1
|
Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone Regeneration Revolution: Pulsed Electromagnetic Field Modulates Macrophage-Derived Exosomes to Attenuate Osteoclastogenesis. Int J Nanomedicine 2024; 19:8695-8707. [PMID: 39205866 PMCID: PMC11352519 DOI: 10.2147/ijn.s470901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs). Considering these considerations, the purpose of the present work is to demonstrate how the presence of a pulsed electromagnetic field (PEMF) can positively affect communication through EVs. Methods To this aim, macrophages and osteoclasts were treated in vitro with PEMF and analyzed through molecular biology analysis and by electron microscopy. Moreover, EVs produced by macrophages were characterized and used to verify their activity onto osteoclasts. Results The results confirmed that PEMF not only reduces the inflammatory activity of macrophages and the degradative activity of osteoclasts but that the EVS produced by macrophages, obtained from PEMF treatment, positively affect osteoclasts by reducing their activity. Discussion The co-treatment of PEMF with M2 macrophage-derived EVs (M2-EVs) decreased osteoclastogenesis to a greater degree than separate treatments.
Collapse
Affiliation(s)
- Martina Trentini
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Luca Lovatti
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago de Chile, 7500912, Chile
| | | | | | | | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
3
|
Zhang G, Liu X, Liu Y, Zhang S, Yu T, Chai X, He J, Yin D, Zhang C. The effect of magnetic fields on tumor occurrence and progression: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:38-50. [PMID: 37019340 DOI: 10.1016/j.pbiomolbio.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Malignancies are the leading human health threat worldwide. Despite rapidly developing treatments, poor prognosis and outcome are still common. Magnetic fields have shown good anti-tumoral effects both in vitro and in vivo, and represent a potential non-invasive treatment; however, the specific underlying molecular mechanisms remain unclear. We here review recent studies on magnetic fields and their effect on tumors at three different levels: organismal, cellular, and molecular. At the organismal level, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response. At the cellular level, magnetic fields affect tumor cell growth and biological functions by affecting cell morphology, cell membrane structure, cell cycle, and mitochondrial function. At the molecular level, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors. At present, scientific experimental evidence is still lacking; therefore, systematic studies on the biological mechanisms involved are urgently needed for the future application of magnetic fields to tumor treatment.
Collapse
|
4
|
Xiao Y, Shen Q, Li W, Zhang Y, Yin K, Xu Y. 280 mT static magnetic field promotes the growth of postpartum condylar cartilage. Connect Tissue Res 2022; 64:248-261. [PMID: 36469671 DOI: 10.1080/03008207.2022.2148527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences. METHODS Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining. RESULTS Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend. CONCLUSION FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.
Collapse
Affiliation(s)
- Yiwen Xiao
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China.,Department of Stomatology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, China.,Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Qinhao Shen
- Yunnan Key Laboratory of Stomatology, Kunming, China.,Department of the first dental clinic, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Weihao Li
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yibo Zhang
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Kang Yin
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
5
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
6
|
Tamulevicius N, Wadhi T, Oviedo GR, Anand AS, Tien JJ, Houston F, Vlahov E. Effects of Acute Low-Frequency Pulsed Electromagnetic Field Therapy on Aerobic Performance during a Preseason Training Camp: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147691. [PMID: 34300141 PMCID: PMC8307531 DOI: 10.3390/ijerph18147691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Bio-electromagnetic-energy-regulation (BEMER) therapy is a technology using a low-frequency pulsed electromagnetic field (PEMF) in a biorhythmic format. BEMER has been shown to optimize recovery and decrease fatigue by increasing blood flow in microvessels. Our aim was to determine its effects during preseason training in endurance athletes. A total of 14 male cross-country runners (19.07 ± 0.92 y.o.) were placed in either the intervention (PEMF; n = 8) or control (CON; n = 6) group using a covariate-based, constrained randomization. Participants completed six running sessions at altitudes ranging from 881.83 (±135.98 m) to 1027.0 (±223.44 m) above sea level. PEMF group used BEMER therapy before and after each training session, totaling 12 times. There were no significant changes in absolute or relative VO2Peak, ventilation or maximum respiration rate for either the PEMF or CON group (p > 0.05). There was a significant effect of time for absolute and relative ventilatory threshold (VT), and maximum heart rate, heart rate at VT and respiration rate at VT. This study was the first of its kind to study PEMF technology in combination with elevated preseason training. Results indicate some evidence for the use of PEMF therapy during short-term training camps to improve VT.
Collapse
Affiliation(s)
- Nauris Tamulevicius
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; (T.W.); (A.S.A.); (F.H.); (E.V.)
