1
|
Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface. Sci Rep 2022; 12:10892. [PMID: 35764880 PMCID: PMC9240006 DOI: 10.1038/s41598-022-14516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Placenta plays essential role in successful pregnancy, as the most important organ connecting and interplaying between mother and fetus. However, the cellular characteristics and molecular interaction of cell populations within the fetomaternal interface is still poorly understood. Here, we surveyed the single-cell transcriptomic landscape of human full-term placenta and revealed the heterogeneity of cytotrophoblast cell (CTB) and stromal cell (STR) with the fetal/maternal origin consecutively localized from fetal section (FS), middle section (Mid_S) to maternal section (Mat_S) of maternal–fetal interface. Then, we highlighted a subpopulation of CTB, named trophoblast progenitor-like cells (TPLCs) existed in the full-term placenta and mainly distributed in Mid_S, with high expression of a pool of putative cell surface markers. Further, we revealed the putative key transcription factor PRDM6 that might promote the differentiation of endovascular extravillous trophoblast cells (enEVT) by inhibiting cell proliferation, and down-regulation of PRDM6 might lead to an abnormal enEVT differentiation process in PE. Together, our study offers important resources for better understanding of human placenta and stem cell-based therapy, and provides new insights on the study of tissue heterogeneity, the clinical prevention and control of PE as well as the maternal–fetal interface.
Collapse
|
2
|
Butler T, Goldberg JD, Galvin JE, Maloney T, Ravdin L, Glodzik L, de Leon MJ, Hochman T, Bowen RL, Atwood CS. Rationale, study design and implementation of the LUCINDA Trial: Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's. Contemp Clin Trials 2021; 107:106488. [PMID: 34166841 PMCID: PMC8550816 DOI: 10.1016/j.cct.2021.106488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Judith D Goldberg
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Departments of Neurology and Psychiatry, University of Miami, Miller School of Medicine, Boca Raton, FL 33433, USA
| | - Thomas Maloney
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tsivia Hochman
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, and Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
3
|
Geddes RI, Kapoor A, Hayashi K, Rauh R, Wehber M, Bongers Q, Jansen AD, Anderson IM, Farquhar G, Vadakkadath‐Meethal S, Ziegler TE, Atwood CS. Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism? Endocrinol Diabetes Metab 2021; 4:e00239. [PMID: 34277964 PMCID: PMC8279618 DOI: 10.1002/edm2.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. METHODS Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. RESULTS Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. CONCLUSIONS Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kentaro Hayashi
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Ryan Rauh
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Marlyse Wehber
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Quinn Bongers
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Alex D. Jansen
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Icelle M. Anderson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Gabrielle Farquhar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Sivan Vadakkadath‐Meethal
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig S. Atwood
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
- Geriatric Research, Education and Clinical CenterVeterans Administration HospitalMadisonWIUSA
- School of Exercise, Biomedical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| |
Collapse
|
4
|
Cho MH, Kim SH, Lee DK, Lee M, Lee CK. Progesterone receptor membrane component 1 (PGRMC1)-mediated progesterone effect on preimplantation development of in vitro produced porcine embryos. Theriogenology 2020; 147:39-49. [PMID: 32086050 DOI: 10.1016/j.theriogenology.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 01/10/2023]
Abstract
Progesterone is a steroid hormone well known for its significant role in the reproduction process of mammals. Numerous studies have reported on the regulation of progesterone during implantation, pregnancy and parturition, but there are fewer studies on progesterone in relation to the early stages of embryo development. In the present study, we investigated the effects of progesterone during the development of in vitro produced porcine embryos. First, gene expression of various progesterone receptors in the in vitro produced porcine embryos were analyzed. PGRMC1 and PGRMC2 (progesterone receptor membrane component 1 and 2) showed distinct expression. Next, the embryos were treated with two concentrations of progesterone (10 nM and 100 nM) for two different durations (from day 0 and from day 4) to compare the developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts. The experimental groups in both durations showed similarly increased blastocyst cell numbers and decreased apoptosis rates when treated with 100 nM progesterone. Furthermore, the expression levels of PGRMC1, PGRMC2, PAIRBP1 (plasminogen activator inhibitor RNA-binding protein 1), and apoptosis-related genes were examined in blastocysts and showed significant increases in the 100 nM treatment group compared to the control group. Subsequently, the embryos were treated with the PGRMC1 inhibitor, AG-205, and developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts were compared. In addition, 100 nM progesterone was treated simultaneously with AG-205 to test if the inhibition effect is relieved by progesterone. Groups treated with 1 μM and 2 μM AG-205 showed decreased cell numbers and increased apoptosis rates in day 7 blastocysts compared to the control group. We also confirmed the recovery of inhibition by 100 nM progesterone. In conclusion, the present study indicated that progesterone positively affects the development of in vitro produced preimplantation porcine embryos by increasing cell proliferation and decreasing apoptosis via PGRMC1-involved actions. However, the detailed mechanisms of PGRMC1 need further elucidation.
