1
|
Virovic-Jukic L, Ljubas D, Stojsavljevic-Shapeski S, Ljubičić N, Filipec Kanizaj T, Mikolasevic I, Grgurevic I. Liver regeneration as treatment target for severe alcoholic hepatitis. World J Gastroenterol 2022; 28:4557-4573. [PMID: 36157937 PMCID: PMC9476880 DOI: 10.3748/wjg.v28.i32.4557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Severe alcoholic hepatitis (AH) is a distinct entity in the spectrum of alcohol-related liver disease, with limited treatment options and high mortality. Supportive medical care with corticosteroids in selected patients is the only currently available treatment option, often with poor outcomes. Based on the insights into the pathogenetic mechanisms of AH, which are mostly obtained from animal studies, several new treatment options are being explored. Studies have implicated impaired and deranged liver regeneration processes as one of the culprit mechanisms and a potential therapeutic target. Acknowledging evidence for the beneficial effects of granulocyte colony-stimulating factor (G-CSF) on liver regeneration and immunomodulation in animal models, several human studies investigated its role in the treatment of advanced alcohol-related liver disease and AH. Contrary to the previously published studies suggesting benefits of G-CSF in the outcomes of patients with severe AH, these effects were not confirmed by a recently published multicenter randomized trial, suggesting that other options should rather be pursued. Stem cell transplantation represents another option for improving liver regeneration, but evidence for its efficacy in patients with severe AH and advanced alcohol-related liver disease is still very scarce and unconvincing, with established lack of efficacy in patients with compensated cirrhosis. In this review, we summarize the current knowledge on the pathogenesis and experimental therapies targeting liver regeneration. The lack of high-quality studies and evidence is a major obstacle in further treatment development. New insights into the pathogenesis of not only liver injury, but also liver regeneration processes are mandatory for the development of new treatment options. A reliable experimental model of the pathogenesis of AH and processes involved in liver recovery is still missing, and data obtained from animal studies are essential for future research.
Collapse
Affiliation(s)
- Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dominik Ljubas
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sanja Stojsavljevic-Shapeski
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
| | - Neven Ljubičić
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Dental Medicine, Zagreb 10000, Croatia
| | - Tajana Filipec Kanizaj
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Merkur University Hospital, Zagreb 10000, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology, Rijeka University Hospital Center, Rijeka 51000, Croatia
- Department of Internal Medicine, University of Rijeka School of Medicine, Rijeka 10000, Croatia
| | - Ivica Grgurevic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Dubrava University Hospital, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
3
|
Jindal A, Jagdish RK, Kumar A. Hepatic Regeneration in Cirrhosis. J Clin Exp Hepatol 2022; 12:603-616. [PMID: 35535091 PMCID: PMC9077225 DOI: 10.1016/j.jceh.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023] Open
Abstract
End-stage liver disease is characterized by massive hepatocyte death resulting in clinical decompensation and organ failures. Clinical consequences in cirrhosis are the results of the loss of functional hepatocytes and excessive scarring. The only curative therapy in advanced cirrhosis is orthotropic liver transplantation, but the clinical demand outweighs the availability of acceptable donor organs. Moreover, this also necessitates lifelong immunosuppression and carries associated risks. The liver has a huge capability for regeneration. Self-replication of quiescent differentiated hepatocytes and cholangiocytes occurs in patients with acute liver injury. Due to limited hepatocyte self-renewal capacity in advanced cirrhosis, great interest has therefore been shown in characterizing the possible role of hepatic progenitor cells and bone marrow-derived stem cells to therapeutically aid this process. Transplantation of cells from various sources that can be properly differentiated into functional liver cells or use of growth factors for ex-vivo expansion of progenitor cells is needed at utmost priority. Multiple researches over the last two decades have aided researchers in refining proliferation, differentiation, and storage techniques and understand the functionality of these cells for use in clinical practice. However, these cell-based therapies are still experimental and have to be used in trial settings.