- Correspondence:
| | - Tanuj Wadhi
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; (T.W.); (A.S.A.); (F.H.); (E.V.)
| | - Guillermo R. Oviedo
- Faculty of Psychology Education and Sport Science Blanquerna, University Ramon Llull, 08022 Barcelona, Spain;
| | - Ashmeet S. Anand
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; (T.W.); (A.S.A.); (F.H.); (E.V.)
| | - Jung-Jung Tien
- Department of Internal Medicine, University of Central Florida/HCA GME Consortium, Greater Orlando, FL 32827, USA;
| | - Fraser Houston
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; (T.W.); (A.S.A.); (F.H.); (E.V.)
| | - Eric Vlahov
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; (T.W.); (A.S.A.); (F.H.); (E.V.)
| |
Collapse
|
7
|
Jedrzejczak-Silicka M, Kordas M, Konopacki M, Rakoczy R. Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)-An In Vitro Wound Healing Study. Int J Mol Sci 2021; 22:5785. [PMID: 34071384 PMCID: PMC8199476 DOI: 10.3390/ijms22115785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Since the effect of MFs (magnetic fields) on various biological systems has been studied, different results have been obtained from an insignificant effect of weak MFs on the disruption of the circadian clock system. On the other hand, magnetic fields, electromagnetic fields, or electric fields are used in medicine. The presented study was conducted to determine whether a low-frequency RMF (rotating magnetic field) with different field parameters could evoke the cellular response in vitro and is possible to modulate the cellular response. The cellular metabolic activity, ROS and Ca2+ concentration levels, wound healing assay, and gene expression analyses were conducted to evaluate the effect of RMF. It was shown that different values of magnetic induction (B) and frequency (f) of RMF evoke a different response of cells, e.g., increase in the general metabolic activity may be associated with the increasing of ROS levels. The lower intracellular Ca2+ concentration (for 50 Hz) evoked the inability of cells to wound closure. It can be stated that the subtle balance in the ROS level is crucial in the wound for the effective healing process, and it is possible to modulate the cellular response to the RMF in the context of an in vitro wound healing.
Collapse
Affiliation(s)
- Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Marian Kordas
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Maciej Konopacki
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Rafał Rakoczy
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| |
Collapse
|
8
|
Response of Pluripotent Stem Cells to Environmental Stress and Its Application for Directed Differentiation. BIOLOGY 2021; 10:biology10020084. [PMID: 33498611 PMCID: PMC7912122 DOI: 10.3390/biology10020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Environmental changes in oxygen concentration, temperature, and mechanical stimulation lead to the activation of specific transcriptional factors and induce the expression of each downstream gene. In general, these responses are protective machinery against such environmental stresses, while these transcriptional factors also regulate cell proliferation, differentiation, and organ development in mammals. In the case of pluripotent stem cells, similar response mechanisms normally work and sometimes stimulate the differentiation cues. Up to now, differentiation protocols utilizing such environmental stresses have been reported to obtain various types of somatic cells from pluripotent stem cells. Basically, environmental stresses as hypoxia (low oxygen), hyperoxia, (high oxygen) and mechanical stress from cell culture plates are relatively safer than chemicals and gene transfers, which affect the genome irreversibly. Therefore, protocols designed with such environments in mind could be useful for the technology development of cell therapy and regenerative medicine. In this manuscript, we summarize recent findings of environmental stress-induced differentiation protocols and discuss their mechanisms. Abstract Pluripotent stem cells have unique characteristics compared to somatic cells. In this review, we summarize the response to environmental stresses (hypoxic, oxidative, thermal, and mechanical stresses) in embryonic stem cells (ESCs) and their applications in the differentiation methods directed to specific lineages. Those stresses lead to activation of each specific transcription factor followed by the induction of downstream genes, and one of them regulates lineage specification. In short, hypoxic stress promotes the differentiation of ESCs to mesodermal lineages via HIF-1α activation. Concerning mechanical stress, high stiffness tends to promote mesodermal differentiation, while low stiffness promotes ectodermal differentiation via the modulation of YAP1. Furthermore, each step in the same lineage differentiation favors each appropriate stiffness of culture plate; for example, definitive endoderm favors high stiffness, while pancreatic progenitor favors low stiffness during pancreatic differentiation of human ESCs. Overall, treatments utilizing those stresses have no genotoxic or carcinogenic effects except oxidative stress; therefore, the differentiated cells are safe and could be useful for cell replacement therapy. In particular, the effect of mechanical stress on differentiation is becoming attractive for the field of regenerative medicine. Therefore, the development of a stress-mediated differentiation protocol is an important matter for the future.
Collapse
|
9
|
Dateki M, Imamura O, Arai M, Shimizu H, Takishima K. A novel strategy of selective gene delivery by using a uniform magnetic field. Biotechnol J 2021; 16:e2000233. [PMID: 33226197 DOI: 10.1002/biot.202000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/11/2020] [Indexed: 11/08/2022]
Abstract
The application of a magnetic field to enhance the transfection efficiency has been reported to be mainly dependent on the magnetic force generated by a magnetic field gradient to attract paramagnetic bead-conjugated carrier and polynucleotide complexes. This strategy has the advantage of targeting a point or an area on the culture vessel. However, it is difficult to target deeply placed tissues in vivo. Uniform magnetic field-correlated effect is applicable to such a purpose. Here, we attempted to establish a novel procedure for uniform magnetic field-dependent enhancement of transfection efficiency. We examined the effect of a 1.5 mT uniform magnetic field on cellular reactive oxygen species (ROS) level and transfection efficiency mediated by a ROS-sensitive transfection carrier. Our experimental results revealed that a 1.5 mT uniform magnetic field transiently decreased cellular ROS levels and strongly enhanced transfection efficiency mediated by polyethylenimine (PEI). The uniform magnetic field-dependent enhancement of PEI-mediated in vivo transfection was confirmed in the livers of mice. Local intensification of a uniform magnetic field in a culture dish resulted in selective gene delivery into cells on the target area. Although further examination and improvement are necessary for this procedure, our findings provide a novel option for spatial control of gene delivery.
