1
|
Chen X, Zhang H, Zhou X, Wang Y, Shi W. Autotaxin promotes the degradation of the mucus layer by inhibiting autophagy in mouse colitis. Mol Immunol 2023; 160:44-54. [PMID: 37356325 DOI: 10.1016/j.molimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Autotaxin (ATX or ENPP2) is an autocrine enzyme associated with the metabolism of various phospholipids. ATX has recently been identified as a regulatory factor in immune-related and inflammation-associated diseases, such as inflammatory bowel disease, but the exact mechanism is unclear. Here, we treated mice with recombinant ATX protein or an ATX inhibitor to investigate the effect of ATX on colitis in mice and the underlying mechanism. In a mouse model of colitis, ATX expression was increased, autophagy was impaired, and the mucus barrier was disrupted. Recombinant ATX protein promoted intestinal inflammation, inhibited autophagy, and disrupted the mucus barrier, while an ATX inhibitor had the opposite effect. Next, we treated mice that received ATX with an autophagy activator and an adenosine 5'-monophosphate-activated protein kinase (AMPK) agonist. We observed that autophagy activator and AMPK agonist could repair the mucus barrier and alleviate intestinal inflammation in ATX-treated mice. In vitro, we obtained consistent results. Thus, we concluded that ATX could inhibit autophagy through the AMPK pathway, which consequently disordered the mucus barrier and aggravated intestinal inflammation.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China; The State Key Laboratory of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Sohn JY, Kwak HJ, Rhim JH, Yeo EJ. AMP-activated protein kinase-dependent nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in senescent human diploid fibroblasts. Aging (Albany NY) 2022; 14:4-27. [PMID: 35020602 PMCID: PMC8791203 DOI: 10.18632/aging.203825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that participates in various cellular events, such as DNA repair and apoptosis. The functional diversity of GAPDH depends on its intracellular localization. Because AMP-activated protein kinase (AMPK) regulates the nuclear translocation of GAPDH in young cells and AMPK activity significantly increases during aging, we investigated whether altered AMPK activity is involved in the nuclear localization of GAPDH in senescent cells. Age-dependent nuclear translocation of GAPDH was confirmed by confocal laser scanning microscopy in human diploid fibroblasts (HDFs) and by immunohistochemical analysis in aged rat skin cells. Senescence-induced nuclear localization was reversed by lysophosphatidic acid but not by platelet-derived growth factor. The extracellular matrix from young cells also induced the nuclear export of GAPDH in senescent HDFs. An activator of AMPK, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), increased the level of nuclear GAPDH, whereas an inhibitor of AMPK, Compound C, decreased the level of nuclear GAPDH in senescent HDFs. Transfection with AMPKα siRNA prevented nuclear translocation of GAPDH in senescent HDFs. The stimulatory effect of AICAR and serum depletion on GAPDH nuclear translocation was reduced in AMPKα1/α2-knockout mouse embryonic fibroblasts. Overall, increased AMPK activity may play a role in the senescence-associated nuclear translocation of GAPDH.
Collapse
Affiliation(s)
- Jee Young Sohn
- Department of Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeok-Jin Kwak
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Heon Rhim
- Bio-New Material Development, NineBioPharm Co., Ltd., Cheongju 28161, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
4
|
Li W, Wu M, Zhang Y, Wei X, Zang J, Liu Y, Wang Y, Gong CX, Wei W. Intermittent fasting promotes adult hippocampal neuronal differentiation by activating GSK-3β in 3xTg-AD mice. J Neurochem 2020; 155:697-713. [PMID: 32578216 DOI: 10.1111/jnc.15105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022]
Abstract
Moderate dietary restriction can ameliorate age-related chronic diseases such as Alzheimer's disease (AD) by increasing the expression of neurotrophic factors and promoting neurogenesis in the brain. Glycogen synthase kinase-3β (GSK-3β) signaling is essential for the coordination of progenitor cell proliferation and differentiation during brain development. The mechanisms by which GSK-3β is involved in dietary restriction-induced neurogenesis and cognitive improvement remain unclear. Six-month-old male 3xTg-AD and wild-type mice were fed on alternate days (intermittent fasting, IF) or ad libitum (AL) for 3 months. GSK-3β activity was regulated by bilaterally infusing lentiviral vectors carrying siRNA targeting GSK-3β into the dentate gyrus region of the hippocampus. Intermittent fasting promoted neuronal differentiation and maturation in the dentate gyrus and ameliorated recognized dysfunction in 3xTg-AD mice. These effects were reversed by siRNA targeting GSK-3β. After intermittent fasting, the insulin and protein kinase A signaling pathways were inhibited, while the adenosine monophosphate-activated protein kinase and brain-derived neurotrophic factor pathways were activated. These findings suggest that intermittent fasting can promote neuronal differentiation and maturation in the hippocampus by activating GSK-3β, thus improving learning and memory.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China.,Department of Pathology, The first people's hospital of foshan, Foshan, Guangdong, P. R. China