Collapse
Key Words
- Ang2, angiopoietin 2
- BM, Bone marrow
- BM-MNCs, bone marrow mononuclear cells
- BMSC, bone marrow stem cells
- DAMPs, Damage associated molecular patterns
- EPCs, endothelial progenitor cells
- ESRP2, epithelial splicing regulatory protein 2
- GCSF
- HGF, hepatocyte growth factor
- HPC, Hepatocyte progenitor cells
- HSCs, hematopoietic stem cells
- Hh, Hedgehog
- HybHP, hybrid periportal hepatocytes
- MMP, matrix metalloprotease
- MSCs, mesenchymal stromal cells
- OLT, Orthotropic liver transplantation
- PAMPs, Pathogen associated molecular patterns
- SAH, severe alcoholic hepatitis
- SDF1, stromal-derived factor 1
- TNFSF12, tumor necrosis factor ligand superfamily member 12
- Terthigh, high Telomerase reverse transcriptase
- [Hnf4a], Hepatocyte Nuclear Factor 4 Alpha
- [Mfsd2a], Major Facilitator Superfamily Domain containing 2A
- acute liver failure
- chronic liver diseases
- hepatocyte transplant
- liver regeneration
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | | | - Anupam Kumar
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
4
|
Terai S, Tsuchiya A, Watanabe Y, Takeuchi S. Transition of clinical and basic studies on liver cirrhosis treatment using cells to seek the best treatment. Inflamm Regen 2021; 41:27. [PMID: 34530931 PMCID: PMC8444392 DOI: 10.1186/s41232-021-00178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The liver is a highly regenerative organ; however, its regeneration potential is reduced by chronic inflammation with fibrosis accumulation, leading to cirrhosis. With an aim to tackle liver cirrhosis, a life-threatening disease, trials of autologous bone marrow cell infusion (ABMi) therapy started in 2003. Clinical studies revealed that ABMi attenuated liver fibrosis and improved liver function in some patients; however, this therapy has some limitations such as the need of general anesthesia. Following ABMi therapy, studies have focused on specific cells such as mesenchymal stromal cells (MSCs) from a variety of tissues such as bone marrow, adipose tissue, and umbilical cord tissues. Particularly, studies have focused on gaining mechanistic insights into MSC distribution and effects on immune cells, especially macrophages. Several basic studies have reported the use of MSCs for liver cirrhosis models, while a number of clinical studies have used autologous and allogeneic MSCs; however, there are only a few reports on the obvious substantial effect of MSCs in clinical studies. Since then, studies have analyzed and identified the important signals or components in MSCs that regulate immune cells, such as macrophages, under cirrhotic conditions and have revealed that MSC-derived exosomes are key regulators. Researchers are still seeking the best approach and filling the gap between basic and clinical studies to treat liver cirrhosis. This paper highlights the timeline of basic and clinical studies analyzing ABMi and MSC therapies for cirrhosis and the scope for future studies and therapy.