Collapse
Affiliation(s)
- Minori Dateki
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Osamu Imamura
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Masaaki Arai
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Hidehisa Shimizu
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kunio Takishima
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
10
|
Lola Costa EV, Silva Araújo VFD, Pereira Santos AP, de Albuquerque Nogueira R. Morphometric evaluation of Japanese quail embryos and their extraembryonic vascular networks exposed to low-frequency magnetic field with two different intensities. Electromagn Biol Med 2020; 39:403-410. [PMID: 32954862 DOI: 10.1080/15368378.2020.1821708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Animals developed or in an embryonic stage, are constantly subjected to magnetic pollution generated by electrical and electronic devices. Several researches have used the bird embryo as an experimental model to evaluate the action of magnetic field (MF) and electromagnetic field (EMF). This study proposed to perform a morphometric evaluation in the embryos and in the blood vascular network of the yolk sac membranes (YSM) of Japanese quail (Coturnix japonica) exposed to the 60 Hz MF with two different intensities (0.16 and 0.65 mT). A total of 30 eggs were used, 10 eggs were used for each assay. Each assay formed a group (control group, group submitted to the MF of 0.16 mT and 0.65 mT). The images of the skeletonized vascular network of YSM were evaluated by two methods of fractal dimension: box-counting dimension (Dbc) and information dimension (Dinf). The embryos were evaluated by body mass, percentage cephalic length and body area. The fractal dimensions revealed no difference among groups. There were no significant differences in relation to embryonic body mass among groups. However, the embryos exposed to 0.65 mT MF presented a smaller embryonic body development (body area and percentage cephalic length). In conclusion, 0.16 mT and 0.65 mT magnetic fields were not able to generate significant effects on vasculogenesis and angiogenesis. However, the embryos exposed to 6 h of magnetic field with 0.65 mT intensity and 60 Hz frequency showed a decrease in embryonic body development.
Collapse
Affiliation(s)
- Edbhergue Ventura Lola Costa
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| | - Victor Felipe da Silva Araújo
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| | | | - Romildo de Albuquerque Nogueira
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| |
Collapse
|
11
|
Ross CL, Zhou Y, McCall CE, Soker S, Criswell TL. The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review. Bioelectricity 2019; 1:247-259. [PMID: 34471827 PMCID: PMC8370292 DOI: 10.1089/bioe.2019.0026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulsed electromagnetic field (PEMF) is emerging as innovative treatment for regulation of inflammation, which could have significant effects on tissue regeneration. PEMF modulates inflammatory processes through the regulation of pro- and anti-inflammatory cytokine secretion during different stages of inflammatory response. Consistent outcomes in studies involving animal and human tissue have shown promise for the use of PEMF as an alternative or complementary treatment to pharmaceutical therapies. Thus, PEMF treatment could provide a novel nonpharmaceutical means of modulating inflammation in injured tissues resulting in enhanced functional recovery. This review examines the effect of PEMF on immunomodulatory cells (e.g., mesenchymal stem/stromal cells [MSCs] and macrophages [MΦ]) to better understand the potential for PEMF therapy to modulate inflammatory signaling pathways and improve tissue regeneration. This review cites published data that support the use of PEMF to improve tissue regeneration. Our studies included herein confirm anti-inflammatory effects of PEMF on MSCs and MΦ.
Collapse
Affiliation(s)
- Christina L. Ross
- Center for Integrative Medicine, Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yu Zhou
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Charles E. McCall
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shay Soker
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tracy L. Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Lin Z, Wu S, Liu X, Qian S, Chu PK, Zheng Y, Cheung KMC, Zhao Y, Yeung KWK. A surface-engineered multifunctional TiO 2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomater 2019; 99:495-513. [PMID: 31518705 DOI: 10.1016/j.actbio.2019.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Magnesium biometals exhibit great potentials for orthopeadic applications owing to their biodegradability, bioactive effects and satisfactory mechanical properties. However, rapid corrosion of Mg implants in vivo combined with large amount of hydrogen gas evolution is harmful to bone healing process which seriously confines their clinical applications. Enlightened by the superior biocompatibility and corrosion resistance of passive titanium oxide layer automatically formed on titanium alloy, we employ the Ti and O dual plasma ion immersion implantation (PIII) technique to construct a multifunctional TiO2 based nano-layer on ZK60 magnesium substrates for enhanced corrosion resistance, osteoconductivity and antimicrobial activity. The constructed nano-layer (TiO2/MgO) can effectively suppress degradation rate of ZK60 substrates in vitro and still maintain 94% implant volume after post-surgery eight weeks. In animal study, a large amount of bony tissue with increased bone mineral density and trabecular thickness is formed around the PIII treated group in post-operation eight weeks. Moreover, the newly formed bone in the PIII treated group is well mineralized and its mechanical property almost restores to the level of that of surrounding mature bone. Surprisingly, a remarkable killing ratio of 99.31% against S. aureus can be found on the PIII treated sample under ultra-violet (UV) irradiation which mainly attributes to the oxidative stress induced by the reactive oxygen species (ROS). We believe that this multifunctional TiO2 based nano-layer not only controls the degradation of magnesium implant, but also regulates its implant-to-bone integration effectively. STATEMENT OF SIGNIFICANCE: Rapid corrosion of magnesium implants is the major issue for orthopaedic applications. Inspired by the biocompatibility and corrosion resistance of passive titanium oxide layer automatically formed on titanium alloy, we construct a multifunctional TiO2/MgO nanolayer on magnesium substrates to simultaneously achieve superior corrosion resistance, satisfactory osteoconductivity in rat intramedullary bone defect model and excellent antimicrobial activity against S. aureus under UV irradiation. The current findings suggest that the specific TiO2/MgO nano-layer on magnesium surface can achieve the three objectives aforementioned and we believe this study can demonstrate the potential of biodegradable metals for future clinical applications.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Ying Zhao
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China.
