1
|
Méndez A, Maisto F, Pavlović J, Rusková M, Pangallo D, Sanmartín P. Microbiome shifts elicited by ornamental lighting of granite facades identified by MinION sequencing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113065. [PMID: 39549663 DOI: 10.1016/j.jphotobiol.2024.113065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/07/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Night-time outdoor illumination in combination with natural sunlight can influence the visible phototrophic colonizers (mainly algae) growing on stone facades; however, the effects on the microbiome (invisible to the naked eye) are not clear. The presence of stone-dwelling microbes, such as bacteria, diatoms, fungi, viruses and archaea, drives further biological colonization, which may exacerbate the biodeterioration of substrates. Considering the microbiome is therefore important for conservation of the built heritage. The impact of the following types of lighting on the relative abundance and diversity of the microbiome on granite ashlars was evaluated in a year-long outdoor pilot study: no lighting; lighting with a metal halide lamp (a traditional lighting system currently used to illuminate monuments); and lighting with a novel LED lamp (an environmentally sound prototype lamp with a biostatic effect, halting biological colonization by phototrophs, currently under trial). Culturable fractions of microbiome and whole-genome sequencing by metabarcoding with Oxford Nanopore Sequencing (MinION) was conducted for bacteria and fungi in order to complement both community characterization strategies. In addition, the possible biodeteriorative profiles of the isolated strains, relative to calcium carbonate precipitation/solubilisation and iron oxidation/reduction, were investigated by plate assays. Alpha and beta diversity indexes were also determined, along with the abundance of biocide and antibiotic resistance genes. Culture-dependent microbiological analysis failed to properly show changes in community composition, for which metagenomic approaches like MinION are better suited. Thus, MinION analysis identified shifts in the granite microbiome elicited by ornamental lighting. The novel LED lamp with the biostatic effect on phototrophs caused an increase in the diversity of bacteria and fungi. In this case, the microbiome was more similar to that in the unlit samples. In the samples illuminated by the metal halide lamp, dominance of bacteria was favoured and the presence of fungi was negligible.
Collapse
Affiliation(s)
- Anxo Méndez
- CRETUS. Gemap (GI-1243), Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francesca Maisto
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; Caravella, s.r.o., Tupolevova 2, 851 01 Bratislava, Slovakia.
| | - Patricia Sanmartín
- CRETUS. Gemap (GI-1243), Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Ahrens M, Spörer M, Deppe H, Ritschl LM, Mela P. Bacterial reduction and temperature increase of titanium dental implant models treated with a 445 nm diode laser: an in vitro study. Sci Rep 2024; 14:18053. [PMID: 39103382 PMCID: PMC11300767 DOI: 10.1038/s41598-024-68780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
In this in vitro study, the use of a 445 nm diode laser was investigated for the decontamination of titanium dental implants. Different irradiation protocols and the effect of repetitive laser irradiation on temperature increase and decontamination efficacy were evaluated on titanium implant models. An automated setup was developed to realize a scanning procedure for a full surface irradiation to recapitulate a clinical treatment. Three irradiation parameter sets A (continuous wave, power 0.8 W, duty cycle (DC) 100%, and 5 s), B (pulsed mode, DC 50%, power 1.0 W, and 10 s), and C (pulsed mode, DC 10%, power 3.0 W, and 20 s) were used to treat the rods for up to ten consecutive scans. The resulting temperature increase was measured by a thermal imaging camera and the decontamination efficacy of the procedures was evaluated against Escherichia coli and Staphylococcus aureus, and correlated with the applied laser fluence. An implant's temperature increase of 10 °C was set as the limit accepted in literature to avoid thermal damage to the surrounding tissue in vivo. Repeated irradiation of the specimens resulted in a steady increase in temperature. Parameter sets A and B caused a temperature increase of 11.27 ± 0.81 °C and 9.90 ± 0.37 °C after five consecutive laser scans, respectively, while parameter set C resulted in a temperature increase of only 8.20 ± 0.53 °C after ten surface scans. The microbiological study showed that all irradiation parameter sets achieved a complete bacterial reduction (99.9999% or 6-log10) after ten consecutive scans, however only parameter set C did not exceed the temperature threshold. A 445 nm diode laser can be used to decontaminate dental titanium rods, and repeated laser irradiation of the contaminated areas increases the antimicrobial effect of the treatment; however, the correct choice of parameters is needed to provide adequate laser fluence while preventing an implant's temperature increase that could cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- Markus Ahrens
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Melanie Spörer
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Herbert Deppe
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lucas M Ritschl
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Lee D, Lee J, Ahn SH, Song W, Li L, Seol YJ, Lee YM, Koo KT. Adjunctive effect of 470-nm and 630-nm light-emitting diode irradiation in experimental periodontitis treatment: a preclinical study. J Periodontal Implant Sci 2024; 54:13-24. [PMID: 37336520 PMCID: PMC10901685 DOI: 10.5051/jpis.2203580179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE This study investigated the adjunctive effect of light-emitting diodes (LEDs) in the treatment of experimental periodontitis. METHODS Experimental periodontitis was induced by placing ligatures around the mandibular second, third, and fourth premolars of 6 beagles for 3 months. After ligature removal, periodontitis progressed spontaneously for 2 months. The animals' hemimandibles were allocated among the following 3 groups: 1) no treatment (control), 2) scaling and root planing (SRP), and 3) SRP with LED irradiation at 470-nm and 630-nm wavelengths (SRP/LED). The probing pocket depth (PPD) and gingival recession (GR) were measured at baseline, 6 weeks, and 12 weeks. The clinical attachment level (CAL) was calculated. After 12 weeks, histological and histomorphometric assessments were performed. The distances from the gingival margin to the apical extent of the junctional epithelium (E) and to the connective tissue (CT) attachment were measured, as was the total length of soft tissue (ST). RESULTS PPD and CAL increased at 12 weeks compared with baseline in the control group (6.31±0.43 mm to 6.93±0.50 mm, and 6.46±0.60 mm to 7.61±0.78 mm, respectively). PPD and CAL decreased at 12 weeks compared with baseline in the SRP group (6.01±0.59 to 4.81±0.65 mm, and 6.51±0.98 to 5.39±0.93 mm, respectively). PPD and CAL decreased at 12 weeks compared with baseline in the SRP/LED group (6.03±0.39 to 4.46±0.47 mm, and 6.11±0.47 to 4.78±0.57 mm, respectively). The E/ST and CT/ST ratios significantly differed among the 3 groups (P<0.05). The clinical parameters and histologic findings demonstrated that 470-nm and 630-nm wavelength LED irradiation accompanying SRP could improve treatment results. CONCLUSIONS Within the study limitations, 470 nm and 630 nm wavelength LED irradiation might provide additional benefits for periodontitis treatment.
