7th, and 14th days after ulceration. Wound healing was significantly accelerated in the ICG-mediated PDT group in comparison to the control group at all sampling time points (p < 0.005). However, the other groups displayed a similar healing rate (p > 0.05). Data suggest that ICG-mediated PDT has the potential to accelerate wound healing and prevent clinical infection in oral mucosal traumatic ulcers. However, further studies are required to confirm whether our results can be generalized to other wounds.
Collapse
Affiliation(s)
- Azadeh Andisheh-Tadbir
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Yaghoubi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mardani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Fang H, Gai Y, Wang S, Liu Q, Zhang X, Ye M, Tan J, Long Y, Wang K, Zhang Y, Lan X. Biomimetic oxygen delivery nanoparticles for enhancing photodynamic therapy in triple-negative breast cancer. J Nanobiotechnology 2021; 19:81. [PMID: 33743740 PMCID: PMC7981819 DOI: 10.1186/s12951-021-00827-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm-HSA-ICG-PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. RESULTS The size of the CCm-HSA-ICG-PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm-HSA-ICG-PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm-HSA-ICG-PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm-HSA-ICG-PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm-HSA-ICG-PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm-HSA-ICG-PFTBA till 14 days. CONCLUSIONS By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm-HSA-ICG-PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jianling Tan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Kuanyin Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
19
|
Neumann PR, Erdmann F, Holthof J, Hädrich G, Green M, Rao J, Dailey LA. Different PEG-PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIR-Emitting π-Conjugated Polymer Contrast Agents. Adv Healthc Mater 2021; 10:e2001089. [PMID: 32864903 PMCID: PMC11469236 DOI: 10.1002/adhm.202001089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The π-conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) with deep-red/near-infrared (NIR) absorption and emission has been investigated as a contrast agent for in vivo optical and photoacoustic imaging. PCPDTBT is encapsulated within poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG2kDa -PLGA4kDa or PEG5kDa -PLGA55kDa ) micelles or enveloped by the phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG2kDa -DPPE), to investigate the formulation effect on imaging performance, biodistribution, and biocompatibility. Nanoparticles that meet the quality requirements for parenteral administration are generated with similar physicochemical properties. Optical phantom imaging reveals that both PEG-PLGA systems exhibit a 30% higher signal-to-background ratio (SBR) than PEG2kDa -DPPE. This trend cannot be observed in a murine HeLa xenograft model following intravenous administration since dramatic differences in biodistribution are observed. PEG2kDa -PLGA4kDa systems accumulate more rapidly in the liver compared to other formulations and PEG2kDa -DPPE demonstrates a higher tumor localization. Protein content in the "hard" corona differs between formulations (PEG2kDa -DPPE < PEG2kDa -PLGA4kDa < PEG5kDa -PLGA55kDa ), although this observation alone does not explain biodistribution patterns. PEG2kDa -PLGA4kDa systems show the highest photoacoustic amplitude in a phantom, but also a lower signal in the tumor due to differences in biodistribution. This study demonstrates that formulations for conjugated polymer contrast agents can have significant impact on both imaging performance and biodistribution.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Frank Erdmann
- Institute of PharmacyDepartment of PharmacologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Joost Holthof
- FUJIFILM VisualsonicsJoop Geesinkweg 140Amsterdam1114 ABThe Netherlands
| | - Gabriela Hädrich
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Mark Green
- Department of PhysicsKing's College LondonLondonWC2R 2LSUK
| | - Jianghong Rao
- Department of Radiology and ChemistryStanford UniversityStanfordCA94305‐5484USA
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and BiopharmacyUniversity of ViennaVienna1090Austria
| |
Collapse
|
20
|
Motamedifar M, Tanideh N, Mardani M, Daneshvar B, Hadadi M. Photodynamic antimicrobial chemotherapy using indocyanine green in experimentally induced intraoral ulcers in rats. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 37:115-122. [PMID: 33044743 DOI: 10.1111/phpp.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Photodynamic antimicrobial chemotherapy (PACT) is a promising modality for eradication of microorganisms from the wound. This study aimed to investigate the effectiveness of PACT using indocyanine green (ICG) for reduction of bacterial load of oral ulcers in rats and its impact on the healing process. METHODS In this experimental study, 50 adult male Sprague Dawley rats were recruited. Oral ulcers were surgically made on the left cheek mucosa, and animals were randomly assigned into five groups (n = 10). Wound site in groups 1, 2, and 3 was irrigated with the sterile saline (0.9%), chlorhexidine (CHX; 0.2%), and ICG solutions (1 mg/mL), respectively. Group 4 was exposed to laser irradiation using 810 nm diode laser on continuous-wave mode for 30 seconds (fluence: 55 J/cm2 , power: 300 mW, spot size: 4.5 mm). In group 5, PACT was performed using topical application of ICG followed by laser irradiation in the same way as the previous group. Bacterial load of oral ulcers was assessed before and after each treatment modality. Besides, rats were sacrificed on the 5th day post ulceration and histological features of healing were evaluated. RESULTS Bacterial load was significantly reduced merely in the PACT-ICG-treated group by one log (P < .0001). Animals in the PACT-ICG-treated group also showed an accelerated healing in comparison with others on the 5th day of an experiment. CONCLUSION Photodynamic antimicrobial chemotherapy using topical application of ICG has a potential to reduce the bacterial load of oral ulcers and accelerate wound repair. Therefore, it can be considered as an alternative to currently available modalities for wound management.
