1
|
Voga M. Modulation of Canine Adipose-Derived Mesenchymal Stem/Medicinal Signalling Cells with Ascorbic Acid: Effect on Proliferation and Chondrogenic Differentiation on Standard Plastic and Silk Fibroin Surfaces. Bioengineering (Basel) 2024; 11:513. [PMID: 38790380 PMCID: PMC11118827 DOI: 10.3390/bioengineering11050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbic acid (AA) plays a crucial role in both the proliferation and chondrogenic differentiation potential of mesenchymal stem/medicinal signalling cells (MSCs); these are both key aspects of their general therapeutic use and their increasing use in veterinary medicine. Current immunomodulatory therapies require efficient expansion of MSCs in the laboratory, while emerging tissue regeneration strategies, such as cartilage or bone repair, aim to use differentiated MSCs and modulate the expression of chondrogenic and hypertrophic markers. Our aim was to investigate whether the addition of AA to the growth medium enhances the proliferation of canine adipose-derived MSCs (cAMSCs) grown on standard plastic surfaces and whether it affects chondrogenic differentiation potential on silk fibroin (SF) films. We assessed cell viability with trypan blue and proliferation potential by calculating population doubling. Chondrogenic induction on SF films was assessed by Alcian blue staining and gene expression analysis of chondrogenic and hypertrophic genes. The results showed that growth medium with AA significantly enhanced the proliferation of cAMSCs without affecting cell viability and modulated the expression of chondrogenic and hypertrophic genes of cAMSCs grown on SF films. Our results suggest that AA may be used in growth medium for expansion of cAMSCs and, at the same time, provide the basis for future studies to investigate the role of AA and SF in chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
3
|
Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Int J Biomater 2021; 2021:5583815. [PMID: 34239571 PMCID: PMC8235960 DOI: 10.1155/2021/5583815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
Collapse
|
4
|
Autophagy-related proteases accompany the transition of pre-chondrogenic cells into chondroblasts. Ann Anat 2021; 239:151781. [PMID: 34144159 DOI: 10.1016/j.aanat.2021.151781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autophagy is classified as a form of programmed cell death. Nevertheless, besides the death-inducing function, autophagy enables removal of damaged organelles, energy savings, and thus cell survival. This applies in particular to cells with poor renewal capabilities, such as chondroblasts. Autophagy is regulated by a complex molecular network, including proteases and their substrates. In autopodium, autophagy-related proteases have been examined particularly within the context of the elimination of the interdigital tissue. However, the death-inducing effects of their expression/activation have not been specified yet. This work focuses on autophagy-associated proteases (cathepsins, matrix metalloproteinases, and caspases) involved in phalangeal cartilage of the mouse autopodium. METHODS PCR Array, Real Time PCR, and immunohistochemistry were used to follow the expression of autophagy-associated genesin vivo at two developmental stages prenatal/embryonic (E)12 vs. E14. Real Time PCR was then applied to investigate the influence of rapamycin (an inductor of autophagy) on the expression of autophagy-associated proteases in chondroblasts in vitro using micromass culture. RESULTS Several proteases showed increased expression levels during the transition of pre-chondrogenic cells into chondroblastsin vivo. The most significant increases were observed for Ctsb (fold regulation 2.22), Ctsd (fold regulation 2.37), Ctss (fold regulation 2.92), Mmp9 (up to 445%), and Casp8 (up to 250%). The transition was associated also with high expression of crucial autophagic inducers, such as Atgs. The in vitro treatment of chondroblasts by autophagy inductor rapamycin showed significantly decreased expression of cathepsins, a mild increase in expression of metalloproteinases, and no effect in caspase expression. CONCLUSIONS The present data provide a screening of autophagy-associated proteases accompanying the formation of cartilage in vivo and specify their expression under rapamycin treatment in vitro. Notably, the selected proteases are assigned to osteoarthritis, therefore their regulation might be used in clinically oriented studies.