Collapse
Affiliation(s)
- Dongseob Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea.
| | - Sun-Hee Ahn
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Woosub Song
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Ling Li
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea.
| |
Collapse
|
4
|
Meisgeier A, Heymann P, Ziebart T, Braun A, Neff A. Wound healing after therapy of oral potentially malignant disorders with a 445-nm semiconductor laser: a randomized clinical trial. Clin Oral Investig 2023; 28:26. [PMID: 38147181 PMCID: PMC10751250 DOI: 10.1007/s00784-023-05438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Oral potentially malignant disorders (OPMDs) are the most clinically relevant precursor lesions of the oral squamous cell carcinoma (OSCC). OSCC is one of the 15 most common cancers worldwide. OSCC is with its high rate of mortality an important cause of death worldwide. The diagnosis and therapy of clinically relevant precursor lesions of the OSCC is one of the main parts of prevention of this malignant disease. Targeted therapy is one of the main challenges concerning an oncologically safe tissue removal without overwhelming functional and aesthetic impairment. MATERIALS AND METHODS In this randomized controlled trial, a newly introduced intraoral 445-nm semiconductor laser (2W; cw-mode; SIROLaser Blue, Dentsply Sirona, Bensheim, Germany) was used in the therapy of OPMDs. Duration and course of wound healing, pain, and scar tissue formation were compared to classical cold blade removal with primary suture by measuring remaining wound area, tissue colorimetry, and visual analogue scale. The study includes 40 patients randomized using a random spreadsheet sequence in two groups (n1 = 20; n2 = 20). RESULTS This comparative analysis revealed a significantly reduced remaining wound area after 1, 2, and 4 weeks in the laser group compared to the cold blade group (p < 0.05). In the laser group, a significantly reduced postoperative pain after 1 week was measured (p < 0.05). CONCLUSION Laser coagulation of OPMDs with the investigated 445-nm semiconductor laser is a safe, gentle, and predictable surgical procedure with beneficial wound healing and reduced postoperative discomfort. CLINICAL RELEVANCE Compared to the more invasive and bloody cold blade removal with scalpel, the 445-nm semiconductor laser could be a new functional less traumatic tool in the therapy of OPMDs. The method should be further investigated with regard to the identification of further possible indications. TRAIL REGISTRATION German Clinical Trials Register No: DRKS00032626.
Collapse
Affiliation(s)
- Axel Meisgeier
- Department of Oral and Craniomaxillofacial Surgery, UKGM GmbH, University Hospital Marburg, Giessen/Marburg, Germany.
- Faculty of Medicine, Philipps-University, Marburg, 35043, Marburg, Germany.
| | - Paul Heymann
- Department of Oral and Craniomaxillofacial Surgery, UKGM GmbH, University Hospital Marburg, Giessen/Marburg, Germany
- Faculty of Medicine, Philipps-University, Marburg, 35043, Marburg, Germany
| | - Thomas Ziebart
- Department of Oral and Craniomaxillofacial Surgery, UKGM GmbH, University Hospital Marburg, Giessen/Marburg, Germany
- Faculty of Medicine, Philipps-University, Marburg, 35043, Marburg, Germany
| | - Andreas Braun
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH University Aachen, Aachen, Germany
| | - Andreas Neff
- Department of Oral and Craniomaxillofacial Surgery, UKGM GmbH, University Hospital Marburg, Giessen/Marburg, Germany
- Faculty of Medicine, Philipps-University, Marburg, 35043, Marburg, Germany
| |
Collapse
|
5
|
Mathew CA, Veena HR, Shubha P, Daniel RA. Antimicrobial photocatalysis using bio-hydrothermally synthesized Zinc oxide nanoparticles in the management of periodontitis: a prospective split-mouth, double-blind, randomized, controlled clinical trial. J Appl Oral Sci 2023; 31:e20230271. [PMID: 38126579 PMCID: PMC10786455 DOI: 10.1590/1678-7757-2023-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The antimicrobial activity of metallic nanoparticles (NPs) has been confirmed to fight a broad spectrum of microorganisms, through antimicrobial effects that are amplified when these particles are irradiated with light of the proper wavelength. This is the first study to use phytoconjugated Zinc oxide (ZnO) NPs containing traces of active biomolecules derived from Emblica officinalis (E. officinalis) plant extract in antimicrobial photocatalysis (PCT) during non-surgical periodontal therapy. OBJECTIVES This study aimed to evaluate the effects of repeated PCT application in the treatment of periodontitis, using a gel containing bio-hydrothermally synthesized ZnO NPs and visible light as an adjunct to scaling and root planing (SRP). METHODOLOGY In total, 16 systemically healthy volunteers with stage 3 grade B generalized periodontitis were recruited for this prospective double blind, randomized placebo-controlled trial. After receiving SRP, the subjects received the following interventions in a split-mouth design at baseline, 1 week and 1 month: Group 1 - Placebo gel + Sham PCT; Group 2 - Nano ZnO gel + Sham PCT; Group 3 - Placebo gel + PCT; and Group 4 - Nano ZnO gel + PCT. The site-specific profile of Porphyromonas gingivalis in the subgingival plaque and clinical parameters (Plaque Index, Gingival Index, Gingival Bleeding Index, Probing pocket Depth and Clinical Attachment Level) were assessed at baseline, 1 month and 3 months. RESULTS All interventions tested caused participants' clinical and microbiological parameters to generally improve after 3 months. Subjects who received the Nano ZnO gel + PCT combination showed a sustained and progressive improvement in their treatment outcomes, a result that presented statistically significant differences from the outcomes obtained through the remaining interventions, at all time points during the study period. CONCLUSIONS The repeated application of PCT using bio-hydrothermally synthesized ZnO NPs can effectively complement SRP in the non-surgical treatment of Periodontitis.
Collapse
Affiliation(s)
- C Afigith Mathew
- K. L. E. Society's Institute of Dental Sciences, Department of Periodontics, Bangalore, Karnataka 560022, India
| | - H R Veena
- K. L. E. Society's Institute of Dental Sciences, Department of Periodontics, Bangalore, Karnataka 560022, India
| | - P Shubha
- Mangalore University, Department of Material Science, Mangalagangotri, Mangalore, Karnataka 574199, India
| | - Riya Achamma Daniel
- MIOT International, Department of Dental Surgery, Chennai, Tamil Nadu 600089, India
| |
Collapse
|
6
|
Hayashi S, Takeuchi Y, Hiratsuka K, Kitanaka Y, Toyoshima K, Nemoto T, Aung N, Hakariya M, Ikeda Y, Iwata T, Aoki A. Effects of various light-emitting diode wavelengths on periodontopathic bacteria and gingival fibroblasts: An in vitro study. Photodiagnosis Photodyn Ther 2023; 44:103860. [PMID: 37884107 DOI: 10.1016/j.pdpdt.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND In recent years, light has been used for bacterial control of periodontal diseases. This in vitro study evaluated the effects of light-emitting diode (LED) irradiation at different wavelengths on both Porphyromonas gingivalis and human gingival fibroblasts (HGF-1). METHODS P. gingivalis suspension was irradiated with LEDs of 365, 405, 450, 470, 565, and 625 nm at 50, 100, 150, and 200 mW/cm2 for 3 min (radiant exposure: 9, 18, 27, 36 J/cm2, respectively). Treated samples were anaerobically cultured on agar plates, and the number of colony-forming units (CFUs) was determined. Reactive oxygen species (ROS) levels were measured after LED irradiation. The viability and damage of HGF-1 were measured through WST-8 and lactate dehydrogenase assays, respectively. Gene expression in P. gingivalis was evaluated through quantitative polymerase chain reaction. RESULTS The greatest reduction in P. gingivalis CFUs was observed on irradiation at 365 nm with 150 mW/cm2 for 3 min (27 J/cm2), followed by 450 and 470 nm under the same conditions. While 365-nm irradiation significantly decreased the viability of HGF-1 cells, the cytotoxic effects of 450- and 470-nm irradiation were comparatively low and not significant. Further, 450-nm irradiation indicated increased ROS production and downregulated the genes related to gingipain and fimbriae. The 565- and 625-nm wavelength groups exhibited no antibacterial effects; rather, they significantly activated HGF-1 proliferation. CONCLUSIONS The 450- and 470-nm blue LEDs showed high antibacterial activity with low cytotoxicity to host cells, suggesting promising bacterial control in periodontal therapy. Additionally, blue LEDs may attenuate the pathogenesis of P. gingivalis.