Collapse
Affiliation(s)
- Man Ho Cho
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
5
|
Kim YY, Kim H, Suh CS, Liu HC, Rosenwaks Z, Ku SY. Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model. Int J Mol Sci 2020; 21:769. [PMID: 31991577 PMCID: PMC7036864 DOI: 10.3390/ijms21030769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
Natural progesterone and synthetic progestin are widely used for the treatment of threatened abortion or in in vitro fertilization (IVF) cycles. This in vitro study aimed to assess whether the treatment with natural progesterone or synthetic progestin influences the germ layer gene expression on the early human embryonic development using human embryonic stem cells (hESCs)-derived embryoid bodies (hEBs) as a surrogate of early stage human embryonic development. Human EBs derived from hESCs were cultured for nine days, and were treated with natural progesterone (P4) or synthetic progestin, medroxyprogesterone acetate (MPA) at 10-7 M for five days. To reverse the effects of treatment, mifepristone (RU486) as progesterone antagonist was added to the hEBs for four days starting one day after the initiation of treatment. Mouse blastocysts (mBLs) were cultured in vitro for 24 h, and P4 or MPA at 10-7 M was treated for an additional 24 h. The treated embryos were further transferred onto in vitro cultured endometrial cells to evaluate chorionic gonadotropin (CG) expression. To analyze the effects of P4 or MPA, the expression of differentiation genes representing the three germ layers was investigated, GATA-binding factor 4 (GATA4), α-fetoprotein (AFP), hepatocyte nuclear factor (HNF)-3β, hepatocyte nuclear factor (HNF)-4α (endoderm), Brachyury, cardiac actin (cACT) (mesoderm), and Nestin (ectoderm), using quantitative reverse transcription PCR (qRT-PCR) and immunostaining. Significantly lower expressions of HNF-3β, HNF-4α, Brachyury, and Nestin were observed in MPA-treated hEBs (all p < 0.05), which was negated by RU486 treatment. This inhibitory effect of MPA was also observed in mouse embryos. Conclusively, the effects of natural progesterone and synthetic progestin may differ in the germ layer gene expression in the hEB model, which suggests that caution is necessary in the use of progestogen.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.K.); (H.K.); (C.S.S.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.K.); (H.K.); (C.S.S.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.K.); (H.K.); (C.S.S.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hung-Ching Liu
- Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, NY 10065, USA; (H.-C.L.); (Z.R.)
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, NY 10065, USA; (H.-C.L.); (Z.R.)