Collapse
Affiliation(s)
- Mohammad Motamedifar
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mardani
- Department of Oral and Maxillofacial Medicine, Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Daneshvar
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Hadadi
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Shramova EI, Kotlyar AB, Lebedenko EN, Deyev SM, Proshkina GM. Near-Infrared Activated Cyanine Dyes As Agents for Photothermal Therapy and Diagnosis of Tumors. Acta Naturae 2020; 12:102-113. [PMID: 33173600 PMCID: PMC7604893 DOI: 10.32607/actanaturae.11028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Today, it has become apparent that innovative treatment methods, including those involving simultaneous diagnosis and therapy, are particularly in demand in modern cancer medicine. The development of nanomedicine offers new ways of increasing the therapeutic index and minimizing side effects. The development of photoactivatable dyes that are effectively absorbed in the first transparency window of biological tissues (700-900 nm) and are capable of fluorescence and heat generation has led to the emergence of phototheranostics, an approach that combines the bioimaging of deep tumors and metastases and their photothermal treatment. The creation of near-infrared (NIR) light-activated agents for sensitive fluorescence bioimaging and phototherapy is a priority in phototheranostics, because the excitation of drugs and/or diagnostic substances in the near-infrared region exhibits advantages such as deep penetration into tissues and a weak baseline level of autofluorescence. In this review, we focus on NIR-excited dyes and discuss prospects for their application in photothermal therapy and the diagnosis of cancer. Particular attention is focused on the consideration of new multifunctional nanoplatforms for phototheranostics which allow one to achieve a synergistic effect in combinatorial photothermal, photodynamic, and/or chemotherapy, with simultaneous fluorescence, acoustic, and/or magnetic resonance imaging.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. B. Kotlyar
- Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - E. N. Lebedenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
22
|
Wang H, Pan X, Wang X, Wang W, Huang Z, Gu K, Liu S, Zhang F, Shen H, Yuan Q, Ma J, Yuan W, Liu H. Degradable Carbon-Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS NANO 2020; 14:2847-2859. [PMID: 31909977 DOI: 10.1021/acsnano.9b06168] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials have flourished for cancer therapy for decades. However, their practical applications on clinical bases still pose a challenge to address the dilemma of metabolism in vivo. In this study, an attempt is made to design a degradable carbon-silica nanocomposite (CSN) with immunoadjuvant property, which could undergo an enzyme-free degradation process into small particles (∼5 nm) and facilitate its clinical application. CSN harbors photothermal and photodynamic properties and as an immunoadjuvant would help to generate tumor-associated antigens and mature dendritic cells (DCs). Potent antitumor effects have been achieved in both 4T1 and patient-derived xenograft tumor models with tumor inhibition efficiencies of 93.2% and 92.5%, respectively. We believe that this strategy will benefit the possible clinical translation and carbon-silica-nanomaterial-based cancer therapy.
Collapse
Affiliation(s)
- Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Kai Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Heyun Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
23
|
Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy. NANOMATERIALS 2020; 10:nano10010133. [PMID: 31940760 PMCID: PMC7022782 DOI: 10.3390/nano10010133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Biomedical applications of nanoparticles (NPs) have reached an increasing development in recent years. Recently, we demonstrated that newly synthesized poly (ethyl 2-cyanoacrylate) nanoparticles (PECA-NPs) are possible antitumor agents due to their cytotoxicity for cancer cells. Indocyanine green (ICG), an amphiphilic tricarbocyanine fluorescent dye, is widely used for the detection of tumoral extension in different organs during clinical surgery. Moreover, this fluorescent agent is unstable and it has a rapid clearance in physiological conditions in vivo. In this study, ICG was charged in PECA-NPs to improve its aqueous stability and make easier its use for the identification of tumor cells. Microscopic and ultrastructural aspects concerning the related in vitro interactions between ICG-loaded NPs and tumor cell culture were investigated. Obtained results showed an effective stabilization of ICG; furthermore, color inclusions inside the cells treated with ICG-loaded NPs demonstrated the internalization of NPs with associated ICG. Transmission electron microscopy (TEM) analysis demonstrated the cytoplasmic presence of coated vesicles (Ø ≤ 100 nm), hypothesizing their involvement in the mechanism of endocytosis. Therefore, ICG-loaded NPs could be proposed as agents for tumor diagnosis, hypothesizing also in the future a specific therapeutic treatment.