Collapse
Affiliation(s)
- Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yutaro Kitanaka
- Department of Oral Diagnosis of General Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon, Myanmar
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
7
|
Ribeiro RS, Mencalha AL, de Souza da Fonseca A. Could violet-blue lights increase the bacteria resistance against ultraviolet radiation mediated by photolyases? Lasers Med Sci 2023; 38:253. [PMID: 37930459 DOI: 10.1007/s10103-023-03924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.
Collapse
Affiliation(s)
- Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, Teresópolis, Rio de Janeiro, 11125964004, Brazil.
| |
Collapse
|
8
|
Harris DM, Sulewski JG. Photoinactivation and Photoablation of Porphyromonas gingivalis. Pathogens 2023; 12:1160. [PMID: 37764967 PMCID: PMC10535405 DOI: 10.3390/pathogens12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in particular. The various approaches can be organized into five different treatment modes sorted by different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1: antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity; (d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.
Collapse
Affiliation(s)
- David M. Harris
- Bio-Medical Consultants, Inc., Canandaigua, NY 14424, USA
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - John G. Sulewski
- Institute for Advanced Dental Technologies, Huntington Woods, MI 48070, USA
- Millennium Dental Technologies, Inc., Cerritos, CA 90703, USA
| |
Collapse
|
9
|
Martinez A, Hernandez-Quijada K, Ghosh AA, Cabrera G, Scott D, Aikins A, Verma DK, Kwon I, Kim YH. The combination of Violet light and Infra-Red as well as Violet light only effectively suppress the survival of multiple-drug resistant bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
10
|
Establishing the lower bacterial concentration threshold for different optical counting techniques. J Microbiol Methods 2022; 203:106620. [PMID: 36372252 DOI: 10.1016/j.mimet.2022.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
This work compares several physical and optical techniques used in fundamental research and industrial applications to detect bacteria in water. Optical techniques such as, UV-absorbance spectroscopy, laser particle counting, turbidimetry and Z-Sizer light scattering, and a direct observational physical technique, the plate count method, were compared when measuring the concentration of E.coli in tenfold dilution from a stock solution. Estimates of the detection threshold limit of E.coli for the different optical counting techniques and the relationship between colony-forming units (CFU) and tenfold dilutions was established. Optical methods have generated interest due to the rapid response of just minutes, non-destructive approach and minimal sample preparation but their use is still limited to concentrations of up to 4 Log E.coli/mL. In contrast, the plate count method is still a reliable technique for water quality analysis despite its long response time of 24 h.
Collapse
|
11
|
Engelhart-Straub S, Cavelius P, Hölzl F, Haack M, Awad D, Brueck T, Mehlmer N. Effects of Light on Growth and Metabolism of Rhodococcus erythropolis. Microorganisms 2022; 10:microorganisms10081680. [PMID: 36014097 PMCID: PMC9416670 DOI: 10.3390/microorganisms10081680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus erythropolis is resilient to various stressors. However, the response of R. erythropolis towards light has not been evaluated. In this study, R. erythropolis was exposed to different wavelengths of light. Compared to non-illuminated controls, carotenoid levels were significantly increased in white (standard warm white), green (510 nm) and blue light (470 nm) illuminated cultures. Notably, blue light (455, 425 nm) exhibited anti-microbial effects. Interestingly, cellular lipid composition shifted under light stress, increasing odd chain fatty acids (C15:0, C17:1) cultured under white (standard warm white) and green (510 nm) light. When exposed to blue light (470, 455, 425 nm), fatty acid profiles shifted to more saturated fatty acids (C16:1 to C16:0). Time-resolved proteomics analysis revealed several oxidative stress-related proteins to be upregulated under light illumination.
Collapse
|
12
|
A Simple Spectrophotometric Method for Coccidian Oocysts Counting in Broiler Feces. Acta Parasitol 2022; 67:1393-1400. [DOI: 10.1007/s11686-022-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
|
13
|
Kania A, Tejchman W, Pawlak AM, Mokrzyński K, Różanowski B, Musielak BM, Greczek-Stachura M. Preliminary Studies of Antimicrobial Activity of New Synthesized Hybrids of 2-Thiohydantoin and 2-Quinolone Derivatives Activated with Blue Light. Molecules 2022; 27:1069. [PMID: 35164334 PMCID: PMC8839260 DOI: 10.3390/molecules27031069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Thiohydantoin and quinolone derivatives have attracted researchers' attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds.
Collapse
Affiliation(s)
- Agnieszka Kania
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (W.T.); (B.R.); (M.G.-S.)
| | - Waldemar Tejchman
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (W.T.); (B.R.); (M.G.-S.)
| | - Anna M. Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (A.M.P.); (K.M.)
| | - Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (A.M.P.); (K.M.)
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (W.T.); (B.R.); (M.G.-S.)
| | - Bogdan M. Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Greczek-Stachura
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (W.T.); (B.R.); (M.G.-S.)
| |
Collapse
|
14
|
Lee J, Song HY, Ahn SH, Song W, Seol YJ, Lee YM, Koo KT. In vitro investigation of the antibacterial and anti-inflammatory effects of LED irradiation. J Periodontal Implant Sci 2022; 53:110-119. [PMID: 36468477 PMCID: PMC10133822 DOI: 10.5051/jpis.2200920046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study aimed to investigate the proper wavelengths for safe levels of light-emitting diode (LED) irradiation with bactericidal and photobiomodulation effects in vitro. METHODS Cell viability tests of fibroblasts and osteoblasts after LED irradiation at 470, 525, 590, 630, and 850 nm were performed using the thiazolyl blue tetrazolium bromide assay. The bactericidal effect of 470-nm LED irradiation was analyzed with Streptococcus gordonii, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia. Levels of nitric oxide, a proinflammatory mediator, were measured to identify the anti-inflammatory effect of LED irradiation on lipopolysaccharide-stimulated inflammation in RAW 264.7 macrophages. RESULTS LED irradiation at wavelengths of 470, 525, 590, 630, and 850 nm showed no cytotoxic effect on fibroblasts and osteoblasts. LED irradiation at 630 and 850 nm led to fibroblast proliferation compared to no LED irradiation. LED irradiation at 470 nm resulted in bactericidal effects on S. gordonii, A. actinomycetemcomitans, F. nucleatum, P. gingivalis, and T. forsythia. Lipopolysaccharide (LPS)-induced RAW 264.7 inflammation was reduced by irradiation with 525-nm LED before LPS treatment and irradiation with 630-nm LED after LPS treatment; however, the effects were limited. CONCLUSIONS LED irradiation at 470 nm showed bactericidal effects, while LED irradiation at 525 and 630 nm showed preventive and treatment effects on LPS-induced RAW 264.7 inflammation. The application of LED irradiation has potential as an adjuvant in periodontal therapy, although further investigations should be performed in vivo.