| |
Collapse
|
13
|
A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 2019; 219:119372. [DOI: 10.1016/j.biomaterials.2019.119372] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
|
14
|
Ross CL, Ang DC, Almeida-Porada G. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis. Front Immunol 2019; 10:266. [PMID: 30886614 PMCID: PMC6409305 DOI: 10.3389/fimmu.2019.00266] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of synovium (synovitis), with inflammatory/immune cells and resident fibroblast-like synoviocytes (FLS) acting as major players in the pathogenesis of this disease. The resulting inflammatory response poses considerable risks as loss of bone and cartilage progresses, destroying the joint surface, causing joint damage, joint failure, articular dysfunction, and pre-mature death if left untreated. At the cellular level, early changes in RA synovium include inflammatory cell infiltration, synovial hyperplasia, and stimulation of angiogenesis to the site of injury. Different angiogenic factors promote this disease, making the role of anti-angiogenic therapy a focus of RA treatment. To control angiogenesis, mesenchymal stromal cells/pericytes (MSCs) in synovial tissue play a vital role in tissue repair. While recent evidence reports that MSCs found in joint tissues can differentiate to repair damaged tissue, this repair function can be repressed by the inflammatory milieu. Extremely-low frequency pulsed electromagnetic field (PEMF), a biophysical form of stimulation, has an anti-inflammatory effect by causing differentiation of MSCs. PEMF has also been reported to increase the functional activity of MSCs to improve differentiation to chondrocytes and osteocytes. Moreover, PEMF has been demonstrated to accelerate cell differentiation, increase deposition of collagen, and potentially return vascular dysfunction back to homeostasis. The aim of this report is to review the effects of PEMF on MSC modulation of cytokines, growth factors, and angiogenesis, and describe its effect on MSC regeneration of synovial tissue to further understand its potential role in the treatment of RA.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States.,Wake Forest Center for Integrative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dennis C Ang
- Department of Rheumatology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Magnetic Fields and Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18102175. [PMID: 29057846 PMCID: PMC5666856 DOI: 10.3390/ijms18102175] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Collapse
|
16
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
17
|
Bekhite MM, Finkensieper A, Abou-Zaid FA, El-Shourbagy IK, El-Fiky NK, Omar KM, Sauer H, Wartenberg M. Differential effects of high and low strength magnetic fields on mouse embryonic development and vasculogenesis of embryonic stem cells. Reprod Toxicol 2016; 65:46-58. [PMID: 27346840 DOI: 10.1016/j.reprotox.2016.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Man-made magnetic fields (MFs) may exert adverse effects on mammalian embryonic development. Herein, we analysed the effect of 10mT 50Hz sinusoidal (AC) or static (DC) MFs versus 1mT MFs on embryonic development of mice. Exposure for 20days during gestation to 10mT MFs increased resorptions and dead fetuses, decreased crown-rump length and fresh weight, reduced blood vessel differentiation and caused histological changes, accompanied with diminished vascular endothelial growth factor (VEGF) protein expression in several organs. In embryonic stem (ES) cell-derived embryoid bodies exposure towards 10mT MFs increased reactive oxygen species (ROS), decreased vascular marker as well as VEGF expression and enhanced apoptosis. In conclusion, our combined data from in vivo and in vitro experiments identified VEGF as an important mediator during embryonic development that can be influenced by high strength MFs, which in consequence leads to severe abnormalities in fetus organs and blood vessel formation.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Jena University Hospital, Jena, Germany; Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Andreas Finkensieper
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Jena University Hospital, Jena, Germany
| | - Fouad A Abou-Zaid
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Nabil K El-Fiky
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Khaled M Omar
- Physics Department, Faculty of Science, Tanta University, 31527, Egypt
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Germany
| | - Maria Wartenberg