Collapse
|
5
|
Rogers JD, Holmes JW, Saucerman JJ, Richardson WJ. Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts. Matrix Biol Plus 2021; 10:100055. [PMID: 34195592 PMCID: PMC8233457 DOI: 10.1016/j.mbplus.2020.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Extracellular matrix remodeling after myocardial infarction occurs in a dynamic environment in which local mechanical stresses and biochemical signaling species stimulate the accumulation of collagen-rich scar tissue. It is well-known that cardiac fibroblasts regulate post-infarction matrix turnover by secreting matrix proteins, proteases, and protease inhibitors in response to both biochemical stimuli and mechanical stretch, but how these stimuli act together to dictate cellular responses is still unclear. We developed a screen of cardiac fibroblast-secreted proteins in response to combinations of biochemical agonists and cyclic uniaxial stretch in order to elucidate the relationships between stretch, biochemical signaling, and cardiac matrix turnover. We found that stretch significantly synergized with biochemical agonists to inhibit the secretion of matrix metalloproteinases, with stretch either amplifying protease suppression by individual agonists or antagonizing agonist-driven upregulation of protease expression. Stretch also modulated fibroblast sensitivity towards biochemical agonists by either sensitizing cells towards agonists that suppress protease secretion or de-sensitizing cells towards agonists that upregulate protease secretion. These findings suggest that the mechanical environment can significantly alter fibrosis-related signaling in cardiac fibroblasts, suggesting caution when extrapolating in vitro data to predict effects of fibrosis-related cytokines in situations like myocardial infarction where mechanical stretch occurs.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering, Medicine/Cardiovascular Disease, and Surgery/Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
6
|
Rim YA, Nam Y, Ju JH. The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression. Int J Mol Sci 2020; 21:ijms21072358. [PMID: 32235300 PMCID: PMC7177949 DOI: 10.3390/ijms21072358] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that causes pain and disability in the adult population. OA is primarily caused by trauma induced by an external force or by age-related cartilage damage. Chondrocyte hypertrophy or chondrocyte senescence is thought to play a role in the initiation and progression of OA. Although chondrocyte hypertrophy and cell death are both crucial steps during the natural process of endochondral bone formation, the abnormal activation of these two processes after injury or during aging seems to accelerate the progression of OA. However, the exact mechanisms of OA progression and these two processes remain poorly understood. Chondrocyte senescence and hypertrophy during OA share various markers and processes. In this study, we reviewed the changes that occur during chondrocyte hypertrophy or senescence in OA and the attempts that were made to regulate them. Regulation of hypertrophic or senescent chondrocytes might be a potential therapeutic target to slow down or stop OA progression; thus, a better understanding of the processes is required for management.
Collapse
Affiliation(s)
- Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6895
| |
Collapse
|
7
|
Disc cell therapy with bone-marrow-derived autologous mesenchymal stromal cells in a large porcine disc degeneration model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2639-2649. [PMID: 30141058 DOI: 10.1007/s00586-018-5728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/09/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Disc regeneration through matrix-assisted autologous mesenchymal stromal cell therapy seems promising against disc degeneration with convincing results in small animal models. Whether these positive results can be transferred to larger animal models or humans is unclear. METHODS Fibrin matrix-assisted autologous bone-marrow-derived mesenchymal stromal cell therapy was compared to acellular fibrin matrix therapy in a porcine in vivo model. First, disc degeneration was induced by annular puncture and partial nucleotomy with a large 16G-needle, and 12 weeks later, disc therapy was performed in a second surgery with a thinner 26G needle. Seventy-two lumbar discs from 12 aged adult pigs were evaluated by histology, micro-CT, and gene expression analysis 13 and 24 weeks after nucleotomy and 1 and 12 weeks after treatment, respectively. RESULTS Radiologic disc height was not significantly different in both treatment groups. In the semi-quantitative histologic degeneration score, significant disc degeneration was still evident 1 week after treatment both in the mesenchymal stromal cell group and in the acellular fibrin matrix group. 