Collapse
Affiliation(s)
- Jungwon Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Hyun-Yong Song
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sun-Hee Ahn
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Woosub Song
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Suciu M, Porav S, Radu T, Rosu MC, Lazar MD, Macavei S, Socaci C. Photodynamic effect of light emitting diodes on E. coli and human skin cells induced by a graphene-based ternary composite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112298. [PMID: 34474299 DOI: 10.1016/j.jphotobiol.2021.112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
In this paper, the photodynamic effect of a ternary nanocomposite (TiO2-Ag/graphene) on Escherichia coli bacteria and two human cell lines: A375 (melanoma) and HaCaT (keratinocyte) after exposure to different wavelength domains (blue, green or red-Light Emitting Diode, LED) was analyzed. The results obtained through bioassays were correlated with the morphological, structural and spectral data obtained through FT-IR, XPS and UV-Vis spectroscopy, powder X-Ray diffractometry (XRD) and STEM/EDX techniques, leading to conclusions that showed different photodynamic activation mechanisms and effects on bacteria and human cells, depending on the wavelength. The nanocomposite proved a therapeutic potential for blue light-activated antibacterial treatment and revealed a keratinocyte cytotoxic effect under blue and green LEDs. The red light-nanocomposite duo gave a metabolic boost to normal keratinocytes and induced stasis to melanoma cells. The light and nanocomposite combination could be a potential therapy for bacterial keratosis or for skin tumors.
Collapse
Affiliation(s)
- Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania; Biology and Geology Faculty, Babes-Bolyai University, 5-7 Clinicilor Str, Cluj-Napoca, Romania
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Marcela C Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Mihaela D Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Crina Socaci
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Galo IDC, Prado RP, Santos WGD. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth. BRAZ J BIOL 2021; 82:e231742. [PMID: 33787710 DOI: 10.1590/1519-6984.231742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The ability of pathogenic bacteria acquire resistance to the existing antibiotics has long been considered a dangerous health risk threat. Currently, the use of visible light has been considered a new approach to treat bacterial infections as an alternative to antibiotics. Herein, we investigated the antimicrobial effect of two range of visible light, blue and red, on Staphylococcus aureus and Pseudomonas aeruginosa, two pathogenic bacterial commonly found in healthcare settings-acquired infections and responsible for high rate of morbidity and mortality. Bacterial cultures were exposed to blue or red light (470 nm and 660 nm) provided by light-emitting diodes - LED. The fluencies and irradiance used for blue and red light were 284.90 J/cm2, 13.19 mW/cm2 and 603.44 J/cm2, 27.93 mW/cm2 respectively. Different experimental approaches were used to determine the optimal conditions of light application. Only exposure to blue light for 6 hours was able to inhibit about 75% in vitro growth of both bacterial species after 24 hours. The surviving exposed bacteria formed colonies significantly smaller than controls, however, these bacteria were able to resume growth after 48 hours. Blue light was able to inhibit bacterial growth upon inoculation in both saline solution and BHI culture medium. We can conclude that blue light, but not red light, is capable of temporarily retarding the growth of gram negative and gram positive bacteria.
Collapse
Affiliation(s)
- I D C Galo
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| | - R P Prado
- Universidade Federal de Catalão - UFCAT, Departamento de Medicina, Catalão, GO, Brasil
| | - W G Dos Santos
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| |
Collapse
|
17
|
Balmages I, Liepins J, Zolins S, Bliznuks D, Lihacova I, Lihachev A. Laser speckle imaging for early detection of microbial colony forming units. BIOMEDICAL OPTICS EXPRESS 2021; 12:1609-1620. [PMID: 33796376 PMCID: PMC7984771 DOI: 10.1364/boe.416456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, an optical contactless laser speckle imaging technique for the early identification of bacterial colony-forming units was tested. The aim of this work is to compare the laser speckle imaging method for the early assessment of microbial activity with standard visual inspection under white light illumination. In presented research, the growth of Vibrio natriegens bacterial colonies on the solid medium was observed and analyzed. Both - visual examination under white light illumination and laser speckle correlation analysis were performed. Based on various experiments and comparisons with the theoretical Gompertz model, colony radius growth curves were obtained. It was shown that the Gompertz model can be used to describe both types of analysis. A comparison of the two methods shows that laser speckle contrast imaging, combined with signal processing, can detect colony growth earlier than standard CFU counting method under white light illumination.
Collapse
Affiliation(s)
- Ilya Balmages
- University of Latvia, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| | - Janis Liepins
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Stivens Zolins
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Dmitrijs Bliznuks
- Riga Technical University, Faculty of Computer Science and Information Technology, Riga, Latvia
| | - Ilze Lihacova
- University of Latvia, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| | - Alexey Lihachev
- University of Latvia, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| |
Collapse
|
18
|
Bapat P, Singh G, Nobile CJ. Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms 2021; 9:microorganisms9030500. [PMID: 33652865 PMCID: PMC7996876 DOI: 10.3390/microorganisms9030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.
Collapse
Affiliation(s)
- Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Gurbinder Singh
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
19
|
Lusche I, Dirk C, Frentzen M, Meister J. Cavity Disinfection With a 445 nm Diode Laser Within the Scope of Restorative Therapy - A Pilot Study. J Lasers Med Sci 2021; 11:417-426. [PMID: 33425292 DOI: 10.34172/jlms.2020.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cavity disinfection is necessary to prevent a progressive infection of the crown dentin and pulp. Increasing intolerance and resistance to antiseptics and antibiotics as well as the controversy over the effects of those on the dental hard tissue and composite have prompted the investigation of alternative treatment options. The objective of this pilot study is to evaluate the antibacterial potential of a diode laser with a wavelength of 445 nm in the cavity preparation using the bacterium Streptococcus salivarius associated with caries in conjunction with the characteristics and influences of dentin on light transmission. Methods: The bactericidal effect of the laser irradiation was determined in culture experiments by using caries-free human dentin samples on bacteria-inoculated agar. For this, dentin discs (horizontally cut coronal dentin) of 500 µm and 1000 µm thicknesses were produced and irradiated with the laser with irradiation parameters of 0.7-1 W in a cw-mode and exposure times of between 5-30 s. Based on the different sample thicknesses, the penetration depth effect of the irradiation was ascertained after the subsequent incubation of the bacteria-inoculated agar. Additional influential parameters on the irradiation transmission were investigated, including surface moisture, tooth color as well as the presence of a smear layer on the dentin surface. Results: The optical transmission values of the laser radiation for dentin were significantly dependent on the sample thickness (P = 0.006) as well as its moisture content (P = 0.013) and were independent of the presence of a smear layer. There was a 40% reduction in bacteria after the radiography of the 500-µm-thick dentin samples, which was shown as the lowest laser dose (443 J/cm2). Conclusion: These findings indicate that the diode laser with light emission at a wavelength of 445 nm is interesting for the supportive cavity disinfection within the scope of caries therapy and show potential for clinical applications.