Collapse
|
24
|
Neumann PR, Crossley DL, Turner M, Ingleson M, Green M, Rao J, Dailey LA. In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46525-46535. [PMID: 31746180 DOI: 10.1021/acsami.9b17022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Borylated poly(fluorene-benzothiadiazoles) (PF8-BT) are π-conjugated polymers (CPs) with deep-red/near-infrared (NIR) absorption and emission profiles suitable for in vivo optical imaging. A fully borylated PF8-BT derivative (P4) was encapsulated in pegylated poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and compared with a reference NIR-emitting CP (PCPDTBT) or indocyanine green (ICG). All formulations satisfied quality requirements for parenterally administered diagnostics. P4 nanoparticles had higher quantum yield (2.3%) than PCPCDTBT (0.01%) or ICG nanoparticles (1.1%). The signal/background ratios (SBRs) of CP systems P4 and PCPDTBT in a phantom mouse (λem = 820 nm) increased linearly with fluorophore mass (12.5-100 μg/mL), while the SBRs of ICG decreased above 25 μg/mL. P4 nanoparticles experienced <10% photobleaching over 10 irradiations (PCPDTBT: ∼25% and ICG: >44%). In a mouse tumor xenograft model, P4 nanoparticles showed a 5-fold higher SBR than PCPDTBT particles with fluorophore accumulation in the liver > spleen > tumor. Blood chemistry and tissue histology showed no abnormalities compared to untreated animals after a single administration.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| | - Daniel L Crossley
- Department of Chemical Sciences , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Michael Turner
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - Michael Ingleson
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , U.K
| | - Mark Green
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Jianghong Rao
- Department of Radiology and Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| |
Collapse
|
25
|
He X, Situ B, Gao M, Guan S, He B, Ge X, Li S, Tao M, Zou H, Tang BZ, Zheng L. Stereotactic Photodynamic Therapy Using a Two-Photon AIE Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905080. [PMID: 31721436 DOI: 10.1002/smll.201905080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Two-photon photodynamic therapy (TP-PDT) is emerging as a powerful strategy for stereotactic targeting of diseased areas, but ideal photosensitizers (PSs) are currently lacking. This work reports a smart PS with aggregation-induced emission (AIE) feature, namely DPASP, for TP-PDT with excellent performances. DPASP exhibits high affinity to mitochondria, superior photostability, large two-photon absorption cross section as well as efficient reactive oxygen species generation, enabling it to achieve photosensitization both in vitro and in vivo under two-photon excitation. Moreover, its capability of stereotactic ablation of targeted cells with high-precision is also successfully demonstrated. All these merits make DPASP a promising TP-PDT candidate for accurate ablation of abnormal tissues with minimal damages to surrounding areas in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaojing He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bairong He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxue Ge
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiwu Li
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hang Zou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
26
|
Rad MR, Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Effect of Antimicrobial Photodynamic Therapy Using Indocyanine Green Doped with Chitosan Nanoparticles on Biofilm Formation-Related Gene Expression of Aggregatibacter actinomycetemcomitans. Front Dent 2019; 16:187-193. [PMID: 31858084 PMCID: PMC6911664 DOI: 10.18502/fid.v16i3.1590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives Eradication of Aggregatibacter actinomycetemcomitans (A. actionmycetemcomitans), as an opportunistic periodontopathogen, and inhibition of its virulence factor expression require a new adjunctive therapeutic method. In this study, we accessed the expression level of rcpA gene, as a virulence factor associated with A. actinomycetemcomitans biofilm formation, following treatment by antimicrobial photodynamic therapy (aPDT) using indocyanine green (ICG) doped with chitosan nanoparticles (CS-NPs@ICG). Materials and Methods CS-NPs@ICG was synthesized and examined using scanning electron microscopy (SEM). A. actinomycetemcomitans ATCC 33384 strain was treated with CS-NPs@ICG, as a photosensitizer, which was excited with a diode laser at the wavelength of 810 nm with the energy density of 31.2 J/cm2. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the changes in rcpA gene expression level. Results Synthetized CS-NPs@ICG was confirmed via SEM. The results revealed that CS-NPs@ICG-mediated aPDT could significantly decrease rcpA gene expression to 13.2-fold (P<0.05). There was a remarkable difference between aPDT using CS-NPs@ICG and ICG (P<0.05). The diode laser, ICG, and CS-NPs@ICG were unable to significantly downregulate rcpA gene expression (P>0.05). Conclusion aPDT with CS-NPs@ICG leads to a decrease of the virulence factor of A. actinomycetemcomitans and can be used as an adjunct to routine treatments for successful periodontal therapy in vivo.