Collapse
Affiliation(s)
- Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
5
|
Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol 2020; 27:70-80. [PMID: 33317249 PMCID: PMC7820202 DOI: 10.3350/cmh.2020.0194] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is a chronic condition that can lead to liver failure. Currently, the viable option for decreasing mortality is liver transplantation. However, transplant surgery is highly invasive. Therefore, cell-based therapy has been developed as an alternative. Based on promising findings from preclinical research, some new trials have been registered. One of them was autologous bone marrow cell infusion therapy and found that ameliorating liver fibrosis activated liver regeneration. Now, majority of trials focus on low-immunogenicity mesenchymal stem cells (MSCs) appropriate for allogeneic administration. However, despite about 20 years of research, only a limited number of cell-based therapies have entered routine practice. Furthermore, potential shortcomings of cell-based therapy include a limit on the number of cells, which may be administered, as well as their failure to infiltrate target organs. On the other hand, these research show that MSCs act as "conducting cells" and regulate host cells including macrophages via extracellular vesicles (EVs) or exosome signals, leading to ameliorate liver fibrosis and promote regeneration. Therefore, the concept of cell-free therapy, which makes use of cell-derived EVs or exosomes, is attracting attention. Cell-free therapies may be safely administered in large doses and are able to infiltrate target organs. However, development of cell-free therapy exhibits its own set of challenges and such therapy may not be completely curative in the context of liver disease. This review describes the history of cell-based therapy research and recent advances in cell-free therapy, as well as discussing the need for more effective therapies.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Du X, Chang S, Guo W, Zhang S, Chen ZK. Progress in Liver Transplant Tolerance and Tolerance-Inducing Cellular Therapies. Front Immunol 2020; 11:1326. [PMID: 32670292 PMCID: PMC7326808 DOI: 10.3389/fimmu.2020.01326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is currently the most effective method for treating end-stage liver disease. However, recipients still need long-term immunosuppressive drug treatment to control allogeneic immune rejection, which may cause various complications and affect the long-term survival of the recipient. Many liver transplant researchers constantly pursue the induction of immune tolerance in liver transplant recipients, immunosuppression withdrawal, and the maintenance of good and stable graft function. Although allogeneic liver transplantation is more tolerated than transplantation of other solid organs, and it shows a certain incidence of spontaneous tolerance, there is still great risk for general recipients. With the gradual progress in our understanding of immune regulatory mechanisms, a variety of immune regulatory cells have been discovered, and good results have been obtained in rodent and non-human primate transplant models. As immune cell therapies can induce long-term stable tolerance, they provide a good prospect for the induction of tolerance in clinical liver transplantation. At present, many transplant centers have carried out tolerance-inducing clinical trials in liver transplant recipients, and some have achieved gratifying results. This article will review the current status of liver transplant tolerance and the research progress of different cellular immunotherapies to induce this tolerance, which can provide more support for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Chang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Klaus Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
7
|
Qiu R, Murata S, Oshiro K, Hatada Y, Taniguchi H. Transplantation of fetal liver tissue coated by ultra-purified alginate gel over liver improves hepatic function in the cirrhosis rat model. Sci Rep 2020; 10:8231. [PMID: 32427847 PMCID: PMC7237464 DOI: 10.1038/s41598-020-65069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we used a new coating agent, that is, ultra-purified alginate gel (UPAL), for fetal liver tissue transplantation. This study aims to compare the effect of UPAL with the effect of other coating agents on improving the effect of fetal liver tissue transplantation in a liver cirrhosis rat model. Prior to the transplantation of wild-type ED14 fetal liver tissues, various coating agents were separately applied on the liver surface of rats with cirrhosis. Then, we compared the engraftment area, engraftment rate and liver function level of these rats. As a result, coating the liver surface of a cirrhosis rat with UPAL obtained the best effect in terms of engraftment area and engraftment rate of the transplanted liver tissue and in the recovery of liver function compared with control group. Therefore, UPAL coating may serve as a novel strategy for liver organoid transplantation.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, the Institute of Medical Science, the University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Katsutomo Oshiro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yumi Hatada
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, the Institute of Medical Science, the University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
8
|