Collapse
Affiliation(s)
- Inés Lusche
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Cornelius Dirk
- Oral Technology, Bonn University, Wilhelmsplatz 5, 53111 Bonn, Germany
| | - Matthias Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Jörg Meister
- Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Angarano V, Akkermans S, Smet C, Chieffi A, Van Impe JF. The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Afkhami F, Karimi M, Bahador A, Ahmadi P, Pourhajibagher M, Chiniforush N. Evaluation of antimicrobial photodynamic therapy with toluidine blue against Enterococcus faecalis: Laser vs LED. Photodiagnosis Photodyn Ther 2020; 32:102036. [PMID: 33022420 DOI: 10.1016/j.pdpdt.2020.102036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/27/2022]
Abstract
AIM This study aimed to compare the antibacterial effect of antimicrobial photodynamic therapy (aPDT) by use of light emitting diode (LED) and diode laser light sources with toluidine blue (TBO) photosensitizer on Enterococcus faecalis (E. faecalis) biofilm in root canals of extracted single-canal human teeth. METHODS Eighty-five sound human single-canal teeth were chosen for this study and standardized to have 15 mm of root length. The root canals were prepared with ProTaper rotary files and inoculated and incubated with E. faecalis for one week. Samples were divided into five experimental (n = 15) groups of PDT with TBO/LED, TBO/diode laser, LED, TBO and diode laser and one negative (NaOCl) and one positive (no treatment) control group. Dentin chip samples were collected from inside the canals using size 40 hedstrom file. The number of colony forming units (CFUs) in each group was calculated. RESULTS Irrespective of the light source used for activation of photosensitizer (diode or LED), PDT was significantly more effective than other experimental groups (P < 0.001). No significant difference was noted between aPDT with diode laser or LED (P > 0.05). No significant difference was noted in colony count among other groups (LED, TBO, diode; P > 0.05). CONCLUSION The results showed that aPDT significantly decreased residual bacteria in the canal. Thus, it may be used as an adjunct for root canal disinfection. Both diode and LED are suitable light sources for this purpose and can be used alternatively.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mahsa Karimi
- School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Paniz Ahmadi
- School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Centre, University of Genoa, Genoa, Italy.
| |
Collapse
|
22
|
Galo IDC, Lima BED, Santos TG, Braoios A, Prado RP, Santos WGD. Staphylococcus aureus growth delay after exposure to low fluencies of blue light (470 nm). BRAZ J BIOL 2020; 81:370-376. [PMID: 32490986 DOI: 10.1590/1519-6984.226473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is one of the greatest challenges to treat bacterial infections worldwide, leading to increase in medical expenses, prolonged hospital stay and increased mortality. The use of blue light has been suggested as an innovative alternative to overcome this problem. In this study we analyzed the antibacterial effect of blue light using low emission parameters on Staphylococcus aureus cultures. In vitro bacterial cultures were used in two experimental approaches. The first approach included single or fractionated blue light application provided by LED emitters (470 nm), with the following fluencies: 16.29, 27.16 and 54.32 J/cm2. For the second approach a power LED (470 nm) was used to deliver 54.32 J/cm2 fractionated in 3 applications. Our results demonstrated that bacterial cultures exposed to fractionated blue light radiation exhibited significantly smaller sizes colonies than the control group after 24 h incubation, however the affected bacteria were able to adapt and continue to proliferate after prolonged incubation time. We could conclude that the hypothetical clinical use of low fluencies of blue light as an antibacterial treatment is risky, since its action is not definitive and proves to be ineffective at least for the strain used in this study.
Collapse
Affiliation(s)
- I D C Galo
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - B E De Lima
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - T G Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - A Braoios
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - R P Prado
- Departamento de Medicina, Universidade Federal de Goiás - UFG, Regional Catalão, Campus II, Av. Castelo Branco, s/n, Setor Universitário, CEP 75704-020, Catalão, GO, Brasil
| | - W G Dos Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| |
Collapse
|
23
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
24
|
Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci 2020; 35:1329-1339. [PMID: 31900692 DOI: 10.1007/s10103-019-02928-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023]
Abstract
Anti-fungal blue light (ABL) therapies have been widely studied to treat various microbial infections in the literature. The blue light with wavelengths ranging from 400 to 470 nm has been reported to be effective to inhibit various kinds of bacteria and fungi. The existing studies usually report the viability rates of the pathogens under the irradiation of the blue light with different dosage parameters. However, to the best of our knowledge, there is still no work especially focusing on studying the effect of ABL therapies on treating candida vaginitis, where it is important to study the viability of both the Candida albicans (C. albicans) and the human vaginal epithelial cells. It is the purpose of this work to conduct ABL experiments on both of these two cells, analyze the effects, and determine the best ABL wavelength out of three candidates, i.e., 405-nm, 415-nm, and 450-nm wavelength. The viability rates of the C. albicans and the human vaginal epithelial cells irradiated by the three blue LED light sources were measured, whose irradiance (power density) were all set to 50 mW/cm2. The dynamic viability models of the C. albicans and the epithelial cells were built based on the experimental data. Moreover, in this work, we also built a functional relationship between the viability of these two types of cells, by which we further compared the effects of the blue light irradiation on both the C. albicans and vaginal epithelial cells. The experimental data showed that when an approximately 80% inhibiting rate of the C. albicans was achieved, the survival rates of the epithelial cells were 0.6700, 0.7748, and 0.6027, respectively for the treatment by the 405-nm, 415-nm, and 450-nm wavelength light. On the other hand, by simulating the functional relationship between the viability of the two types of cells, the survival rates of the epithelial cells became 0.5783, 0.6898, and 0.1918 respectively using the 405-nm, 415-nm and 450-nm wavelength light, when the C. albicans was completely inhibited. Therefore, both the experimental data and the model simulation results have demonstrated that the 415-nm light has a more effective anti-fungal result with less damage to the epithelial cells than the 405-nm and 450-nm light.
Collapse
Affiliation(s)
- Tianfeng Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Huancai Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
25
|
Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18:1877-1909. [PMID: 31183484 PMCID: PMC6685747 DOI: 10.1039/c9pp00089e] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.
Collapse
Affiliation(s)
- Hannah Serrage
- College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Keller EX, De Coninck V, Traxer O. Next-Generation Fiberoptic and Digital Ureteroscopes. Urol Clin North Am 2019; 46:147-163. [DOI: 10.1016/j.ucl.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Blue photosensitizers for aPDT eliminate Aggregatibacter actinomycetemcomitans in the absence of light: An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:56-60. [PMID: 30927702 DOI: 10.1016/j.jphotobiol.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The main treatment of periodontal disease is the mechanical removal of supra and subgingival biofilm. Adjuvant therapies as antimicrobial photodynamic therapy (aPDT) may offer improved clinical and microbiological results. The aim of this in vitro study was to evaluate the effect of toluidine and methylene blue dyes, associated with red laser and LED, on elimination of a suspension of Aggregatibacter actinomycetemcomitans (A.a). Experimental groups (n = 29) consisted of positive (broth) and negative (gentamicin) controls, three different dyes concentrations (0.05; 0.1; 10 mg/ml) alone or associated with laser (660 nm) at two power settings (70 and 100 mW) and LED (627 ± 10 nm). Bacterial suspension received all treatments, and after serial dilutions they were cultured for 24 h in petri dishes for colony forming unit counts. Data were analyzed by ANOVA complemented by Tukey's test (p < 0.05). The results showed that both dyes, at a concentration of 10 mg/ml, alone or associated with laser and LED, caused 100% of death similar to the negative control (p > 0.05). It can be concluded that blue dyes for aPDT, at high concentration (10 mg/ml), are capable of eliminating A.a without adjuvant use of light sources.