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Huang YH, Sharifpanah F, Becker S, Wartenberg M, Sauer H. Impact of Arachidonic Acid and the Leukotriene Signaling Pathway on Vasculogenesis of Mouse Embryonic Stem Cells. Cells Tissues Organs 2016; 201:319-32. [DOI: 10.1159/000445680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem (ES) cells can differentiate into various kinds of cells, such as endothelial and hematopoietic cells. In addition, some evidence suggests that inflammatory mediators such as leukotrienes (LTs), which include the 5-lipoxygenase (LOX) family, can regulate endothelial cell differentiation. In the present study, the eicosanoid precursor arachidonic acid (AA) stimulated vasculogenesis of ES cells by increasing the number of fetal liver kinase-1+ vascular progenitor cells as well as vascular structures positive for platelet endothelial cell adhesion protein-1 and vascular endothelial cadherin. The stimulation of vasculogenesis and expression of the rate-limiting enzyme in the LT signaling pathway, 5-LOX-activating protein (FLAP), was blunted upon treatment with the FLAP inhibitors AM643 and REV5901. Vasculogenesis was significantly restored upon exogenous addition of LTs. Downstream of FLAP, the LTB4 receptor (BLT1) blocker U75302, the BLT2 receptor blocker LY255283 as well as the cysteinyl LT blocker BAY-u9773 inhibited vasculogenesis of ES cells. AA treatment of differentiating ES cells increased reactive oxygen species (ROS) generation, which was not affected upon either FLAP or cyclooxygenase-2 inhibition. Prevention of ROS generation by either the free radical scavengers vitamin E and N-(2-mercaptopropionyl)glycine or the NADPH oxidase inhibitor VAS2870 downregulated vasculogenesis of ES cells and blunted the provasculogenic effect of AA. In summary, our data demonstrate that proinflammatory AA stimulates vasculogenesis of ES cells via the LT pathway by mechanisms involving ROS generation.
Collapse
|
19
|
Sharifpanah F, De Silva S, Bekhite MM, Hurtado-Oliveros J, Preissner KT, Wartenberg M, Sauer H. Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA. Free Radic Biol Med 2015; 89:1203-17. [PMID: 26524400 DOI: 10.1016/j.freeradbiomed.2015.10.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated. APPROACH AND RESULTS ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4. CONCLUSIONS Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Sepali De Silva
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Klaus T Preissner
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
20
|
Marędziak M, Marycz K, Śmieszek A, Lewandowski D. An In Vitro Analysis of Pattern Cell Migration of Equine Adipose Derived Mesenchymal Stem Cells (EqASCs) Using Iron Oxide Nanoparticles (IO) in Static Magnetic Field. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0402-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Costa EVL, Nogueira RDA. Multifractal dimension and lacunarity of yolk sac vasculature after exposure to magnetic field. Microvasc Res 2015; 99:1-7. [DOI: 10.1016/j.mvr.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023]
|
22
|
Delle Monache S, Angelucci A, Sanità P, Iorio R, Bennato F, Mancini F, Gualtieri G, Colonna RC. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs). PLoS One 2013; 8:e79309. [PMID: 24244477 PMCID: PMC3828379 DOI: 10.1371/journal.pone.0079309] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/20/2013] [Indexed: 12/03/2022] Open
Abstract
The formation of new blood vessels is an essential therapeutic target in many diseases such as cancer, ischemic diseases, and chronic inflammation. In this regard, extremely low-frequency (ELF) electromagnetic fields (EMFs) seem able to inhibit vessel growth when used in a specific window of amplitude. To investigate the mechanism of anti-angiogenic action of ELF-EMFs we tested the effect of a sinusoidal magnetic field (MF) of 2 mT intensity and frequency of 50 Hz on endothelial cell models HUVEC and MS-1 measuring cell status and proliferation, motility and tubule formation ability. MS-1 cells when injected in mice determined a rapid tumor-like growth that was significantly reduced in mice inoculated with MF-exposed cells. In particular, histological analysis of tumors derived from mice inoculated with MF-exposed MS-1 cells indicated a reduction of hemangioma size, of blood-filled spaces, and in hemorrhage. In parallel, in vitro proliferation of MS-1 treated with MF was significantly inhibited. We also found that the MF-exposure down-regulated the process of proliferation, migration and formation of tubule-like structures in HUVECs. Using western blotting and immunofluorescence analysis, we collected data about the possible influence of MF on the signalling pathway activated by the vascular endothelial growth factor (VEGF). In particular, MF exposure significantly reduced the expression and activation levels of VEGFR2, suggesting a direct or indirect influence of MF on VEGF receptors placed on cellular membrane. In conclusion MF reduced, in vitro and in vivo, the ability of endothelial cells to form new vessels, most probably affecting VEGF signal transduction pathway that was less responsive to activation. These findings could not only explain the mechanism of anti-angiogenic action exerted by MFs, but also promote the possible development of new therapeutic applications for treatment of those diseases where excessive angiogenesis is involved.