Lee JY, Hong SH. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int J Stem Cells 2020; 13:1-12. [PMID: 31887851 PMCID: PMC7119209 DOI: 10.15283/ijsc19127] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are regarded as one of essential cell sources for treating regenerative diseases. Among many stem cells, the feasibility of using adult-derived hematopoietic stem cells in therapeutic approaches is very diverse, and is unarguably regarded as an important cell source in stem cell biology. So far, many investigators are exploring HSCs and modified HSCs for use in clinical and basic science. In the present review, we briefly summarized HSCs and their application in pathophysiologic conditions, including non-hematopoietic tissue regeneration as well as blood disorders. HSCs and HSCs-derived progenitors are promising cell sources in regenerative medicine and their contributions can be properly applied to treat pathophysiologic conditions. Among many adult stem cells, HSCs are a powerful tool to treat patients with diseases such as hematologic malignancies and liver disease. Since HSCs can be differentiated into diverse progenitors including endothelial progenitors, they may be useful for constructing strategies for effective therapy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
9
|
Sun A, Gao W, Xiao T. Autologous bone marrow stem cell transplantation via the hepatic artery for the treatment of hepatitis B virus-related cirrhosis: a PRISMA-compliant meta-analysis based on the Chinese population. Stem Cell Res Ther 2020; 11:104. [PMID: 32138750 PMCID: PMC7059376 DOI: 10.1186/s13287-020-01627-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Autologous bone marrow stem cell (ABMSC) transplantation has been considered a promising option for hepatitis B virus-related cirrhosis (HBV-C). Although an analysis of the published literature has been performed, the exact effects and safety have yet to be systematically investigated. Methods We conducted a wide-ranging online search of electronic databases (Web of Science, PubMed, Cochrane Library, Embase, CNKI, VIP, and Wanfang database) to reach systematic conclusions. Outcome measurements, including therapeutic efficacy, clinical symptoms, and adverse events, were extracted and analyzed statistically. Results Ultimately, a total of 10 articles including 662 HBV-C patients were included in this analysis, which indicated that ABMSC therapy could significantly improve liver function in patients with HBV-C in terms of the MELD and Child-Pugh scores, total bilirubin, serum albumin, alanine aminotransferase, aspartate aminotransferase, and coagulation function. Compared with patients receiving routine therapy (RT), those treated with ABMSC and RT combined therapy showed improved clinical symptoms, as represented by increased appetite and reduced fatigue and ascitic fluid and abdominal distension. Moreover, the fibrosis indexes indicated a reduction in liver fibrosis in patients treated with combined therapy according to the improved levels of hyaluronic acid (MD = − 70.47, CI = − 103.72–37.21, P < 0.0001), laminin (MD = − 25.11, CI = − 37.73–12.49, P < 0.0001), type III procollagen (MD = − 22.42, CI = − 34.49–10.34, P = 0.0003), and type IV collagen (MD = − 22.50, CI = − 39.92–5.08, P = 0.01). No obvious adverse events occurred during ABMSC treatment. Conclusion ABMSC transplantation via the hepatic artery was safe and effective in treating HBV-C without causing severe adverse events.
Collapse
Affiliation(s)
- Ani Sun
- Infection Control Office, Weifang People's Hospital, Weifang, 261041, Shandong Province, China
| | - Wenni Gao
- Dispensing room for intravenous transfusion, Weifang People's Hospital, Weifang, 261041, Shandong Province, China
| | - Ting Xiao
- Department of Infectious Diseases, Weifang People's Hospital, Guangwen Street, No.151, Weifang, 261041, Shandong Province, China.
| |
Collapse
|
10
|
Zhang L, Zhou D, Li J, Yan X, Zhu J, Xiao P, Chen T, Xie X. Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Hypoxia and the Transforming Growth Factor beta 1 (TGFβ-1) and SMADs Pathway in a Mouse Model of Cirrhosis. Med Sci Monit 2019; 25:7182-7190. [PMID: 31550244 PMCID: PMC6775794 DOI: 10.12659/msm.916428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The role of bone marrow-derived mesenchymal stem cells (BM-MSCs) in liver fibrosis remains poorly understood. This study aimed to use a mouse model of carbon tetrachloride (CCL4)-induced liver fibrosis to investigate the effects of BM-MSCs during liver hypoxia and the involvement of the transforming growth factor beta 1 (TGF-β1) and SMADs pathway. Material/Methods Thirty C57BL/6 mice were randomly divided into the control group (n=10), the model group (n=10), and the BM-MSC-treated model group (n=10). In the model group, liver fibrosis was induced by intraperitoneal injection of CCl4. BM-MSCs were transplanted after 12 weeks of CCl4 treatment. The serum biochemical parameters and histological changes in the liver, using histochemical stains, were investigated. The expression of collagen type I (collagen I), alpha-smooth muscle actin (α-SMA), TGF-β1, SMAD3, SMAD7, hypoxia-inducible factor 1 alpha (HIF-1α), and vascular endothelial grow factor (VEGF) were assessed by immunohistochemistry and quantitative real-time polymerase chain (RT-qPCR) reaction. Results Treatment with BM-MSCs reduced the expression of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the model group, and reduced liver fibrosis determined histologically using hematoxylin and eosin (H&E) and Masson’s trichrome staining compared with the model group. The area of liver fibrosis decreased after BM-MSCs treatment (p<0.05). Protein expression of HIF-1α and VEGF were decreased after BM-MSCs treatment (p<0.05). Transplantation of BM-MSCs reduced the mRNA expression of TGF-β1, collagen I, α-SMA, and SMAD3 (p<0.05). Conclusions BM-MSC transplantation reduced CCl4-induced murine liver fibrosis, indicating that in a hypoxic microenvironment, BM-MSCs may inhibit the TGFβ-1/SMADs pathway.