Collapse
|
28
|
Oh PS, Jeong HJ. Therapeutic application of light emitting diode: Photo-oncomic approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:1-7. [DOI: 10.1016/j.jphotobiol.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023]
|
29
|
Uchinuma S, Shimada Y, Matin K, Hosaka K, Yoshiyama M, Sumi Y, Tagami J. Effects of UVB and UVC irradiation on cariogenic bacteria in vitro. Lasers Med Sci 2018; 34:981-989. [DOI: 10.1007/s10103-018-2685-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
|
30
|
Jeong SY, Velmurugan P, Lim JM, Oh BT, Jeong DY. Photobiological (LED light)-mediated fermentation of blueberry (Vaccinium corymbosum L.) fruit with probiotic bacteria to yield bioactive compounds. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 2018; 94:445-458. [DOI: 10.1111/php.12883] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rachael M. Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Tracy A. White
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - John E. Coia
- Department of Clinical Microbiology; Glasgow Royal Infirmary; Glasgow UK
| | - John G. Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Scott J. MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
- Department of Biomedical Engineering; University of Strathclyde; Glasgow UK
| |
Collapse
|
32
|
In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. Eur J Clin Microbiol Infect Dis 2018; 37:1125-1135. [PMID: 29569046 DOI: 10.1007/s10096-018-3227-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
With financial considerations impeding research and development of new antibiotics, drug repurposing (finding new indications for old drugs) emerges as a feasible alternative. Statins are extensively prescribed around the world to lower cholesterol, but they also possess inherent antimicrobial properties. This study identifies statins with the greatest potential to be repurposed as topical antibiotics and postulates a mechanism of action for statins' antibacterial activity. Using broth microdilution, the direct antibacterial effects of all seven parent statins currently registered for human use and three selected statin metabolites were tested against bacterial skin pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens. Simvastatin and pitavastatin lactone exerted the greatest antibacterial effects (minimum inhibitory concentrations of 64 and 128 μg/mL, respectively) against S. aureus. None of the statins tested were effective against E. coli, P. aeruginosa, or S. marcescens, but simvastatin hydroxy acid acid might be active against S. aureus, E. coli, and S. marcescens at drug concentrations > 256 μg/mL. It was found that S. aureus may exhibit a paradoxical growth effect when exposed to simvastatin; thus, treatment failure at high drug concentrations is theoretically probable. Through structure-activity relationship analysis, we postulate that statins' antibacterial action may involve disrupting the teichoic acid structures or decreasing the number of alanine residues present on Gram-positive bacterial cell surfaces, which could reduce biofilm formation, diminish bacterial adhesion to environmental surfaces, or impede S. aureus cell division.
Collapse
|
33
|
Moslemi N, Rouzmeh N, Shakerinia F, Bahador A, Soleimanzadeh Azar P, Kharazifard MJ, Paknejad M, Fekrazad R. Photodynamic Inactivation of Porphyromonas gingivalis utilizing Radachlorin and Toluidine Blue O as Photosensitizers: An In Vitro Study. J Lasers Med Sci 2018; 9:107-112. [PMID: 30026895 DOI: 10.15171/jlms.2018.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction:Porphyromonas gingivalis is one of the major pathogens in the development and progression of periodontal disease. Antimicrobial photodynamic therapy (aPDT) is a new approach which is sorted in non-invasive phototherapy for bacterial elimination. This in vitro study was conducted to compare photodynamic inactivation using Radachlorin and Toluidine blue O (TBO) as photosensitizers on P. gingivalis. Methods: Bacterial suspensions (200 µL) of P. gingivalis were exposed to either TBO with concentration of 0.1 mg/mL associated with portable light-emitting diode (LED) device (peak wavelength: 630 nm, output intensity: 2.000 mW/cm2, tip diameter: 6.2 mm) or 0.1% Radachlorin® and laser irradiation (InGaAlP, Peak wavelength: 662±0.1% nm, output power: 2.5 W, energy density: 6 J/cm2, fiber diameter: 2 mm). Those in control groups were subjected to laser irradiation or LED alone, Radachlorin® or TBO alone, and one group received neither photosensitizer nor light irradiation. Then counting of colony forming units (CFU) was performed to determine the bactericidal effects in each subgroup. Results: LED-based aPDT reduced the colony count of P. gingivalis more than that of TBO (P<0.001) or LED group (P=0.957). Also, laser-based aPDT had a great reduction in colony count of P. gingivalis in comparison with Radachlorin® (P<0.001) or laser irradiation alone (P=0.28). In addition, the colony count reduction of laser-based aPDT was significantly more than LED-based aPDT (P<0.05). Conclusion: Considering the results of this study, the viability of P. gingivalis was more affected by the combination of laser and Radachlorin® 0.1% in comparison with LED and TBO 0.1.
Collapse
Affiliation(s)
- Neda Moslemi
- Laser Research Center of Dentistry, Dental Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Rouzmeh
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Bahador
- Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Javad Kharazifard
- Dental Research Center, Dental Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Paknejad
- Dental Research Center, Dental Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontics, Dental Faculty, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Gwynne PJ, Gallagher MP. Light as a Broad-Spectrum Antimicrobial. Front Microbiol 2018; 9:119. [PMID: 29456527 PMCID: PMC5801316 DOI: 10.3389/fmicb.2018.00119] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistance is a significant and growing concern. To continue to treat even simple infections, there is a pressing need for new alternative and complementary approaches to antimicrobial therapy. One possible addition to the current range of treatments is the use of narrow-wavelength light as an antimicrobial, which has been shown to eliminate a range of common pathogens. Much progress has already been made with blue light but the potential of other regions of the electromagnetic spectrum is largely unexplored. In order that the approach can be fully and most effectively realized, further research is also required into the effects of energy dose, the harmful and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting microbial toxicity. These and other topics are discussed within this perspective.