Collapse
Affiliation(s)
- Mehdi Rostami Rad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Rokn
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Barikani
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Comparison of the efficacy of indocyanine green-mediated photodynamic therapy and nystatin therapy in treatment of denture stomatitis. Photodiagnosis Photodyn Ther 2019; 27:193-197. [PMID: 31185323 DOI: 10.1016/j.pdpdt.2019.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/17/2019] [Accepted: 06/07/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Candida species have an influence in the pathogenesis of denture stomatitis. The current study aimed to investigate the efficacy of indocyanine green (ICG)-mediated photodynamic therapy (PDT) in combination with nystatin mouthwash (PDT + nystatin) for the treatment of denture stomatitis in comparison with routine antifungal therapy with nystatin alone. METHODS In this double-blind randomized clinical trial, 66 patients were randomly assigned into PDT + nystatin (n = 33) and nystatin (n = 33) groups, both groups were treated 3-times a day (15 days) with nystatin mouthwash, and PDT was performed twice once a week for the PDT + nystatin group. Briefly, ICG was applied on the palatal lesion and laser irradiation was performed using a diode laser (810 nm, 56 J/cm2). Nystatin group was also treated with sham laser in order to eliminate the possible psychological effects. The clinical and mycological evaluations were carried out at the baseline, during treatment, and the end of follow-up. Patients who completed the treatment and follow-up were eligible for statistical analysis (each group 28 cases). RESULTS Patient treatment with nystatin or PDT + nystatin reduced the lesions extension. Candida species were isolated from all patients and the number of Candida CFU in both groups showed a significant reduction at each post-treatment visit; however, the mean reduction achieved in the PDT + nystatin group was significantly higher than nystatin alone. CONCLUSIONS ICG-mediated PDT in combination with nystatin mouthwash can improve the clinical feature of denture stomatitis with no adverse effects; therefore, it could be used as an alternative to the currently available antifungal therapy using nystatin alone.
Collapse
|
28
|
Lopes TS, Alves GG, Pereira MR, Granjeiro JM, Leite PEC. Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem 2019; 120:16370-16378. [DOI: 10.1002/jcb.29044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Talíria Silva Lopes
- Graduate Program in Sciences and Biotechnology, Fluminense Federal University – UFF Niteroi RJ Brazil
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department Biology Institute, Fluminense Federal University – UFF Niteroi RJ Brazil
| | | | - Jose Mauro Granjeiro
- Dental School – Fluminense Federal University – UFF Niteroi RJ Brazil
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| |
Collapse
|
29
|
Feng Y, Chang Y, Sun X, Cheng Y, Zheng R, Wu X, Wang L, Ma X, Li X, Zhang H. Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. Biomater Sci 2019; 7:1448-1462. [DOI: 10.1039/c8bm01122b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The corner angle structure of Au nanostructures could more efficiently convert the photon energy into the photodynamic performance.
Collapse
|
30
|
Sarcan ET, Silindir-Gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm 2018; 551:329-338. [DOI: 10.1016/j.ijpharm.2018.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
|
31
|
Linsley CS, Zhu M, Quach VY, Wu BM. Preparation of photothermal palmitic acid/cholesterol liposomes. J Biomed Mater Res B Appl Biomater 2018; 107:1384-1392. [PMID: 30281908 DOI: 10.1002/jbm.b.34230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 01/28/2023]
Abstract
Indocyanine green (ICG) is the only FDA-approved near-infrared dye and it is currently used clinically for diagnostic applications. However, there is significant interest in using ICG for triggered drug delivery applications and heat ablation therapy. Unfortunately, free ICG has a short half-life in vivo and is rapidly cleared from circulation. Liposomes have been frequently used to improve ICG's stability and overall time of effectiveness in vivo, but they have limited stability due to the susceptibility of phospholipids to hydrolysis and oxidation. In this study, nonphospholipid liposomes were used to encapsulate ICG, and the resulting liposomes were characterized for size, encapsulation efficiency, stability, and photothermal response. Using the thin-film hydration method, an ICG encapsulation efficiency of 54% was achieved, and the liposomes were stable for up to 12 weeks, with detectable levels of encapsulated ICG up to week 4. Additionally, ICG-loaded liposomes were capable of rapidly producing a significant photothermal response upon exposure to near-infrared light, and this photothermal response was able to induce changes in the mechanical properties of thermally responsive hydrogels. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1384-1392, 2019.