12 weeks after treatment, degeneration was, however, not further increased and mesenchymal-stromal-cell-treated discs showed significantly less disc degeneration in the annulus fibrosus (p = 0.02), whereas reduction in the nucleus pulposus did not reach statistical significance. Cell treatment compared to matrix alone found less Col1 gene expression as a marker for fibrosis and more expression of the trophic factor BMP2 in the nucleus pulposus, whereas the inflammation marker IL1ß was reduced in the annulus fibrosus. CONCLUSIONS Disc treatment with fibrin matrix-assisted autologous mesenchymal stromal cells reduced degenerative findings compared to acellular fibrin matrix alone. Regenerative changes, however, were not significant for all parameters showing limitations in a large biomechanically demanding model with aged discs. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
8
|
Assis-Ribas T, Forni MF, Winnischofer SMB, Sogayar MC, Trombetta-Lima M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol 2018; 437:63-74. [PMID: 29544769 DOI: 10.1016/j.ydbio.2018.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are stromal cells that display self-renewal and multipotent differentiation capacity. The repertoire of mature cells generated ranges but is not restricted to: fat, bone and cartilage. Their potential importance for both cell therapy and maintenance of in vivo homeostasis is indisputable. Nonetheless, both their in vivo identity and use in cell therapy remain elusive. A drawback generated by this fact is that little is known about the MSC niche and how it impacts differentiation and homeostasis maintenance. Hence, the roles played by the extracellular matrix (ECM) and its main regulators namely: the Matrix Metalloproteinases (MMPs) and their counteracting inhibitors (TIMPs and RECK) upon stem cells differentiation are only now beginning to be unveiled. Here, we will focus on mesenchymal stem cells and review the main mechanisms involved in adipo, chondro and osteogenesis, discussing how the extracellular matrix can impact not only lineage commitment, but, also, their survival and potentiality. This review critically analyzes recent work in the field in an effort towards a better understanding of the roles of Matrix Metalloproteinases and their inhibitors in the above-cited events.
Collapse
Affiliation(s)
- Thais Assis-Ribas
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil
| | - Maria Fernanda Forni
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Mari Cleide Sogayar
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil; Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Marina Trombetta-Lima
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil.
| |
Collapse
|
9
|
Khorshidi S, Karkhaneh A. A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration. J Tissue Eng Regen Med 2018; 12:e1974-e1990. [PMID: 29243352 DOI: 10.1002/term.2628] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 07/17/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Osteochondral tissue regeneration is a complicated field due to the distinct properties and healing potential of osseous and chondral phases. In a natural osteochondral region, the composition, mechanics, and structure vary smoothly from bony to cartilaginous phase. Therefore, a homogeneous scaffold cannot satisfy the complexity of the osteochondral matrix. In essence, a natural extracellular matrix is composed of fibrous proteins elongated into a gelatinous background. A hydrogel/fiber scaffold possessing gradient in both phases would be of the utmost interest to imitate tissue arrangement of a native osteochondral interface. However, there are limited research works that exploit hydrogel/fiber scaffolds for osteochondral restoration. In the present review, currently used fibrous or gelatinous scaffolds for osteochondral damages are discussed. Moreover, superiority of using gradient hydrogel/fiber composites for osteochondral regeneration and practical approaches to develop those scaffolds is debated.
Collapse
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
10
|
Lin YM, Lim JFY, Lee J, Choolani M, Chan JKY, Reuveny S, Oh SKW. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Cytotherapy 2017; 18:740-53. [PMID: 27173750 DOI: 10.1016/j.jcyt.2016.03.293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. METHODS heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. RESULTS BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. CONCLUSIONS This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy.