Collapse
Affiliation(s)
- Peter J Gwynne
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
35
|
Yoshimoto T, Morine Y, Takasu C, Feng R, Ikemoto T, Yoshikawa K, Iwahashi S, Saito Y, Kashihara H, Akutagawa M, Emoto T, Kinouchi Y, Shimada M. Blue light-emitting diodes induce autophagy in colon cancer cells by Opsin 3. Ann Gastroenterol Surg 2018; 2:154-161. [PMID: 29863164 PMCID: PMC5881358 DOI: 10.1002/ags3.12055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Light emitting-diodes (LED) have various effects on living organisms and recent studies have shown the efficacy of visible light irradiation from LED for anticancer therapies. However, the mechanism of LED's effects on cancer cells remains unclear. The aim of the present study was to investigate the effects of LED on colon cancer cell lines and the role of photoreceptor Opsin 3 (Opn3) on LED irradiation in vitro. Methods Human colon cancer cells (HT-29 or HCT-116) were seeded onto laboratory dishes and irradiated with 465-nm LED at 30 mW/cm2 for 30 minutes. Cell Counting Kit-8 was used to measure cell viability, and apoptosis and caspase 3/8 expression were evaluated by AnnexinV/PI and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Autophagy and expression of LC-3 and beclin-1 were also evaluated by autophagy assays, RT-PCR and Western blotting. We further tested Opn3 knockdown by Opn3 siRNA and the Gi/o G-protein inhibitor NF023 in these assays. Results Viability of HT-29 and HCT-116 cells was lower in 465-nm LED-irradiated cultures than in control cultures. LC-3 and beclin-1 expressions were significantly higher in LED-irradiated cultures, and autophagosomes were detected in irradiated cells. The reductive effect of cancer cell viability following blue LED irradiation was reversed by Opn3 knockdown or NF023 treatment. Furthermore, increased LC-3 and beclin-1 expression that resulted from blue LED irradiation was suppressed by Opn3 knockdown or NF023 treatment. Conclusion Blue LED irradiation suppressed the growth of colon cancer cells and Opn3 may play an important role as a photoreceptor.
Collapse
Affiliation(s)
- Toshiaki Yoshimoto
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Yuji Morine
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Chie Takasu
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Rui Feng
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Tetsuya Ikemoto
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Kozo Yoshikawa
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Syuichi Iwahashi
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Yu Saito
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Hideya Kashihara
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| | - Masatake Akutagawa
- Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Takahiro Emoto
- Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Yosuke Kinouchi
- Center of Research Administration & Collaboration Tokushima University Tokushima Japan
| | - Mitsuo Shimada
- Department of Surgery Tokushima University Graduate School Tokushima Japan
| |
Collapse
|
36
|
Gharaie S, Vaas LAI, Rosberg AK, Windstam ST, Karlsson ME, Bergstrand KJ, Khalil S, Wohanka W, Alsanius BW. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09. PLoS One 2017; 12:e0189862. [PMID: 29267321 PMCID: PMC5739431 DOI: 10.1371/journal.pone.0189862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350–990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5–09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5–09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.
Collapse
Affiliation(s)
- Samareh Gharaie
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | | | - Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sofia T. Windstam
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- State University of New York, Department of Biological Sciences, Oswego, New York, United States of America
| | - Maria E. Karlsson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sammar Khalil
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Walter Wohanka
- Geisenheim University, Department of Phytomedicine, Geisenheim, Germany
| | - Beatrix W. Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- * E-mail:
| |
Collapse
|
37
|
Teerakapong A, Damrongrungruang T, Sattayut S, Morales NP, Tantananugool S. Efficacy of erythrosine and cyanidin-3-glucoside mediated photodynamic therapy on Porphyromonas gingivalis biofilms using green light laser. Photodiagnosis Photodyn Ther 2017; 20:154-158. [DOI: 10.1016/j.pdpdt.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 09/02/2017] [Indexed: 11/15/2022]
|
38
|
Yang Y, Zong Y, Sun Q, Jia Y, Zhao R. White light emitting diode suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial cytochrome c oxydase-mediated IGF-1 and TNF-α pathways. Free Radic Biol Med 2017; 113:413-423. [PMID: 29106990 DOI: 10.1016/j.freeradbiomed.2017.10.382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
Light emitting diode (LED) light has been tested to treat traumatic brain injury, neural degenerative diseases and psychiatric disorders. Previous studies indicate that blue LED light affects cell proliferation and apoptosis in photosensitive cells and cancer cells. In this study, we demonstrate that white LED light exposure impaired proliferation and induced apoptosis in HeLa and HT-22 hippocampal neural cells, but not C2C12 cells. Furthermore, the mechanisms underlying the effect of white LED light exposure on HT-22 cells were elucidated. In HeLa and HT-22 cells, white LED light activated mitochondrial cytochrome c oxidase (Cco), in association with enhanced ATP synthase activity and elevated intracellular ATP concentration. Also, reactive oxygen species (ROS) and nitric oxide (NO) production were increased, accompanied by higher calcium concentration and lower mitochondrial membrane potential. HT-22 cells exposed to white LED light for 24h showed reduced viability, with higher apoptotic rate and a cell cycle arrest at G0/G1 phase. Concurrently, the mRNA expression and the concentration of IGF-1 were decreased, while that of TNF-α were increased, in light-exposed cells, which was supported by the luciferase activity of both gene promoters. The down-stream mitogen-activated protein kinase (MAPK), AKT/mTOR pathways were inhibited, in association with an activation of apoptotic caspase 3. N-Acetylcysteine, a ROS scavenger, protected the cells from LED light-induced cellular damage, with rescued cell viability and restored mRNA expression of IGF-1 and TNF-α. Our data demonstrate that white LED light suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial Cco/ROS-mediated IGF-1 and TNF-α pathways.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yibo Zong
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|
39
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Carvalho-Costa TM, Mendes MT, da Silva MV, Rodrigues V, Bruschi Thedei GCM, Oliveira CJF, Thedei G. Light-Emitting Diode at 460 ± 20 nm Increases the Production of IL-12 and IL-6 in Murine Dendritic Cells. Photomed Laser Surg 2017. [DOI: 10.1089/pho.2016.4244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Maria Tays Mendes
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | - Geraldo Thedei
- Laboratory of Molecular Biology, University of Uberaba, Uberaba, Brazil
| |
Collapse
|
41
|
Fila G, Kawiak A, Grinholc MS. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors. Virulence 2017; 8:938-958. [PMID: 27763824 PMCID: PMC5626244 DOI: 10.1080/21505594.2016.1250995] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.
Collapse
Affiliation(s)
- Grzegorz Fila
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Kawiak
- Division of Plant Protection and Biotechnology, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Laboratory of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Stanislaw Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
42
|
Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem 2017; 9:1557-1574. [PMID: 28792235 DOI: 10.4155/fmc-2017-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Resistances to antibiotics employed for treatment of infectious diseases have increased to alarming numbers making it more and more difficult to treat diseases caused by microorganisms resistant to common antibiotics. Consequently, novel methods for successful inactivation of pathogens are required. In this instance, one alternative could be application of light for treatment of topical infections. Antimicrobial properties of UV light are well documented, but due to its DNA-damaging properties use for medical purposes is limited. In contrast, irradiation with visible light may be more promising. METHODS Literature was systematically screened for research concerning inactivation of main oral bacterial species by means of visible light. RESULTS Inactivation of bacterial species, especially pigmented ones, in planktonic state showed promising results. There is a lack of research examining the situation when organized as biofilms. CONCLUSION More research concerning situation in a biofilm state is required.