Collapse
Affiliation(s)
- Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chung JH, Kim YS, Noh K, Lee YM, Chang SW, Kim EC. Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor erythroid 2-related factor-mediated antioxidant signaling pathway. J Periodontal Res 2013; 49:563-73. [PMID: 24111577 DOI: 10.1111/jre.12136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Recently it was reported that deferoxamine (DFO), an iron chelator, stimulates bone formation from MG63 and mesenchymal stem cells, but inhibits differentiation in rat calvarial cells; however, the effect of DFO on osteoblastic differentiation in human periodontal ligament cells (hPDLCs) has not been reported. The aim of this study was to investigate the effects and the possible underlying mechanism of DFO on osteoblastic differentiation of hPDLCs. MATERIAL AND METHODS The effect of DFO on osteoblast differentiation was determined by the staining intensity of calcium deposits with Alizarin red and by RT-PCR analysis of the expression of osteoblastic markers. Signal transduction pathways were analyzed by western blotting. RESULTS DFO increased osteogenic differentiation in a concentration-dependent manner by expression of the mRNA for differentiation markers and calcium nodule formation. Exposure of hPDLCs to DFO resulted in increases in the production of reactive oxygen species and in the levels of nuclear factor erythroid 2-related factor (Nrf2) protein in nuclear extractions, as well as a dose-dependent increase in the expression of Nrf2 target genes, including glutathione (GSH), glutathione S-transferase, γ-glutamylcysteine lygase, glutathione reductase and glutathione peroxidase. Pretreatment with Nrf2 small interfering RNA, GSH depletion by buthionine sulfoximine and diethyl maleate, and with antioxidants by N-acetylcysteine and vitamin E, blocked DFO-stimulated osteoblastic differentiation. Furthermore, pretreatment with GSH depletion and antioxidants blocked DFO-induced p38 MAPK, ERK, JNK and nuclear factor-kappaB pathways. CONCLUSION These data indicate, for the first time, that nontoxic DFO promotes osteoblastic differentiation of hPDLCs via modulation of the Nrf2-mediated antioxidant pathway.
Collapse
Affiliation(s)
- J H Chung
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Bekhite MM, Figulla HR, Sauer H, Wartenberg M. Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production. Int J Cardiol 2013; 167:798-808. [DOI: 10.1016/j.ijcard.2012.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/16/2012] [Accepted: 02/26/2012] [Indexed: 11/16/2022]
|
25
|
Cao J, Man Y, Li L. Electrical stimuli improve osteogenic differentiation mediated by aniline pentamer and PLGA nanocomposites. Biomed Rep 2013; 1:428-432. [PMID: 24648963 DOI: 10.3892/br.2013.70] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2013] [Indexed: 01/21/2023] Open
Abstract
Electrical stimulation may improve the proliferation of animal cells. In the present study, osteoblasts were cultured on electroactive aniline pentamer (AP)/poly(lactic-co-glycolic acid) (PLGA) copolymer composites, on which electric pulse was imposed. The combination of polymer and electric pulse enhanced the osteogenic differentiation of the osteoblasts, characterized by the upregulated expression of bone morphogenetic protein (BMP)-2, collagen I and osteonectin and the phosphorylation of Samd4, in contrast to polymer or electrical pulse alone. This action occurred in a polymer content-dependent manner. Therefore, the action of the electric pulse, assisted by the electroactive polymer implant, may be promising in the expedition of injured bone repair.
Collapse
Affiliation(s)
- Jian Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033; ; Department of Orthopedics, Chifeng Municipal Hospital, Chifeng 024000, P.R. China
| | - Yuhong Man
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | - Lisen Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| |
Collapse
|
26
|
Sauer H, Ravindran F, Beldoch M, Sharifpanah F, Jedelská J, Strehlow B, Wartenberg M. α2-Macroglobulin enhances vasculogenesis/angiogenesis of mouse embryonic stem cells by stimulation of nitric oxide generation and induction of fibroblast growth factor-2 expression. Stem Cells Dev 2013; 22:1443-54. [PMID: 23379699 DOI: 10.1089/scd.2012.0640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
α2-macroglobulin (α2M) is an acute-phase protein released upon challenges like cardiac hypertrophy and infarction. α2M signals via the low density lipoprotein receptor-related protein (LRP-1) and may induce stem cell activation. In the present study, the effects of α2M on vasculogenesis/angiogenesis and underlying signaling cascades were investigated in mouse embryonic stem (ES) cells. LRP-1 was expressed in ES cells and upregulated during differentiation. α2M dose dependently increased CD31-positive vascular structures in ES cell-derived embryoid bodies, the early cardiovascular markers isl-1, Nkx-2.5, and flk-1 as well as numbers of VE-cadherin and flk-1-positive cells, but downregulated α-smooth muscle actin. Enhancement of vasculogenesis/angiogenesis by α2M was abolished by the LRP-1 antagonist receptor-associated protein (RAP) and LRP-1 blocking antibody. Notably, α2M stimulated vascular growth in the chicken chorioallantois membrane assay, but not in a human umbilical vein endothelial cell spheroid model. α2M increased fibroblast growth factor-2 (FGF-2) protein expression, which was abolished by RAP, induced nitric oxide (NO) generation as determined by 4,5-diaminofluorescein diacetate microfluorometry, and activated nitric oxide synthase-3 (NOS-3) as well as extracellular-regulated kinase 1,2 (ERK1/2) and phosphatidyl inositol 3-kinase (PI3K). NO generation, the increase in FGF-2 expression, and the stimulation of vasculogenesis/angiogenesis by α2M were blunted by the NO synthase inhibitor L-NAME, the ERK1/2 inhibitor PD98059, and the PI3K inhibitor LY294002. Furthermore, vasculogenesis/angiogenesis by α2M was inhibited in the presence of the FGF receptor 1 antagonist SU5402. In conclusion, α2M stimulates endothelial and early cardiac, but not smooth muscle differentiation of ES cells through generation of NO, activation of ERK1/2 as well as PI3K, and induction of FGF-2 expression.