| | - Meijian Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yilin Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Xuemin Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yanping Wang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Jang HJ, Yang KE, Oh WK, Lee SI, Hwang IH, Ban KT, Yoo HS, Choi JS, Yeo EJ, Jang IS. Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels. Aging (Albany NY) 2020; 11:3731-3749. [PMID: 31199782 PMCID: PMC6594796 DOI: 10.18632/aging.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Nectandrin B (NecB) is a bioactive lignan compound isolated from Myristica fragrans (nutmeg), which functions as an activator of AMP-activated protein kinase (AMPK). Because we recently found that treatment with NecB increased the cell viability of old human diploid fibroblasts (HDFs), the underlying molecular mechanism was investigated. NecB treatment in old HDFs reduced the activity staining of senescence-associated β-galactosidase and the levels of senescence markers, such as the Ser15 phosphorylated p53, caveolin-1, p21waf1, p16ink4a, p27kip1, and cyclin D1. NecB treatment increased that in S phase, indicating a enhancement of cell cycle entry. Interestingly, NecB treatment ameliorated age-dependent activation of AMPK in old HDFs. Moreover, NecB reversed the age-dependent expression and/or activity changes of certain sirtuins (SIRT1-5), and cell survival/death-related proteins. The transcriptional activity of Yin-Yang 1 and the expression of downstream proteins were elevated in NecB-treated old HDFs. In addition, NecB treatment exerted a radical scavenging effect in vitro, reduced cellular ROS levels, and increased antioxidant enzymes in old HDFs. Moreover, NecB-mediated activation of the AMPK pathway reduced intracellular ROS levels. These results suggest that NecB-induced protection against cellular senescence is mediated by ROS-scavenging through activation of AMPK. NecB might be useful in ameliorating age-related diseases and extending human lifespan.
Collapse
Affiliation(s)
- Hyun-Jin Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeong Eun Yang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Song-I Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - In-Hu Hwang
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Kyung-Tae Ban
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Jong-Soon Choi
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ik-Soon Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Division of Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 2016; 28:15-26. [PMID: 27060201 DOI: 10.1016/j.arr.2016.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AMP-activated protein kinase (AMPK) is a fundamental regulator of energy metabolism, stress resistance, and cellular proteostasis. AMPK signaling controls an integrated signaling network which is involved in the regulation of healthspan and lifespan e.g. via FoxO, mTOR/ULK1, CRCT-1/CREB, and SIRT1 signaling pathways. Several studies have demonstrated that the activation capacity of AMPK signaling declines with aging, which impairs the maintenance of efficient cellular homeostasis and enhances the aging process. However, it seems that the aging process affects AMPK activation in a context-dependent manner since occasionally, it can also augment AMPK activation, possibly attributable to the type of insult and tissue homeostasis. Three protein phosphatases, PP1, PP2A, and PP2C, inhibit AMPK activation by dephosphorylating the Thr172 residue of AMPKα, required for AMPK activation. In addition, several upstream signaling pathways can phosphorylate Ser/Thr residues in the β/γ interaction domain of the AMPKα subunit that subsequently blocks the activation of AMPK. These inhibitory pathways include the insulin/AKT, cyclic AMP/PKA, and RAS/MEK/ERK pathways. We will examine the evidence whether the efficiency of AMPK responsiveness declines during the aging process. Next, we will review the mechanisms involved in curtailing the activation of AMPK. Finally, we will elucidate the potential age-related changes in the inhibitory regulation of AMPK signaling that might be a part of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
7
|
Coughlan KA, Valentine RJ, Sudit BS, Allen K, Dagon Y, Kahn BB, Ruderman NB, Saha AK. PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells. J Biol Chem 2016; 291:5664-5675. [PMID: 26797128 DOI: 10.1074/jbc.m115.696849] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 01/27/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme whose activity is inhibited in settings of insulin resistance. Exposure to a high glucose concentration has recently been shown to increase phosphorylation of AMPK at Ser(485/491) of its α1/α2 subunit; however, the mechanism by which it does so is not known. Diacylglycerol (DAG), which is also increased in muscle exposed to high glucose, activates a number of signaling molecules including protein kinase (PK)C and PKD1. We sought to determine whether PKC or PKD1 is involved in inhibition of AMPK by causing Ser(485/491) phosphorylation in skeletal muscle cells. C2C12 myotubes were treated with the PKC/D1 activator phorbol 12-myristate 13-acetate (PMA), which acts as a DAG mimetic. This caused dose- and time-dependent increases in AMPK Ser(485/491) phosphorylation, which was associated with a ∼60% decrease in AMPKα2 activity. Expression of a phosphodefective AMPKα2 mutant (S491A) prevented the PMA-induced reduction in AMPK activity. Serine phosphorylation and inhibition of AMPK activity were partially prevented by the broad PKC inhibitor Gö6983 and fully prevented by the specific PKD1 inhibitor CRT0066101. Genetic knockdown of PKD1 also prevented Ser(485/491) phosphorylation of AMPK. Inhibition of previously identified kinases that phosphorylate AMPK at this site (Akt, S6K, and ERK) did not prevent these events. PMA treatment also caused impairments in insulin-signaling through Akt, which were prevented by PKD1 inhibition. Finally, recombinant PKD1 phosphorylated AMPKα2 at Ser(491) in cell-free conditions. These results identify PKD1 as a novel upstream kinase of AMPKα2 Ser(491) that plays a negative role in insulin signaling in muscle cells.