Collapse
|
43
|
Takada A, Matsushita K, Horioka S, Furuichi Y, Sumi Y. Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health 2017; 17:96. [PMID: 28587675 PMCID: PMC5461700 DOI: 10.1186/s12903-017-0382-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 05/23/2017] [Indexed: 02/08/2023] Open
Abstract
Background Ultraviolet (UV) light is used for phototherapy in dermatology, and UVB light (around 310 nm) is effective for treatment of psoriasis and atopic dermatitis. In addition, it is known that UVC light (around 265 nm) has a bactericidal effect, but little is known about the bactericidal effect of UVB light. In this study, we examined the bactericidal effects of UVB-light emitting diode (LED) irradiation on oral bacteria to explore the possibility of using a 310 nm UVB-LED irradiation device for treatment of oral infectious diseases. Methods We prepared a UVB (310 nm) LED device for intraoral use to examine bactericidal effects on Streptococcus mutans, Streptococcus sauguinis, Porphyromonas gingivalis, and Fusobacterium nucleatum and also to examine the cytotoxicity to a human oral epithelial cell line (Ca9–22). We also examined the production of nitric oxide and hydrogen peroxide from Ca9–22 cells after irradiation with UVB-LED light. Results Irradiation with the 310 nm UVB-LED at 105 mJ/cm2 showed 30–50% bactericidal activity to oral bacteria, though 17.1 mJ/cm2 irradiation with the 265 nm UVC-LED completely killed the bacteria. Ca9–22 cells were strongly injured by irradiation with the 265 nm UVC-LED but were not harmed by irradiation with the 310 nm UVB-LED. Nitric oxide and hydrogen peroxide were produced by Ca9–22 cells with irradiation using the 310 nm UVB-LED. P. gingivalis was killed by applying small amounts of those reactive oxygen species (ROS) in culture, but other bacteria showed low sensitivity to the ROS. Conclusions Narrowband UVB-LED irradiation exhibited a weak bactericidal effect on oral bacteria but showed low toxicity to gingival epithelial cells. Its irradiation also induces the production of ROS from oral epithelial cells and may enhance bactericidal activity to specific periodontopathic bacteria. It may be useful as a new adjunctive therapy for periodontitis. Electronic supplementary material The online version of this article (doi:10.1186/s12903-017-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayuko Takada
- Division of Periodontology and Endodontology Department of Oral Rehabilitation, School of Health Sciences University of Hokkaido, Tobestu, Hokkaido, Japan.,Department of Oral Disease Research, National Center of Geriatrics and Gerontology, Obu, 747-8511, Aichi, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center of Geriatrics and Gerontology, Obu, 747-8511, Aichi, Japan.
| | | | - Yasushi Furuichi
- Division of Periodontology and Endodontology Department of Oral Rehabilitation, School of Health Sciences University of Hokkaido, Tobestu, Hokkaido, Japan
| | - Yasunori Sumi
- Department of Center for Development of Advanced Medicine for Dental Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
44
|
Oh PS, Kim HS, Kim EM, Hwang H, Ryu HH, Lim S, Sohn MH, Jeong HJ. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. J Cell Physiol 2017; 232:3444-3453. [PMID: 28098340 DOI: 10.1002/jcp.25805] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyun-Soo Kim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Eun-Mi Kim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyosook Hwang
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hyang Hwa Ryu
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - SeokTae Lim
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Myung-Hee Sohn
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hwan-Jeong Jeong
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| |
Collapse
|
45
|
In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:25-29. [DOI: 10.1016/j.jphotobiol.2017.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
|
46
|
Hessling M, Spellerberg B, Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. FEMS Microbiol Lett 2016; 364:fnw270. [PMID: 27915252 DOI: 10.1093/femsle/fnw270] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.
Collapse
Affiliation(s)
- M Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - K Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
47
|
Ricci Donato HA, Pratavieira S, Grecco C, Brugnera-Júnior A, Bagnato VS, Kurachi C. Clinical Comparison of Two Photosensitizers for Oral Cavity Decontamination. Photomed Laser Surg 2016; 35:105-110. [PMID: 27828768 DOI: 10.1089/pho.2016.4114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE In this study, we aim to compare the photodynamic inactivation (PDI) effects of two different photosensitizers (PS), Photogem® and Natural Curcumin, irradiated with light-emitted diodes (LED) at 630 and 450 nm, respectively. BACKGROUND The current antimicrobial mouthwash for oral hygiene has several drawbacks. In this context, PDI is an alternative technique to inactivate pathogenic microbes in mucosa and in periodontal tissue. Furthermore, there are numerous infectious diseases that may affect the oral cavity, motivating the use of PDI in dentistry. METHODS The volunteers (n = 50) were randomize separated into five experimental groups (n = 5) for each PS: water control, PS control, light control, and two PS concentrations (25 and 100 mg/L). Each patient underwent mouthwash solution containing the PS before illumination procedure that was performed with an LED device. For microbial decontamination evaluation, the saliva was collected three times: before (T0), immediately after (T1), and 24 h after the illumination procedure (T2). After that, the difference between the colony forming units (CFU) for each volunteer was compared. RESULTS The results show that regardless of PS and treatment applied, there was microbial reduction immediately after PDI, however, after 24 h only Natural Curcumin still presents a reduction. For Photogem after 24 h, the microorganism returns to the original CFU. CONCLUSIONS Immediately after PDI, both PS have the same efficiency, nevertheless the Natural Curcumin still has an efficacy after 24 h and also is a more viable photosensitizer. In addition, the results indicate that PDI can be a promised technique used for microbial reducing for the oral cavity.
Collapse
Affiliation(s)
- Hérica Adad Ricci Donato
- 1 School of Dentistry of Araraquara, UNESP-University of Estadual Paulista , Araraquara, Brazil .,2 São Carlos Institute of Physics, University of São Paulo , São Carlos, Brazil
| | | | - Clovis Grecco
- 2 São Carlos Institute of Physics, University of São Paulo , São Carlos, Brazil
| | - Aldo Brugnera-Júnior
- 3 Biomedical Engineer Research Center, CEB, Camilo Castelo Branco University , São Jose dos Campos, Brazil
| | | | - Cristina Kurachi
- 2 São Carlos Institute of Physics, University of São Paulo , São Carlos, Brazil
| |
Collapse
|
48
|
The Comparison of the Efficacy of Blue Light-Emitting Diode Light and 980-nm Low-Level Laser Light on Bone Regeneration. J Craniofac Surg 2016; 27:2185-2189. [DOI: 10.1097/scs.0000000000003068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Srimagal A, Ramesh T, Sahu JK. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Damestani Y, De Howitt N, Halaney DL, Garay JE, Aguilar G. Evaluation of laser bacterial anti-fouling of transparent nanocrystalline yttria-stabilized-zirconia cranial implant. Lasers Surg Med 2016; 48:782-789. [PMID: 27389389 DOI: 10.1002/lsm.22558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. STUDY DESIGN/MATERIALS AND METHODS A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. RESULTS Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. CONCLUSIONS Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasaman Damestani
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521
| | - Natalie De Howitt
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521
| | - David L Halaney
- Department of Mechanical Engineering, University of California - Riverside, Riverside, California, 92521
| | - Javier E Garay
- Department of Mechanical and Aerospace Engineering, University of California - San Diego, La Jolla, California, 92093
| | - Guillermo Aguilar
- Department of Bioengineering, University of California - Riverside, Riverside, California, 92521. .,Department of Mechanical Engineering, University of California - Riverside, Riverside, California, 92521.
| |
Collapse
|