Collapse
Affiliation(s)
- Youshan Melissa Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Jessica Fang Yan Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jialing Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Jerry Kok Yen Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steve Kah Weng Oh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
11
|
Szychlinska MA, Stoddart MJ, D'Amora U, Ambrosio L, Alini M, Musumeci G. Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function? TISSUE ENGINEERING PART B-REVIEWS 2017; 23:529-539. [PMID: 28514935 DOI: 10.1089/ten.teb.2017.0083] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aging is the most prominent risk factor triggering several degenerative diseases, such as osteoarthritis (OA). Due to its poor self-healing capacity, once injured cartilage needs to be reestablished. This process might be approached through resorting to cell-based therapies and/or tissue engineering. Human mesenchymal stem cells (MSCs) represent a promising approach due to their chondrogenic differentiation potential. Presently, in vitro chondrogenic differentiation of MSCs is limited by two main reasons as follows: aging of MSCs, which determines the loss of cell proliferative and differentiation capacity and MSC-derived chondrocyte hypertrophic differentiation, which limits the use of these cells in cartilage tissue regeneration approach. The effect of aging on MSCs is fundamental for stem cell-based therapy development, especially in older subjects. In the present review we focus on homeostasis alterations occurring in MSC-derived chondrocytes during in vitro aging. Moreover, we deal with potential cell aging regulation approaches, such as cell stimulation through telomerase activators, mechanical strain, and epigenetic regulation. Future investigations in this field might provide new insights into innovative strategies for cartilage regeneration and potentially inspire novel therapeutic approaches for OA treatment.
Collapse
Affiliation(s)
- Marta A Szychlinska
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy
| | - Martin J Stoddart
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Ugo D'Amora
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy .,4 Department of Chemical Science and Materials Technology, National Research Council of Italy , Rome, Italy
| | - Mauro Alini
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Giuseppe Musumeci
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy .,5 Department of Health, Institut des Etudes Universitaries , UniPoliSI, Veyras, Switzerland
| |
Collapse
|
12
|
Han S, Li YY, Chan BP. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres. PLoS One 2016; 11:e0146928. [PMID: 26760956 PMCID: PMC4711899 DOI: 10.1371/journal.pone.0146928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.
Collapse
Affiliation(s)
- Sejin Han
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Yuk Yin Li
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
13
|
Antoniou J, Wang HT, Hadjab I, Aldebeyan S, Alaqeel MA, Meij BP, Tryfonidou MA, Mwale F. The Effects of Naproxen on Chondrogenesis of Human Mesenchymal Stem Cells. Tissue Eng Part A 2015; 21:2136-46. [PMID: 25873236 DOI: 10.1089/ten.tea.2014.0668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, there are no established treatments to prevent, stop, or even retard the degeneration of articular cartilage in osteoarthritis (OA). Biological repair of the degenerating articular cartilage would be preferable to surgery. There is no benign site where autologous chondrocytes can be harvested and used as a cell source for cartilage repair, leaving mesenchymal stem cells (MSCs) as an attractive option. However, MSCs from OA patients have been shown to constitutively express collagen type X (COL-X), a marker of late-stage chondrocyte hypertrophy. We recently found that naproxen (Npx), but not other nonsteroidal anti-inflammatory drugs, can induce collagen type X alpha 1 (COL10A1) gene expression in bone marrow-derived MSCs from healthy and OA donors. In this study, we determined the effect of Npx on COL10A1 expression and investigated the intracellular signaling pathways that mediate such effect in normal human MSCs during chondrogenesis. MSCs were cultured in standard chondrogenic differentiation media supplemented with or without Npx. Our results show that Npx can regulate chondrogenic differentiation by affecting the gene expression of both Indian hedgehog and parathyroid hormone/parathyroid hormone-related protein signaling pathways in a time-dependent manner, suggesting a complex interaction of different signaling pathways during the process.
Collapse
Affiliation(s)
- John Antoniou
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,2 Division of Orthopedic Surgery, McGill University , Montreal, Quebec, Canada
| | - Hong Tian Wang
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada
| | - Insaf Hadjab
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,3 École Polytechnique , Montreal, Quebec, Canada
| | - Sultan Aldebeyan
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,4 Department of Orthopaedic Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Motaz A Alaqeel
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,5 Department of Orthopedics, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Björn P Meij
- 6 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- 6 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Fackson Mwale
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,2 Division of Orthopedic Surgery, McGill University , Montreal, Quebec, Canada
| |
Collapse
|
14
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
15
|
Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 2014; 3:241-54. [PMID: 24436440 DOI: 10.5966/sctm.2013-0079] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.