Collapse
Affiliation(s)
- Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Max Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Viola Y Quach
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.,Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
32
|
Ahrari F, Shahabi M, Fekrazad R, Eslami N, Mazhari F, Ghazvini K, Emrani N. Antimicrobial photodynamic therapy of Lactobacillus acidophilus by indocyanine green and 810-nm diode laser. Photodiagnosis Photodyn Ther 2018; 24:145-149. [PMID: 30153475 DOI: 10.1016/j.pdpdt.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022]
Abstract
This study investigated the efficacy of photodynamic therapy (PDT) using EmunDo as a photosensitizer against Lactobacillus acidophilus. A gallium aluminum arsenide diode laser was used in this experiment (810 nm, CW). Standard suspensions of Lactobacillus acidophilus were divided into six groups by treatment: 1) EmunDo, 2) diode laser (100 mW, 90 s), 3) diode laser (300 mW, 30 s); 4) EmunDo + diode laser (100 mW, 90 s), 5) EmunDo + diode laser (300 mW, 30 s), 6) control (no treatment). Bacterial suspensions from each group were subcultured onto the surface of MRS agar plates immediately and 24 h after treatment, and the viable microorganisms of Lactobacillus acidophilus were counted. The data were analyzed by ANOVA and student's t-test at p < 0.05. There was a significant between-group difference in the number of Lactobacillus acidophilus colonies in cell cultures obtained at 24 h after treatment (p < 0.001). The viable counts were significantly lower in EmunDo and both PDT groups, as compared to the other groups (p < 0.05). In the control and laser-irradiated groups, the number of colonies increased significantly at 24 h compared to the immediately after treatment (p < 0.05), whereas in both PDT groups, the number of colonies showed a significant reduction after 24 h of therapy (p < 0.05). Under the conditions used in this study, L. acidophilus colonies were susceptible to PDT after sensitization with EmunDo and exposure to diode laser. These findings imply that PDT is capable to reduce cariogenic bacteria, potentially leading to more conservative cavity preparation.
Collapse
Affiliation(s)
- Farzaneh Ahrari
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Shahabi
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Science, AJA University of Medical Science, Tehran, Iran and International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Eslami
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mazhari
- Dental Material Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Emrani
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Qin Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhihua Gan
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| |
Collapse
|
34
|
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed Engl 2018; 57:11384-11388. [DOI: 10.1002/anie.201807602] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Qin Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Zhihua Gan
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics; Chinese Academy of Sciences; China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; China
| |
Collapse
|
35
|
Chien YY, Wang TY, Liao PW, Wu WC, Chen CY. Folate-Conjugated and Dual Stimuli-Responsive Mixed Micelles Loading Indocyanine Green for Photothermal and Photodynamic Therapy. Macromol Biosci 2018; 18:e1700409. [PMID: 29733551 DOI: 10.1002/mabi.201700409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/05/2018] [Indexed: 11/05/2022]
Abstract
A folic acid targeted mixed micelle system based on co-assembly of poly(ε-caprolactone)-b-poly(methoxytri(ethylene glycol) methacrylate-co-N-(2-methacrylamido)ethyl folatic amide) and poly(ε-caprolactone)-b-poly(diethylene glycol monomethyl ether methacrylate) is developed to encapsulate indocyanine green (ICG) for photothermal therapy and photodynamic therapy. In this study, the use of folic acid is not only for specific cancer cell recognition, but also in virtue of the carboxylic acid on folic acid to regulate the pH-dependent thermal phase transition of polymeric micelles for controlled drug release. The prepared ICG-loaded mixed micelles possess several superior properties such as a preferable thermoresponsive behavior, excellent storage stability, and good local hyperthermia and reactive oxygen species generation under near-infrared (NIR) irradiation. The photototoxicity induced by the ICG-loaded micelles has efficiently suppressed the growth of HeLa cells (folate receptor positive cells) under NIR irradiation compared to that of HT-29, which has low folate receptor expression. Hence, this new type of mixed micelles with excellent features could be a promising delivery system for controlled drug release, effective cancer cell targeting, and photoactivated therapy.