Collapse
Affiliation(s)
- Kimberly A Coughlan
- From the Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa 50011, and
| | - Bella S Sudit
- From the Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Katherine Allen
- From the Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Neil B Ruderman
- From the Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Asish K Saha
- From the Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118,.
| |
Collapse
|
8
|
Jung DW, Kim WH, Williams DR. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol 2014; 9:80-95. [PMID: 24245936 DOI: 10.1021/cb400754f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell transplantation is a potential therapy for regenerative medicine, which aims to restore tissues damaged by trauma, aging, and diseases. Since its conception in the late 1990s, chemical biology has provided powerful and diverse small molecule tools for modulating stem cell function. Embryonic stem cells could be an ideal source for transplantation, but ethical concerns restrict their development for cell therapy. The seminal advance of induced pluripotent stem cell (iPSC) technology provided an attractive alternative to human embryonic stem cells. However, iPSCs are not yet considered an ideal stem cell source, due to limitations associated with the reprogramming process and their potential tumorigenic behavior. This is an area of research where chemical biology has made a significant contribution to facilitate the efficient production of high quality iPSCs and elucidate the biological mechanisms governing their phenotype. In this review, we summarize these advances and discuss the latest progress in developing small molecule modulators. Moreover, we also review a new trend in stem cell research, which is the direct reprogramming of readily accessible cell types into clinically useful cells, such as neurons and cardiac cells. This is a research area where chemical biology is making a pivotal contribution and illustrates the many advantages of using small molecules in stem cell research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
9
|
Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem Biol 2012; 7:732-43. [PMID: 22270490 DOI: 10.1021/cb200532v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Seung Yong Hwang
- Department of Biochemistry, Hanyang University and GenoCheck Co., Ltd., Sa-Dong, Sangrok-Gu, Ansan, Gyeonggi-Do, 426-791,
Republic of Korea
| | | |
Collapse
|
10
|
Involvement of IGF binding protein 5 in prostaglandin E(2)-induced cellular senescence in human fibroblasts. Biogerontology 2010; 12:239-52. [PMID: 21191810 DOI: 10.1007/s10522-010-9318-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 12/25/2022]
Abstract
Inflammation is an underlying basis for the molecular alterations that link aging and age-related pathological processes. In a previous study, we found that secretory phospholipase A(2) (sPLA(2)) induced cellular senescence in human dermal fibroblasts (HDFs). To further investigate the association of inflammation with cellular senescence, the effects of PGE(2) on cellular senescence in HDFs were investigated, since PGE(2) is the most abundant prostanoid. PGE(2) treatment induces cellular senescence, as determined by a decrease in cell proliferation and an increase in senescence-associated β-galactosidase staining. Notably, PGE(2) treatment increased the IGFBP5 protein level. While treatment with PGE(2) antagonists repressed PGE(2)-induced cellular senescence, increasing intracellular cAMP accelerated cellular senescence. Down-regulation of IGFBP5 inhibited PGE(2)-induced cellular senescence. Taken together, these results suggest that PGE(2) may play an important role in controlling cellular senescence of HDFs through the regulation of IGFBP5 and therefore may contribute to inflammatory disorders associated with aging.
Collapse
|
11
|
Rhim JH, Jang IS, Kwon ST, Song KY, Yeo EJ, Park SC. Activation of Wound Healing in Aged Rats by Altering the Cellular Mitogenic Potential. J Gerontol A Biol Sci Med Sci 2010; 65:704-11. [DOI: 10.1093/gerona/glq065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|