Collapse
Affiliation(s)
- Lisa B Boyette
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
16
|
Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K, Vincenzi F, Massari L, Cadossi M. Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation? TISSUE ENGINEERING PART B-REVIEWS 2013; 19:353-67. [DOI: 10.1089/ten.teb.2012.0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Milena Fini
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Leo Massari
- Department of Biomedical Sciences and Advanced Therapies, St. Anna Hospital, Ferrara, Italy
| | - Matteo Cadossi
- II Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
17
|
Diao HJ, Yeung CW, Yan CH, Chan GCF, Chan BP. Bidirectional and mutually beneficial interactions between human mesenchymal stem cells and osteoarthritic chondrocytes in micromass co-cultures. Regen Med 2013; 8:257-69. [DOI: 10.2217/rme.13.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Mesenchymal stem cell (MSC)-based therapy presents a promising approach for treating osteoarthritis (OA). However, the molecular interactions between MSCs and OA chondrocytes (OACs) are not known. This study aims to investigate the bidirectional interactions between human MSCs (hMSCs) and human OACs (hOACs) in a 3D co-culture system. Materials & methods: hMSC–collagen microspheres were cultured in hOAC-conditioned medium or co-cultured with hOAC–collagen microspheres. Growth characteristics, glycosaminoglycan (GAG) production, gene expression of major OA-associated chondrogenic markers, including SOX9, COL2A1, ACAN and MMP13, were investigated in both cell types. Results: Both the conditioned medium and the co-culture induced MSC chondrogenesis with enhanced GAG production, SOX9 gene and protein expression, and gene expression of ACAN and COL2A1. Meanwhile, the co-culture also induced hOACs to partially resume the lost chondrogenic phenotype as shown by reduced proliferation, enhanced GAG production when hMSCs were chondrogenically predifferentiated, and reduced MMP13 gene expression. Conclusion: This work suggests that 3D co-culture of hMSCs and hOACs is mutually beneficial to each other, suggesting the potential therapeutic effect of delivering hMSC in scaffolds directly to OA defects.
Collapse
Affiliation(s)
- Hua Jia Diao
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Chui Wai Yeung
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Godfrey CF Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara P Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Lee HH, O'Malley MJ, Friel NA, Chu CR. Effects of doxycycline on mesenchymal stem cell chondrogenesis and cartilage repair. Osteoarthritis Cartilage 2013. [PMID: 23186943 PMCID: PMC5395099 DOI: 10.1016/j.joca.2012.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Strategies to improve cartilage repair tissue quality after bone marrow cell-based procedures may reduce later development of osteoarthritis. Doxycycline is inexpensive, well-tolerated, and has been shown to reduce matrix-metalloproteinases (MMPs) and osteoarthritis progression. This study tests the hypotheses that doxycycline reduces MMP, enhances chondrogenesis of human bone marrow-derived mesenchymal stem cells (hMSC), and improves in vivo cartilage repair. DESIGN Ninety hMSC pellets were cultured in chondrogenic media with either 0-, 1- or 2-μg/mL doxycycline. Pellets were evaluated with stereomicroscopy, proteoglycan assay, qRT-PCR, and histology. Osteochondral defects (OCDs) were created in the trochlear grooves of 24-Sprague-Dawley rats treated with/without oral doxycycline. Rats were sacrificed at 12-weeks and repair tissues were examined grossly and histologically. RESULTS hMSC pellets with 1-μg/mL (P = 0.014) and 2-μg/mL (P = 0.002) doxycycline had larger areas than pellets without doxycycline. hMSC pellets with 2-μg/mL doxycycline showed reduced mmp-13 mRNA (P = 0.010) and protein at 21-days. Proteoglycan, DNA contents, and mRNA expressions of chondrogenic genes were similar (P > 0.05). For the in vivo study, while the histological scores were similar between the two groups (P = 0.116), the gross scores of the OCD repair tissues in doxycycline-treated rats were higher at 12-weeks (P = 0.017), reflective of improved repair quality. The doxycycline-treated repairs also showed lower MMP-13 protein (P = 0.029). CONCLUSIONS This study shows that doxycycline improves hMSC chondrogenesis and decreases MMP-13 in pellet cultures and within rat OCDs. Doxycycline exerted no negative effect on multiple measures of chondrogenesis and cartilage repair. These data support potential use of doxycycline to improve cartilage repair to delay the onset of osteoarthritis.