Collapse
Affiliation(s)
- Yu-Ying Chien
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Tung-Yun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Po-Wen Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| |
Collapse
|
36
|
Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater 2017; 59:269-282. [PMID: 28663143 DOI: 10.1016/j.actbio.2017.06.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
In recent years, indocyanine green (ICG) encapsulated in different kinds of nano-carriers have been developed to overcome its short lifetime in vivo and non-selectivity in cancer cells. However, these nanoparticles are still easily recognized and captured by the reticuloendothelial system (RES) and the low singlet oxygen quantum (0.08) of ICG inevitably leads to a limited efficacy of phototherapy. To overcome these limitations, a novel oxygen self-enriched biomimetic red blood cell (RBC) was developed by cloaking albumin nanoparticles which contained ICG and perfluorocarbon (PFC) with RBC membranes. Due to the high oxygen capacity of PFC, the oxygen self-enriched nanoparticles can enhance photodynamic therapy (PDT) by generating more singlet oxygen (1O2). After successfully coated RBC membranes onto nanoparticles, the novel oxygen self-enriched biomimetic RBCs remained the characteristics of photothermal therapy (PTT) and enhanced PDT in vitro. Importantly, it can effectively reduce immune clearance in macrophage cells (RAW264.7) and significantly prolong blood circulation time, achieving high accumulation in tumor. In addition, the tumor growth was effectively inhibited after intravenous injection to tumor-bearing mice. Altogether, this oxygen self-enriched RBCs with long circulation time and high oxygen capacity as natural RBCs provide a new strategy to design biomimetic nano-system for clinical cancer phototherapy treatment. STATEMENT OF SIGNIFICANCE Near-infrared (NIR) dyes encapsulated in nanocarriers have been achieved great interest in cancer phototherapy treatment. However, the low singlet oxygen (1O2) quantum of NIR dyes and short circulation time of nanoparticles lead to unsatisfactory efficacy, limiting their applications. In this study, a novel oxygen self-enriched biomimetic red blood cell (bio-RBC) was developed to produce fluorescence, imaging-guided for photothermal therapy (PTT) and enhanced photodynamic therapy (PDT). It was composed of RBC membranes and albumin nanoparticles (IPH) which contained indocyanine green (ICG) and perfluorocarbon (PFC). After RBC membranes successfully being coated on nanoparticles, bio-RBC can effectively reduce immune clearance in macrophage cells and achieve longer circulation time in vivo, due to the protein retention in RBC membranes. In addition, PFC with high oxygen capacity can provide more oxygen to generate more 1O2 and dissolve 1O2 to enhance its life-time, enhancing PDT cancer treatment. In summary, the novel bio-RBC with longer lifetime and higher oxygen capacity as natural RBCs can significantly accumulate on tumor and effectively enhance phototherapy. It could serve as a novel strategy to overcome the problems of NIR dyes encapsulated nanoparticles, promising for future clinical application.
Collapse
|
37
|
Fekrazad R, Poorsattar Bejeh Mir A, Kahyaie Aghdam M, Ghasemi Barghi V. Comparison of photoinactivation of T. rubrum by new methylene blue (NMB) and indocyanine green (EmunDo ® ). Photodiagnosis Photodyn Ther 2017; 18:208-212. [DOI: 10.1016/j.pdpdt.2016.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/25/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022]
|
38
|
Guo L, Ge J, Liu Q, Jia Q, Zhang H, Liu W, Niu G, Liu S, Gong J, Hackbarth S, Wang P. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy. Adv Healthc Mater 2017; 6. [PMID: 28338291 DOI: 10.1002/adhm.201601431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Indexed: 11/10/2022]
Abstract
Clinical applications of current photodynamic therapy (PDT) photosensitizers (PSs) are often limited by their absorption in the UV-vis range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. Alternatively, two-photon excited PS (TPE-PS) using NIR light triggered is one the most promising candidates for PDT improvement. Herein, multimodal polymer nanoparticles (PNPs) from polythiophene derivative as two-photon fluorescence imaging as well as two-photon-excited PDT agent are developed. The prepared PNPs exhibit excellent water dispersibility, high photostability and pH stability, strong fluorescence brightness, and low dark toxicity. More importantly, the PNPs also possess other outstanding features including: (1) the high 1 O2 quantum yield; (2) the strong two-photon-induced fluorescence and efficient 1 O2 generation; (3) the specific accumulation in lysosomes of HeLa cells; and (4) the imaging detection depth up to 2100 µm in the mock tissue under two-photon. The multifunctional PNPs are promising candidates as TPE-PDT agent for simultaneous cellular, deep-tissue imaging, and highly efficient in vivo PDT of cancer.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Liu
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Sha Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jianru Gong
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Steffen Hackbarth
- Photobiophysik – Singlet Oxygen LabHumboldt‐Universität zu Berlin Berlin 12489 Germany
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Valente NA, Mang T, Hatton M, Mikulski L, Andreana S. Effects of Two Diode Lasers With and Without Photosensitization on Contaminated Implant Surfaces: An Ex Vivo Study. Photomed Laser Surg 2017; 35:347-356. [PMID: 28253064 DOI: 10.1089/pho.2016.4247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this ex vivo study is to assess decontamination potential of two different diode laser wavelengths, with or without the aid of photodynamic therapy, on dental implant surfaces and to evaluate the harmful potential of temperature increase during laser irradiation. MATERIALS AND METHODS One hundred thirty-two machined sterile implants were placed into sterile porcine bone blocks with standardized coronal angular bony defects and inoculated with Streptococcus sanguinis. Four different treatment protocols were used: 810 or 980 nm laser, with or without photosensitization. Two nontreated control groups were used, one with samples coated with indocyanine green dye. Samples were rinsed and plated on agar plates for subsequent colony count. Irradiation was repeated without contamination at room temperature and in a 37°C water bath monitoring the temperature variation. RESULTS There is a statistically significant decontamination effect when the laser is used. Both wavelengths minimize contamination. There was modest improvement given by the photosensitization being more marked in the 810 nm groups, but was not statistically significant compared to laser only. A critical temperature increase was never observed when the sample was in a 37°C water bath. CONCLUSIONS The use of both diode laser wavelengths in implant surface decontamination was efficacious regardless of the use of photosensitization and without dangerous increase of temperature.