Collapse
Affiliation(s)
- Liting Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland).,Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Dan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Junfeng Li
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Xiaoming Yan
- The 4th People's Hospital of Qinghai Province, Xining, Qinghai, China (mainland)
| | - Jun Zhu
- Department of Pathology of Donggang Branch, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Ping Xiao
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Xiaodong Xie
- Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
11
|
Repeated Autologous Bone Marrow Transfusion through Portal Vein for Treating Decompensated Liver Cirrhosis after Splenectomy. Gastroenterol Res Pract 2018; 2018:4136082. [PMID: 30510572 PMCID: PMC6231388 DOI: 10.1155/2018/4136082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/24/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
Objective This study is aimed at examining the impact of repeated intraportal autologous bone marrow transfusion (ABMT) in patients with decompensated liver cirrhosis after splenectomy. Methods A total of 25 patients with decompensated liver cirrhosis undergoing splenectomy were divided into ABMT and control groups. The portal vein was cannulated intraoperatively using Celsite Implantofix through the right gastroomental vein. Both groups were given a routine medical treatment. Then, 18 mL of autologous bone marrow was transfused through the port in the patients of the ABMT group 1 week, 1 month, and 3 months after laminectomy, while nothing was given to the control group. All patients were monitored for adverse events. Liver function tests, including serum albumin (ALB), alanine aminotransferase (ALT), total bilirubin (TB), prothrombin activity (PTA), cholinesterase (CHE), α-fetoprotein (AFP), and liver stiffness measurement (LSM), were conducted before surgery and 1, 3, and 6 months after surgery. Results Significant improvements in ALB, ALT, and CHE levels and decreased LSM were observed in the ABMT group compared with those in the control group (P < 0.05). TB and PTA improved in both groups but with no significant differences between the groups. No significant changes were observed in AFP in the control group, but it decreased in the ABMT group. No major adverse effects were noted during the follow-up period in the patients of either group. Conclusions Repeated intraportal ABMT was clinically safe, and liver function of patients significantly improved. Therefore, this therapy has the potential to treat patients with decompensated liver cirrhosis after splenectomy. This trial was registered with the identification number of ChiCTR-ONC-17012592.
Collapse
|
12
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
13
|
Current Cell-Based Therapies in the Chronic Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:243-253. [PMID: 30484233 DOI: 10.1007/978-4-431-56847-6_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver diseases account for one of the leading causes of deaths in global health care. Furthermore, chronic liver failure such as liver cirrhosis is, namely, responsible for these fatal conditions. However, only liver transplantation is an established treatment for this end-stage condition, although the availability of this salvage treatment option is quite limited. Thus, the novel therapy such as artificial liver devices or cellular administration has been regarded as feasible. Especially cellular therapies have been proposed in decades. The technical advancement and progress of understanding of cellular differentiation have contributed to the development of basis of cellular therapy. This attractive therapeutic option has been advanced from original embryonic stem cells to more effective cellular fractions such as Muse cells. Indeed several cellular therapies including bone marrow-derived stem cells or peripheral blood-derived stem cells were initiated; the recent most organized clinical trials could not demonstrate its efficacy. Thus, truly innovative cellular therapy is needed to meet the scientific demands, and Muse cell administration is the remaining approach to this. In this article, we will discuss the current development and status of cellular therapy toward chronic liver failure.