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.K.); (H.K.); (C.S.S.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
7
|
Atwood CS, Ekstein SF. Human versus non-human sex steroid use in hormone replacement therapies part 1: Preclinical data. Mol Cell Endocrinol 2019; 480:12-35. [PMID: 30308266 DOI: 10.1016/j.mce.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/12/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Prior to 2002, hormone replacement therapy (HRT) was considered to be an important component of postmenopausal healthcare. This was based on a plethora of basic, epidemiological and clinical studies demonstrating the health benefits of supplementation with human sex steroids. However, adverse findings from the Women's Health Initiative (WHI) studies that examined the 2 major forms of HRT in use in the US at that time - Premarin (conjugated equine estrogens; CEE) and Prempro (CEE + medroxyprogesterone acetate; MPA), cast a shadow over the use of any form of HRT. Here we review the biochemical and physiological differences between the non-human WHI study hormones - CEE and MPA, and their respective human counterparts 17β-estradiol (E2) and progesterone (P4). Preclinical data from the last 30 years demonstrate clear differences between human and non-human sex steroids on numerous molecular, physiological and functional parameters in brain, heart and reproductive tissue. In contrast to CEE supplementation, which is not always detrimental although certainly not as optimal as E2 supplementation, MPA is clearly not equivalent to P4, having detrimental effects on cognitive, cardiac and reproductive function. Moreover, unlike P4, MPA is clearly antagonistic of the positive effects of E2 and CEE on tissue function. These data indicate that minor chemical changes to human sex steroids result in physiologically distinct actions that are not optimal for tissue health and functioning.
Collapse
Affiliation(s)
- Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027, WA, Australia.
| | - Samuel F Ekstein
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA
| |
Collapse
|
8
|
Abstract
Oestrogen–progesterone signalling is highly versatile and critical for the maintenance of healthy endometrium in humans. The genomic and nongenomic signalling cascades initiated by these hormones in differentiated cells of endometrium have been the primary focus of research since 1920s. However, last decade of research has shown a significant role of stem cells in the maintenance of a healthy endometrium and the modulatory effects of hormones on these cells. Endometriosis, the growth of endometrium outside the uterus, is very common in infertile patients and the elusiveness in understanding of disease pathology causes hindrance in selection of treatment approaches to enhance fertility. In endometriosis, the stem cells are dysfunctional as it can confer progesterone resistance to their progenies resulting in disharmony of hormonal orchestration of endometrial homeostasis. The bidirectional communication between stem cell signalling pathways and oestrogen–progesterone signalling is found to be disrupted in endometriosis though it is not clear which precedes the other. In this paper, we review the intricate connection between hormones, stem cells and the cross-talks in their signalling cascades in normal endometrium and discuss how this is deregulated in endometriosis. Re-examination of the oestrogen–progesterone dependency of endometrium with a focus on stem cells is imperative to delineate infertility associated with endometriosis and thereby aid in designing better treatment modalities.
Collapse
|
9
|
Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016; 430:33-48. [PMID: 27045358 DOI: 10.1016/j.mce.2016.03.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
The early reproductive events starting with folliculogenesis and ending with blastocyst implantation into the uterine endometrium are regulated by a complex interplay among endocrine, paracrine and autocrine factors. This review examines the spatiotemporal integration of these maternal and embryonic signals that are required for successful reproduction. In coordination with hypothalamic-pituitary-gonadal (HPG) hormones, an intraovarian HPG-like axis regulates folliculogenesis, follicular quiescence, ovulation, follicular atresia, and corpus luteal functions. Upon conception and passage of the zygote through the fallopian tube, the contribution of maternal hormones in the form of paracrine secretions from the endosalpinx to embryonic development declines, with autocrine and paracrine signaling becoming increasingly important as instructional signals for the differentiation of the early zygote/morula into a blastocyst. These maternal and embryonic signals include activin and gonadotropin-releasing hormone 1 (GnRH1) that are crucial for the synthesis and secretion of the 'pregnancy' hormone human chorionic gonadotropin (hCG). hCG in turn signals pre-implantation embryonic cell division and sex steroid production required for stem cell differentiation, and subsequent blastulation, gastrulation, cavitation and blastocyst formation. Upon reaching the uterus, blastocyst hatching occurs under the influence of decreased activin signaling, while the attachment and invasion of the trophoblast into the endometrium appears to be driven by a decrease in activin signaling, and by increased GnRH1 and hCG signaling that allows for tissue remodeling and the controlled invasion of the blastocyst into the uterine endometrium. This review demonstrates the importance of integrative endocrine, paracrine, and autocrine signaling for successful human reproduction.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Sivan Vadakkadath Meethal