Collapse
Affiliation(s)
- Nicola Alberto Valente
- 1 Department of Periodontics and Endodontics, State University of New York at Buffalo School of Dental Medicine , Buffalo, New York
| | - Thomas Mang
- 2 Department of Oral and Maxillofacial Surgery, State University of New York at Buffalo School of Dental Medicine , Buffalo, New York
| | - Michael Hatton
- 3 Department of Oral Diagnostic Sciences, State University of New York at Buffalo School of Dental Medicine , Buffalo, New York
| | - Lynn Mikulski
- 3 Department of Oral Diagnostic Sciences, State University of New York at Buffalo School of Dental Medicine , Buffalo, New York
| | - Sebastiano Andreana
- 4 Department of Restorative Dentistry, State University of New York at Buffalo School of Dental Medicine , Buffalo, New York
| |
Collapse
|
40
|
Wang S, Shang L, Li L, Yu Y, Chi C, Wang K, Zhang J, Shi R, Shen H, Waterhouse GIN, Liu S, Tian J, Zhang T, Liu H. Metal-Organic-Framework-Derived Mesoporous Carbon Nanospheres Containing Porphyrin-Like Metal Centers for Conformal Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8379-8387. [PMID: 27461987 DOI: 10.1002/adma.201602197] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/25/2016] [Indexed: 05/20/2023]
Abstract
Mesoporous carbon nanospheres containing porphyrin-like metal centers (denoted as "PMCS") are successfully synthesized by the pyrolysis of an imidazolate framework using a mesoporous-silica protection strategy. The PMCS allow infrared and photoacoustic imaging and synergetic photothermal therapy/photodynamic therapy derived from the porphyrin-like moieties, offering the possibility of real-time monitoring of therapeutic processes and image-guided precise conformal phototherapy. PMCS thus represent a novel multifunctional theranostic platform for improved treatment efficiencies.
Collapse
Affiliation(s)
- Shunhao Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yingjie Yu
- Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11790, USA
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.
| | - Jie Tian
- Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
41
|
Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016; 34:768-789. [PMID: 27090752 DOI: 10.1016/j.biotechadv.2016.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Indocyanine green (ICG) is a cyanine compound that displays fluorescent properties in the near infrared region. This dye is employed for numerous indications but nowadays its major application field regards tumour diagnosis and treatments. Optical imaging by near infrared fluorescence provides news opportunities for oncologic surgery. The imaging of ICG can be useful for intraoperative identification of several solid tumours and metastases, and sentinel lymph node detection. In addition, ICG can be used as an agent for the destruction of malignant tissue, by virtue of the production of reactive oxygen species and/or induction of a hyperthermia effect under irradiation. Nevertheless, ICG shows several drawbacks, which limit its clinical application. Several formulative strategies have been studied to overcome these problems. The rationale of the development of ICG containing drug delivery systems is to enhance the in vivo stability and biodistribution profile of this dye, allowing tumour accumulation and resulting in better efficacy. In this review, ICG containing nano-sized carriers are classified based on their chemical composition and structure. In addition to nanosystems, different formulations including hydrogel, microsystems and others loaded with ICG will be illustrated. In particular, this report describes the preparation, in vitro characterization and in vivo application of ICG platforms for cancer imaging and treatment. The promising results of all systems confirm their clinical utility but further studies are required prior to evaluating the formulations in human trials.
Collapse
Affiliation(s)
- Elena P Porcu
- PhD in Experimental Medicine, Department of Diagnostic, Paediatric, Clinical and Surgical Science, Pavia, Italy
| | - Andrea Salis
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Elisabetta Gavini
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Giovanna Rassu
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | | | - Paolo Giunchedi
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy.