Collapse
Affiliation(s)
- Hannah H. Lee
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pennsylvania, USA,Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA
| | - Michael J. O'Malley
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Nicole A. Friel
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Constance R. Chu
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pennsylvania, USA,Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Wu CC, Yang SH, Huang TL, Liu CC, Lu DH, Yang KC, Lin FH. The interaction between co-cultured human nucleus pulposus cells and mesenchymal stem cells in a bioactive scaffold. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Hellingman CA, Koevoet W, van Osch GJVM. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach. J Tissue Eng Regen Med 2011; 6:e1-e11. [DOI: 10.1002/term.502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/27/2011] [Accepted: 07/13/2011] [Indexed: 01/30/2023]
Affiliation(s)
- Catharine A. Hellingman
- Department of Otorhinolaryngology, Head and Neck Surgery; Erasmus MC, University Medical Centre Rotterdam; PO Box 2040; 3000; CA; Rotterdam; The Netherlands
| | - Wendy Koevoet
- Department of Otorhinolaryngology, Head and Neck Surgery; Erasmus MC, University Medical Centre Rotterdam; PO Box 2040; 3000; CA; Rotterdam; The Netherlands
| | | |
Collapse
|
21
|
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 2011; 32:8771-82. [PMID: 21903262 DOI: 10.1016/j.biomaterials.2011.08.073] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/23/2011] [Indexed: 11/16/2022]
Abstract
Hyaline cartilage serves as a low-friction and wear-resistant articulating surface in load-bearing, diarthrodial joints. Unfortunately, as the avascular, alymphatic nature of cartilage significantly impedes the body's natural ability to regenerate, damage resulting from trauma and osteoarthritis necessitates repair attempts. Current clinical methods are generally limited in their ability to regenerate functional cartilage, and so research in recent years has focused on tissue engineering solutions in which the regeneration of cartilage is pursued through combinations of cells (e.g., chondrocytes or stem cells) paired with scaffolds (e.g., hydrogels, sponges, and meshes) in conjunction with stimulatory growth factors and bioreactors. A variety of synthetic and natural materials have been employed, most commonly in the form of hydrogels, and these systems have been tuned for optimal nutrient diffusion, connectivity of deposited matrix, degradation, soluble factor delivery, and mechanical loading for enhanced matrix production and organization. Even with these promising advances, the complex mechanical properties and biochemical composition of native cartilage have not been achieved, and engineering cartilage tissue still remains a significant challenge. Using hyaluronic acid hydrogels as an example, this review will follow the progress of material design specific to cartilage tissue engineering and propose possible future directions for the field.