Collapse
|
14
|
Matsuda T, Takami T, Sasaki R, Nishimura T, Aibe Y, Paredes BD, Quintanilha LF, Matsumoto T, Ishikawa T, Yamamoto N, Tani K, Terai S, Taura Y, Sakaida I. A canine liver fibrosis model to develop a therapy for liver cirrhosis using cultured bone marrow-derived cells. Hepatol Commun 2017; 1:691-703. [PMID: 29404486 PMCID: PMC5721436 DOI: 10.1002/hep4.1071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
Abstract
We have been developing a therapy for liver cirrhosis using cultured autologous bone marrow-derived mesenchymal stem cells (BMSCs). Before human clinical trials can be considered, the safety and efficacy of BMSC infusion in medium to large animals must be confirmed; thus, we developed a canine liver fibrosis model. A small amount of bone marrow fluid was aspirated from the canine humerus to assess the characteristics of BMSCs. We implanted a venous catheter in the stomach and a subcutaneous infusion port in the back of the neck of each canine. Repeated injection of CCl4 through the catheter was performed to induce liver cirrhosis. After 10 weeks of CCl4 injection, eight canines were equally divided into two groups: no cell infusion (control group) and autologous BMSC infusion through the peripheral vein (BMSC group). A variety of assays were carried out before and 4 weeks after the infusion. The area of liver fibrosis stained with sirius red was significantly reduced in the BMSC group 4 weeks after BMSC infusion, consistent with a significantly shortened half-life of indocyanine green and improved liver function. Conclusion: We established a useful canine liver fibrosis model and confirmed that cultured autologous BMSC infusion improved liver fibrosis without adverse effects. (Hepatology Communications 2017;1:691-703).
Collapse
Affiliation(s)
- Takashi Matsuda
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Taro Takami
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Ryo Sasaki
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Tatsuro Nishimura
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Yuki Aibe
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Bruno Diaz Paredes
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Luiz Fernando Quintanilha
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Tsuyoshi Ishikawa
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Naoki Yamamoto
- Yamaguchi University Health Administration Center Yamaguchi University Yamaguchi Japan
| | - Kenji Tani
- Department of Veterinary Surgery Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology Niigata University Graduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Yasuho Taura
- Department of Veterinary Surgery Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi Japan
| | - Isao Sakaida
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan.,Center for Reparative MedicineYamaguchi University Graduate School of Medicine, Yamaguchi University Yamaguchi Japan
| |
Collapse
|
15
|
Tsuchiya A, Kojima Y, Ikarashi S, Seino S, Watanabe Y, Kawata Y, Terai S. Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases. Inflamm Regen 2017; 37:16. [PMID: 29259715 PMCID: PMC5725741 DOI: 10.1186/s41232-017-0045-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapies have been used in clinical trials in various fields. These cells are easily expanded, show low immunogenicity, can be acquired from medical waste, and have multiple functions, suggesting their potential applications in a variety of diseases, including liver disease and inflammatory bowel disease. MSCs help prepare the microenvironment, in response to inflammatory cytokines, by producing immunoregulatory factors that modulate the progression of inflammation by affecting dendritic cells, B cells, T cells, and macrophages. MSCs also produce a large amount of cytokines, chemokines, and growth factors, including exosomes that stimulate angiogenesis, prevent apoptosis, block oxidation reactions, promote remodeling of the extracellular matrix, and induce differentiation of tissue stem cells. According to ClinicalTrials.gov, more than 680 clinical trials using MSCs are registered for cell therapy of many fields including liver diseases (more than 40 trials) and inflammatory bowel diseases (more than 20 trials). In this report, we introduce background and clinical studies of MSCs in liver disease and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Shunzo Ikarashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Satoshi Seino
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yuzo Kawata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| |
Collapse
|
16
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
17
|
Status of and candidates for cell therapy in liver cirrhosis: overcoming the "point of no return" in advanced liver cirrhosis. J Gastroenterol 2017; 52:129-140. [PMID: 27631592 DOI: 10.1007/s00535-016-1258-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.