| |
Collapse
|
42
|
In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:199-204. [PMID: 27157744 DOI: 10.1016/j.msec.2016.04.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
The surface of gold nanoparticles (AuNP) was modified, improving their interaction with neutral red (NR), by using sodium thioglycolate (TGA) as a covering agent. The resulting NR-AuNPTGA system was evaluated as a potential drug delivery system for photodynamic therapy (PDT). The associations of NR with the gold nanoparticles were evaluated using UV-vis spectrometry and measurement of their zeta potential and size distribution. The toxicity and phototoxicity of NR, AuNPTGA and NR-AuNPTGA were evaluated in NIH-3T3 fibroblast and 4T1 tumor cell lines. The compounds NR and NR-AuNPTGA induced toxicity in 4T1 tumor cells and NIH-3T3 fibroblasts under visible light irradiation. Modification of the surface of AuNP with TGA prevented nanoparticle aggregation and allowed greater association with NR molecules than for naked AuNP. The photosensitizer (PS) characteristics were not affected by its association with the modified surface of the gold nanoparticles, leading to a reduction of cell viability in both cell lines assayed. This NR-AuNPTGA system is a promising drug delivery system for photodynamic cancer therapy.
Collapse
|
43
|
Akman L, Biber Muftuler FZ, Bilgi A, Yurt Kilcar A, Gokulu SG, Medine EI, Terek MC. Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4472-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Fekrazad R, Ghasemi Barghi V, Poorsattar Bejeh Mir A, Shams-Ghahfarokhi M. In vitro photodynamic inactivation of Candida albicans by phenothiazine dye (new methylene blue) and Indocyanine green (EmunDo®). Photodiagnosis Photodyn Ther 2015; 12:52-7. [DOI: 10.1016/j.pdpdt.2014.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/29/2022]
|
45
|
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
| | - Khee Chee Soo
- Division
of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004
| |
Collapse
|
46
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 744] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
47
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS NANO 2014; 8:7260-71. [PMID: 24992260 DOI: 10.1021/nn502325j] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have performed fundamental assays of gold nanocages (AuNCs) as intrinsic inorganic photosensitizers mediating generation of reactive oxygen species (ROS) by plasmon-enabled photochemistry under near-infrared (NIR) one/two-photon irradiation. We disclosed that NIR light excited hot electrons transform into either ROS or hyperthermia. Electron spin resonance spectroscopy was applied to demonstrate the production of three main radical species, namely, singlet oxygen ((1)O2), superoxide radical anion (O2(-•)), and hydroxyl radical ((•)OH). The existence of hot electrons from irradiated AuNCs was confirmed by a well-designed photoelectrochemical experiment based on a three-electrode system. It could be speculated that surface plasmons excited in AuNCs first decay into hot electrons, and then the generated hot electrons sensitize oxygen to form ROS through energy and electron transfer modes. We also compared AuNCs' ROS generation efficiency in different surface chemical environments under one/two-photon irradiation and verified that, compared with one-photon irradiation, two-photon irradiation could bring about much more ROS. Furthermore, in vitro, under two-photon irradiation, ROS can trigger mitochondrial depolarization and caspase protein up-regulation to initiate tumor cell apoptosis. Meanwhile, hyperthermia mainly induces tumor cell necrosis. Our findings suggest that plasmon-mediated ROS and hyperthermia can be facilely regulated for optimized anticancer phototherapy.
Collapse
Affiliation(s)
- Liang Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | | | | | |
Collapse
|
49
|
Gomes AJ, Espreafico EM, Tfouni E. trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] Incorporated in PLGA Nanoparticles for the Delivery of Nitric Oxide to B16–F10 Cells: Cytotoxicity and Phototoxicity. Mol Pharm 2013; 10:3544-54. [DOI: 10.1021/mp3005534] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anderson J. Gomes
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF,
Brazil
| | - Enilza M. Espreafico
- Departamento de
Biologia Celular
e Molecular e Bioagentes Patogênicos, Faculdade de Medicina
de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elia Tfouni
- Departamento de Química,
Faculdade de Filosofia Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Photoelimination of Streptococcus mutans with two methods of photodynamic and photothermal therapy. Photodiagnosis Photodyn Ther 2013; 10:626-31. [PMID: 24284120 DOI: 10.1016/j.pdpdt.2013.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Increasing resistance of oral pathogens to conventional antibacterial agents has resulted to find alternative therapies to overcome resistance development problems; hence this in vitro study was carried out to investigate the efficacy of photoelimination of Streptococcus mutans with two methods of photodynamic and photothermal therapy. METHODS Standard Suspensions of S. mutans were treated in two groups of photodynamic therapy with Toluidine blue O and Rhadachlorin(®) and photothermal therapy by EmunDo(®) and their individual light sources, then Bacterial suspension from each treatment was subcultured on the surface of Mueller-Hinton agar plates and bacterial growth was assessed. The results were analyzed by analysis of variance and Tukey test (p<0.05). RESULTS After treatments significant reduction of S. mutans viability in planktonic culture was observed in both groups of photodynamic and photothermal therapy with no priority. CONCLUSION Photoelimination can be a novel modality in the eradication of S. mutans colonies in near future.
Collapse
|