Collapse
Affiliation(s)
- Iris L Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE, Iatridis JC. Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther 2011; 13:R81. [PMID: 21627827 PMCID: PMC3218891 DOI: 10.1186/ar3344] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 01/07/2023] Open
Abstract
Introduction Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. The goal of this study was to use soluble factors from NCs in alginate and NCs in their native tissue to differentiate human MSCs to a young nucleus pulposus (NP) phenotype. Methods Human MSCs (cultured under micromass conditions for 21 days in hypoxia) were differentiated with conditioned medium derived from porcine notochordal cells in native tissue (NCT) or in alginate beads (NCA), and compared with chondrogenic (TGFβ-3) or basal medium. A PCR array of 42 genes was utilized to screen a large number of genes known to be associated with the healthy NP phenotype and pellet cultures were also evaluated for glycosaminoglycan content, histology and viability. Proteomic analysis was used to assess candidate soluble factors in NCA and NCT. Results Notochordal cell conditioned media had diverse effects on MSC phenotype. NCT resulted in the highest levels of glycosaminoglycan (GAG), as well as up-regulation of SOX9 and Collagen II gene expression. NCA demonstrated effects that were catabolic yet also anti-fibrotic and minimally hypertrophic with down-regulation of Collagens I and III and low levels of Collagen X, respectively. Micromass culture and hypoxic conditions were sufficient to promote chondrogenesis demonstrating that both basal and chondrogenic media produced similar phenotypes. Candidate matricellular proteins, clusterin and tenascin were identified by proteomics in the NCA group. Conclusions NCs secreted important soluble factors capable of differentiating MSCs to a NP phenotype synthesizing high levels of proteoglycan while also resisting collagen fiber expression and hypertrophy, yet results were sensitive to the conditions in which media was generated (cells in alginate versus cells in their native tissue) so that further mechanistic studies optimizing culture conditions and defining important NC secreted factors are required. Matricellular proteins, such as clusterin and tenascin, are likely to be important to optimize differentiation of MSCs for maximum GAG production and reduced collagen fiber expression.
Collapse
Affiliation(s)
- Devina Purmessur
- Leni and Peter W, May Department of Orthopaedics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1188, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
23
|
Li H, Feng F, Bingham CO, Elisseeff JH. Matrix metalloproteinases and inhibitors in cartilage tissue engineering. J Tissue Eng Regen Med 2011; 6:144-54. [PMID: 21351376 DOI: 10.1002/term.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 11/30/2010] [Indexed: 01/19/2023]
Abstract
Inhibiting matrix metalloproteinase (MMP) activity has been considered as a potential therapeutic treatment that may modify the outcome for osteoarthritis (OA), a disease governed by abnormalities in the balance between MMPs and their inhibitors. Due to unexpected tissue fibrosis in early-phase clinical trials with some MMP inhibitors, possible divergent effects of inhibiting MMP activity on different cells are hypothesized. Therefore, we evaluated the effects of MMP inhibition on cells relevant to cartilage tissue engineering by culturing them in vitro in poly(ethylene glycol) diacrylate hydrogels to create 3D representations of cartilage tissue while allowing for local and direct administration of inhibitors. Mesenchymal stem cells demonstrated an inhibitor concentration-dependent decrease in extracellular matrix (ECM) deposition, while normal chondrocytes were mainly affected at the highest concentration of inhibitors. In contrast, the concomitant treatment of chondrocytes from patients with OA resulted in an increase in glycosaminoglycan content only in the presence of both inhibitors and anabolic growth factors. The observed upregulation of bone markers, however, indicates a delicate balance that must be addressed to therapeutically treat OA chondrocytes to stimulate more ECM production without errant bone formation. In conclusion, this study suggests that MMPs have complex interactions in both pathobiology and homeostasis.
Collapse
Affiliation(s)
- Hanwei Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
24
|
Steck E, Bertram H, Walther A, Brohm K, Mrozik B, Rathmann M, Merle C, Gelinsky M, Richter W. Enhanced Biochemical and Biomechanical Properties of Scaffolds Generated by Flock Technology for Cartilage Tissue Engineering. Tissue Eng Part A 2010; 16:3697-707. [DOI: 10.1089/ten.tea.2009.0817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric Steck
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Helge Bertram
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Anja Walther
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Brohm
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Mrozik
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Dresden, Germany
| | - Maxi Rathmann
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Merle
- Orthopaedics I, Orthopaedic University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Gelinsky