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys Ther 2012; 92:1208-19. [PMID: 22577063 DOI: 10.2522/ptj.20110224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Electromagnetic fields (EMFs) used in stem-cell tissue engineering can help elucidate their biological principles. OBJECTIVE The aim of this study was to investigate the effects of low-intensity EMFs on cell proliferation, differentiation, and cycle in mouse bone marrow stromal cells (BMSCs) and the in vivo effects of EMFs on BMSC. METHODS Harvested BMSCs were cultured for 3 generations and divided into 4 groups. The methylthiotetrazole (MTT) assay was used to evaluate cell proliferation, and alkaline phosphatase activity was measured via a colorimetric assay on the 3rd, 7th, and 10th days. Changes in cell cycle also were analyzed on the 7th day, and bone nodule formation was analyzed on the 12th day. Additionally, the expression of the collagen I gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) on the 10th day. The BMSCs of the irradiated group and the control group were transplanted into cortical bone of different mice femurs separately, with poly(lactic-co-glycolic acid) (PLGA) serving as a scaffold. After 4 and 8 weeks, bone the bone specimens of mice were sliced and stained by hematoxylin and eosin separately. RESULTS The results showed that EMFs (0.5 mT, 50 Hz) accelerated cellular proliferation, enhanced cellular differentiation, and increased the percentage of cells in the G(2)/M+S (postsynthetic gap 2 period/mitotic phase + S phase) of the stimulation. The EMF-exposed groups had significantly higher collagen I messenger RNA levels than the control group. The EMF + osteogenic medium-treated group readily formed bone nodules. Hematoxylin and eosin staining showed a clear flaking of bone tissue in the irradiated group. CONCLUSION Irradiation of BMSCs with low-intensity EMFs (0.5 mT, 50 Hz) increased cell proliferation and induced cell differentiation. The results of this study did not establish a stricter animal model for studying osteogenesis, and only short-term results were investigated. Further study of the mechanism of EMF is needed.
Collapse
|
28
|
Bekhite MM, Finkensieper A, Binas S, Müller J, Wetzker R, Figulla HR, Sauer H, Wartenberg M. VEGF-mediated PI3K class IA and PKC signaling in cardiomyogenesis and vasculogenesis of mouse embryonic stem cells. J Cell Sci 2011; 124:1819-30. [PMID: 21540297 DOI: 10.1242/jcs.077594] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
VEGF-, phosphoinositide 3-kinase (PI3K)- and protein kinase C (PKC)-regulated signaling in cardiac and vascular differentiation was investigated in mouse ES cells and in ES cell-derived Flk-1⁺ cardiovascular progenitor cells. Inhibition of PI3K by wortmannin and LY294002, disruption of PI3K catalytic subunits p110α and p110δ using short hairpin RNA (shRNA), or inhibition of p110α with compound 15e and of p110δ with IC-87114 impaired cardiac and vascular differentiation. By contrast, TGX-221, an inhibitor of p110β, and shRNA knockdown of p110β were without significant effects. Antagonists of the PKC family, i.e. bisindolylmaleimide-1 (BIM-1), GÖ 6976 (targeting PKCα/βII) and rottlerin (targeting PKCδ) abolished vasculogenesis, but not cardiomyogenesis. Inhibition of Akt blunted cardiac as well as vascular differentiation. VEGF induced phosphorylation of PKCα/βII and PKCδ but not PKCζ. This was abolished by PI3K inhibitors and the VEGFR-2 antagonist SU5614. Furthermore, phosphorylation of Akt and phosphoinositide-dependent kinase-1 (PDK1) was blunted upon inhibition of PI3K, but not upon inhibition of PKC by BIM-1, suggesting that activation of Akt and PDK1 by VEGF required PI3K but not PKC. In summary, we demonstrate that PI3K catalytic subunits p110α and p110δ are central to cardiovasculogenesis of ES cells. Akt downstream of PI3K is involved in both cardiomyogenesis and vasculogenesis, whereas PKC is involved only in vasculogenesis.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- Department of Internal Medicine I, Cardiology Division, Friedrich Schiller University, 07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Elferchichi M, Mercier J, Bourret A, Gross R, Lajoix AD, Belguith H, Abdelmelek H, Sakly M, Lambert K. Is static magnetic field exposure a new model of metabolic alteration? Comparison with Zucker rats. Int J Radiat Biol 2011; 87:483-90. [PMID: 21219108 DOI: 10.3109/09553002.2011.544371] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to investigate if the metabolic alterations observed after static magnetic field (SMF) exposure participates in the development of a pre-diabetic state. A comparison study using the insulin resistant animal model, the Zucker rat and the SMF-exposed Wistar rat was carried out. MATERIALS AND METHODS Zucker rats were compared to Wistar rats either exposed to a 128 mT or 0 mT SMF (sham exposed) and analysed. This moderate-intensity SMF exposure of Wistar rats was performed for 1 h/day during 15 consecutive days. RESULTS Wistar rats exposed to the SMF showed increased levels of carbohydrate and lipid metabolites (i.e., lactate, glycerol, cholesterol and phospholipids) compared to sham-exposed rats. Zucker rats displayed a normoglycemia associated with a high insulin level as opposed to Wistar rats which presented hyperglycemia and hypoinsulinemia after exposure to the SMF. During the glucose tolerance test, unexposed Zucker rats and Wistar rats exposed to the SMF exhibited a significantly higher hyperglycemia compared to sham-exposed Wistar rats suggesting an impairment of glucose clearance. In muscle, glycogen content was lower and phospholipids content was elevated for both unexposed Zucker rats and Wistar rats exposed to the SMF compared to Wistar rats sham control. CONCLUSIONS This study provides evidence that the metabolic alterations following exposure to a static magnetic field of moderate intensity could trigger the development of a pre-diabetic state.