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, WI 53792, USA
| |
Collapse
|
10
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
11
|
Santiago FE, Almeida MC, Carrettiero DC. BAG2 Is Repressed by NF-κB Signaling, and Its Overexpression Is Sufficient to Shift Aβ1-42 from Neurotrophic to Neurotoxic in Undifferentiated SH-SY5Y Neuroblastoma. J Mol Neurosci 2015; 57:83-9. [PMID: 25985852 DOI: 10.1007/s12031-015-0579-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
Amyloid-beta (Aβ) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate important cellular responses to stress, including cell cycle arrest and apoptosis. Here, we use SH-SY5Y neuroblastoma cells to characterize BAG2 expression and regulation and investigate the involvement of BAG2 in Aβ1-42-mediated neurotrophism or neurotoxicity in the context of differentiation. We report that BAG2 is upregulated on differentiation of SH-SY5Y cells into neuron-like cells. This increase in BAG2 expression is accompanied by a change in response to treatment with Aβ1-42 from neurotrophic to neurotoxic. Further, overexpression of BAG2 in undifferentiated SH-SY5Y cells was sufficient to induce the change from neurotrophic to neurotoxic response. Of several transcription factors queried, the putative BAG2 promoter had a higher-than-expected occurrence of response elements (RE) for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with JSH-23, a potent inhibitor of NF-κB, caused a marked increase in BAG2 mRNA expression, suggesting that NF-κB is a repressor of BAG2 transcription in undifferentiated SH-SY5Y cells. Together, these data suggest that NF-κB-mediated modulation of BAG2 expression constitutes a "switch" that regulates the shift between the neurotrophic and neurotoxic effects of Aβ1-42.
Collapse
Affiliation(s)
- Fernando E Santiago
- Pós-graduação em Neurociência e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil,
| | | | | |
Collapse
|
12
|
Wang X, Wu H, Xue G, Hou Y. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment. Neural Regen Res 2015; 7:1925-30. [PMID: 25624820 PMCID: PMC4298884 DOI: 10.3969/j.issn.1673-5374.2012.25.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022] Open
Abstract
In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.
Collapse
Affiliation(s)
- Xianying Wang
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Honghai Wu
- Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Gai Xue
- Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
13
|
Albrizio M, Guaricci AC, Milano S, Macrì F, Aiudi G. Mu opioid receptor in spermatozoa, eggs and larvae of gilthead sea bream (Sparus Aurata) and its involvement in stress related to aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:997-1009. [PMID: 24338156 DOI: 10.1007/s10695-013-9900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
In aquaculture, unfavourable conditions experienced during early development may have strong downstream effects on the adult phenotype and fitness. Sensitivity to stress, leading to disease, reduced growth and mortality, is higher in larvae than in adult fish. In this study, conducted on sea bream (Sparus aurata), we evidenced the presence of the mu opioid receptor in gametes and larvae at different developmental stages. Moreover, we evaluated the possibility of reducing the effects of artificially produced stress, altering temperature, salinity and pH, by naloxone (an opioid antagonist) and calcium. Results evidenced that mu opioid receptor is present in larvae and in gametes of both sexes and that, during larval growth, its expression level changes accordingly; furthermore, naloxone/calcium association is efficacious in increasing the survival period of treated larvae compared to controls. We conclude that in sea bream rearing, the use of naloxone/calcium against stress can improve fish farming techniques by reducing larval mortality and consequently increasing productivity.
Collapse
Affiliation(s)
- Maria Albrizio
- Department of Emergencies and Organ Transplantation, Section of Veterinary Clinics and Animal Productions, University of Bari Aldo Moro, Strada Prov. per Casamassima Km3, 70010, Valenzano, BA, Italy,
| | | | | | | | | |
Collapse
|
14
|
Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 2014; 172:403-19. [PMID: 24665909 DOI: 10.1111/bph.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second-messenger signalling cascades to influence diverse cellular functions in neuronal and non-neuronal cell types. These receptors activate well-known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor-interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Louis Gendron
- Département de physiologie et biophysique, Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
15
|
López-Bellido R, Barreto-Valer K, Sánchez-Simón FM, Rodríguez RE. Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS One 2012; 7:e50885. [PMID: 23226419 PMCID: PMC3511421 DOI: 10.1371/journal.pone.0050885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them.In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process.