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Karlsen TA, Shahdadfar A, Brinchmann JE. Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype. Tissue Eng Part C Methods 2010; 17:219-27. [PMID: 20799885 DOI: 10.1089/ten.tec.2010.0200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study we have isolated human primary uncultured articular chondrocytes. When these cells are allowed to proliferate within their own extracellular matrix (ECM), they begin to produce hyaline ECM molecules similar to embryological chondroblasts. These cells are called chondroblast-like cells. Upon continued culture these cells spread onto the plastic surface and dedifferentiate. We have characterized these three stages of chondral cells by gene expression and expression of microRNAs (miRNAs) and proteins. Gene expression was quantified by real-time reverse transcriptase (RT) polymerase chain reaction, miRNA expression by miRNA arrays, and protein synthesis by extra- and intracellular flow cytometry. Many of the genes, miRNAs, and proteins were differentially expressed in the different stages of chondral cells. In the context of cellular therapy, expression of some genes is a cause for concern. The best source of cells for treatment of lesions of hyaline cartilage has not yet been identified. Adult chondroblast-like cells may be strong candidates. Profound understanding of how expression of genes and synthesis of proteins are regulated in these cells, for instance, by miRNAs, may reveal new strategies for improving their synthesis of hyaline ECM. This insight is important to be able to use these cells in the clinic.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | |
Collapse
|
26
|
Omlor GW, Bertram H, Kleinschmidt K, Fischer J, Brohm K, Guehring T, Anton M, Richter W. Methods to monitor distribution and metabolic activity of mesenchymal stem cells following in vivo injection into nucleotomized porcine intervertebral discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 19:601-12. [PMID: 20039083 DOI: 10.1007/s00586-009-1255-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 11/25/2009] [Accepted: 12/10/2009] [Indexed: 12/17/2022]
Abstract
Intervertebral disc (IVD) degeneration involves a series of biochemical and morphological changes leading to loss of spinal stability and flexibility. Cell therapy is promising to reconstitute IVDs with new cells, however, sustained metabolic activity seems crucial for an active contribution to regeneration. The aim of the present study was to establish methods for separate follow up of persistence and activity of autologous porcine mesenchymal stem cells (pMSC) after implantation into IVDs of Goettingen minipigs in vivo in order to conclude about the potential of such an intervention strategy. For quantitative follow up, the transfer matrix was supplemented with Al(2)O(3) particles and pMSC which were retrovirally labeled with firefly luciferase (pMSC-Luc). Six mature Goettingen minipigs underwent matrix based cell transfer after partial nucleotomy of lumbar IVDs (n = 24). Day 0 and day 3 segments were analyzed for retained volume of Al(2)O(3) particles by micro-computed-tomography (muCT) and for cell activity by luciferase enzyme assessment. Three days after injection a reduction of Al(2)O(3) particles (P = 0.028) to about 9% and of pMSC-Luc activity to about 7% of initial values (P = 0.003) was detected, which suggests loss of 90% of the implant material under in vivo conditions without evidence for reduced pMSC-Luc metabolic activity (P = 0.887). In conclusion, separate follow up of implant material and cell activity was possible and unravels problems with in vivo implant persistence after annular puncture rather than quick loss of cell activity. Therefore, IVD-regeneration-strategies should increasingly focus on annulus reconstruction in order to reduce implant loss due to annular failure.
Collapse
Affiliation(s)
- G W Omlor
- Division of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maass PG, Wirth J, Aydin A, Rump A, Stricker S, Tinschert S, Otero M, Tsuchimochi K, Goldring MB, Luft FC, Bähring S. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E. Hum Mol Genet 2009; 19:848-60. [PMID: 20015959 DOI: 10.1093/hmg/ddp553] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Genetics, Nephrology, Hypertension, and Vascular Injury, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cartilage repair is a very successful pioneering area of regenerative medicine in which techniques of in situ regeneration and cell and tissue transplantation dominate over cell-free approaches to generate durable neocartilage. This review concentrates on advantages and limitations of mesenchymal stem cell (MSC)-based cartilage repair strategies induced by marrow stimulation. Detailed knowledge on the biology of MSC will be discussed in light of the requirements for MSC recruitment, retention, proliferation and chondrogenic differentiation. An improved microenvironment with timely correlated signals from biomaterials, growth factors, proteases, adjacent cartilage and subchondral bone may be key to a third generation of techniques to regenerate hyaline cartilage.
Collapse
Affiliation(s)
- W Richter
- Department of Experimental Orthopaedics, Orthopaedic University Hospital, Heidelberg, Germany.
| |
Collapse
|