Collapse
Affiliation(s)
- Miryam Elferchichi
- Faculté des Sciences de Bizerte, Laboratoire de Physiologie Intégrée, Jarzouna, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Milosevic N, Bekhite MM, Sharifpanah F, Ruhe C, Wartenberg M, Sauer H. Redox stimulation of cardiomyogenesis versus inhibition of vasculogenesis upon treatment of mouse embryonic stem cells with thalidomide. Antioxid Redox Signal 2010; 13:1813-27. [PMID: 20722506 DOI: 10.1089/ars.2010.3139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thalidomide [α-(N-phthalimido)-glutarimide] exerts antiangiogenic properties and causes cardiac malformations in embryos. Herein the effects of thalidomide on cardiovascular differentiation were investigated in mouse embryonic stem (ES) cell-derived embryoid bodies. Thalidomide inhibited the formation of capillary-like blood vessels and decreased tumor-induced angiogenesis in confrontation cultures of embryoid bodies and multicellular prostate tumor spheroids, but stimulated cardiomyogenesis of ES cells. The number of CD31- and CD144-positive endothelial cells was not impaired, suggesting that thalidomide acted on vascular tube formation and cell migration rather than endothelial differentiation. Thalidomide increased reactive oxygen species generation, which was abolished by the NADPH oxidase inhibitor VAS2870 and the complex I respiratory chain inhibitor rotenone. Conversely, thalidomide decreased nitric oxide (NO) generation and endothelial NO synthase activity. VAS2870 abrogated thalidomide stimulation of cardiomyogenesis, whereas inhibition of vasculogenesis persisted. In NOX-1 and NOX-4 shRNA gene-inactivated ES cells, cardiomyogenesis was severely impaired and thalidomide failed to stimulate cardiac cell commitment. The NO donor S-nitrosopenicillamine reversed the antiangiogenic effect of thalidomide and increased capillary structure formation, whereas scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and inhibition of endothelial NO synthase by N(G)-nitro-l-arginine methyl ester decreased cardiovascular differentiation. Our data demonstrate that thalidomide causes an imbalance of reactive oxygen species/NO generation, thus stimulating cardiomyogenesis and impairing vascular sprout formation.
Collapse
Affiliation(s)
- Nada Milosevic
- Department of Physiology, Justus Liebig University Giessen , Giessen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Recovery Effects of a 180 mT Static Magnetic Field on Bone Mineral Density of Osteoporotic Lumbar Vertebrae in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953437 PMCID: PMC2952315 DOI: 10.1155/2011/620984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/05/2010] [Accepted: 08/21/2010] [Indexed: 11/18/2022]
Abstract
The effects of a moderate-intensity static magnetic field (SMF) on osteoporosis of the lumbar vertebrae were studied in ovariectomized rats. A small disc magnet (maximum magnetic flux density 180 mT) was implanted to the right side of spinous process of the third lumbar vertebra. Female rats in the growth stage (10 weeks old) were randomly divided into 4 groups: (i) ovariectomized and implanted with a disc magnet (SMF); (ii) ovariectomized and implanted with a nonmagnetized disc (sham); (iii) ovariectomized alone (OVX) and (vi) intact, nonoperated cage control (CTL). The blood serum 17-β-estradiol (E2) concentrations were measured by radioimmunoassay, and the bone mineral density (BMD) values of the femurs and the lumbar vertebrae were assessed by dual energy X-ray absorptiometry. The E2 concentrations were statistically significantly lower for all three operated groups than those of the CTL group at the 6th week. Although there was no statistical significant difference in the E2 concentrations between the SMF-exposed and sham-exposed groups, the BMD values of the lumbar vertebrae proximal to the SMF-exposed area statistically significantly increased in the SMF-exposed group than in the sham-exposed group. These results suggest that the SMF increased the BMD values of osteoporotic lumbar vertebrae in the ovariectomized rats.
Collapse
|