Collapse
Affiliation(s)
- Roger López-Bellido
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Katherine Barreto-Valer
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Fátima Macho Sánchez-Simón
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Raquel E. Rodríguez
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
16
|
Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, Pesquero JB, Cerqueira DM, Pillat MM, de Souza HDN, Turaça LT, Abreu JG, Ulrich H. Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. J Biol Chem 2012; 287:44046-61. [PMID: 23132855 DOI: 10.1074/jbc.m112.407197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific β3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin-induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less β3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil 05508-000
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33:569-81. [DOI: 10.1016/j.neurobiolaging.2010.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/11/2022]
|
18
|
Haouzi D, Dechaud H, Assou S, Monzo C, de Vos J, Hamamah S. Transcriptome analysis reveals dialogues between human trophectoderm and endometrial cells during the implantation period. Hum Reprod 2011; 26:1440-9. [DOI: 10.1093/humrep/der075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
19
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
20
|
Atwood CS, Bowen RL. The reproductive-cell cycle theory of aging: an update. Exp Gerontol 2010; 46:100-7. [PMID: 20851172 DOI: 10.1016/j.exger.2010.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 12/17/2022]
Abstract
The Reproductive-Cell Cycle Theory posits that the hormones that regulate reproduction act in an antagonistic pleiotrophic manner to control aging via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence. Since reproduction is the most important function of an organism from the perspective of the survival of the species, if reproductive-cell cycle signaling factors determine the rate of growth, determine the rate of development, determine the rate of reproduction, and determine the rate of senescence, then by definition they determine the rate of aging and thus lifespan. The theory is able to explain: 1) the simultaneous regulation of the rate of aging and reproduction as evidenced by the fact that environmental conditions and experimental interventions known to extend longevity are associated with decreased reproductive-cell cycle signaling factors, thereby slowing aging and preserving fertility in a hostile reproductive environment; 2) two phenomena that are closely related to species lifespan-the rate of growth and development and the ultimate size of the animal; 3). the apparent paradox that size is directly proportional to lifespan and inversely proportional to fertility between species but vice versa within a species; 4). how differing rates of reproduction between species is associated with differences in their lifespan; 5). why we develop aging-related diseases; and 6). an evolutionarily credible reason for why and how aging occurs-these hormones act in an antagonistic pleiotrophic manner via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence (dyosis). In essence, the Reproductive-Cell Cycle Theory can explain aging in all sexually reproductive life forms.
Collapse
Affiliation(s)
- Craig S Atwood
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin, Madison, WI 53705, USA.
| | | |
Collapse
|
21
|
Gallego MJ, Porayette P, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes. Stem Cell Res Ther 2010; 1:28. [PMID: 20836886 PMCID: PMC2983441 DOI: 10.1186/scrt28] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/13/2010] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The physiological signals that direct the division and differentiation of the zygote to form a blastocyst, and subsequent embryonic stem cell division and differentiation during early embryogenesis, are unknown. Although a number of growth factors, including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst, it is not known whether these growth factors directly signal human embryonic stem cells (hESCs). METHODS Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB's; akin to blastulation) and neuroectodermal rosettes (akin to neurulation). RESULTS We found that hCG promotes the division of hESCs and their differentiation into EB's and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation, an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A, and treatment of hESC colonies with P4 induces neurulation, as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB's and rosettes. CONCLUSIONS Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.
Collapse
Affiliation(s)
- Miguel J Gallego
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 2500 Highland Avenue, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem 2009; 284:23806-17. [PMID: 19542221 DOI: 10.1074/jbc.m109.026328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-beta (Abeta) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AbetaPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-beta, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AbetaPP cleavage by beta-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AbetaPPalpha, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AbetaPP is normally required for embryonic neurogenesis.
Collapse
Affiliation(s)
- Prashob Porayette
- Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin and Geriatric Research, Education and Clinical Center, Veterans Affairs Hospital, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|