Collapse
|
18
|
Shiota G, Itaba N. Progress in stem cell-based therapy for liver disease. Hepatol Res 2017; 47:127-141. [PMID: 27188253 DOI: 10.1111/hepr.12747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
Liver transplantation has been accepted as a useful therapeutic approach for patients with end-stage liver disease. However, the mismatch between the great demand for liver transplants and the number of available donor organs underscores the urgent need for alternative therapeutic strategies for patients with acute and chronic liver failure. The rapidly growing knowledge on stem cell biology has opened new avenues toward stem cell-based therapy for liver disease. As stem cells have capacity for high proliferation and multipotent differentiation, the characteristics of stem cells fit the cell therapy. Several types of cells have been investigated as possible sources of liver regeneration: mesenchymal stem cells, hematopoietic stem cells, liver progenitor cells, induced pluripotent stem cells, and bone marrow mononuclear cells. In vitro and in vivo experiments revealed that these cells have great potential as candidates of stem cell therapy. We reviewed the reports on clinical trials of cell therapy for liver disease that have been recently undertaken using mesenchymal stem cells, hematopoietic stem cells, bone marrow mononuclear cells, and liver progenitor cells. These reports have heterogeneity of description of trial design, types of infused cells, patient population, and efficacy of therapies. We addressed these reports from these viewpoints and clarified their significance. We hope that this review article will provide a perspective on the available approaches based on stem cell-based therapy for liver disease.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Noriko Itaba
- Departments of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
19
|
Kim JK, Kim SJ, Kim Y, Chung YE, Park YN, Kim HO, Kim JS, Park MS, Sakaida I, Kim DY, Lee JI, Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. Cell Transplant 2017; 26:1059-1066. [PMID: 28120743 DOI: 10.3727/096368917x694778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although several human clinical trials using various bone marrow-derived cell types for cirrhotic or decompensated patients have reported a short-term benefit, long-term follow-up data are limited. We analyzed the long-term clinical outcomes of autologous bone marrow cell infusion (ABMI) for decompensated liver cirrhosis (LC). Patients enrolled in a pilot single-armed ABMI study were followed up more than 5 years. Bone marrow-derived mononuclear cells (BM-MNCs) from decompensated LC were harvested and after processing were infused into a peripheral vein. The laboratory test results and long-term clinical course including liver transplantation (LT), development of cancer, cause of death, and survival after ABMI were analyzed. Nineteen patients were followed up for a median of 66 months after ABMI. Liver function, including serum levels of albumin and Child-Pugh (CP) score, was improved at the 1-year follow-up. Liver volume was significantly greater, cirrhosis was sustained, and collagen content was decreased at the 6-month follow-up. Five years after ABMI, five patients (26.3%) maintained CP class A without LT or death, and five patients (26.3%) had undergone elective LT. Hepatocellular carcinoma (HCC) occurred in five patients (26.3%), and lymphoma and colon cancer occurred in one patient each. Three patients (15.8%) were lost to follow-up at months 22, 31, and 33, respectively, but maintained CP class A until their last follow-up. Five patients expired due to infection. While improved liver function was maintained in some patients for more than 5 years after ABMI, other patients developed HCC. Further studies of long-term follow-up cohorts after cell therapy for LC are warranted.
Collapse
|
20
|
Matsumoto T, Takami T, Sakaida I. Cell transplantation as a non-invasive strategy for treating liver fibrosis. Expert Rev Gastroenterol Hepatol 2017; 10:639-48. [PMID: 26691057 DOI: 10.1586/17474124.2016.1134313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advancements in antiviral drugs have enabled control of viral hepatitis; yet, many patients with liver cirrhosis (LC) are awaiting liver transplants. Liver transplantation yields dramatic therapeutic effects, but problems such as shortage of donors, surgical invasiveness, immunological rejection and costs, limit the number of transplantations. Advances in liver regeneration therapy through cell transplantation as a non-invasive treatment for cirrhosis will supplement these restrictions to the number of liver transplants. Clinical trials for LC have included hematopoietic stem cell mobilization by administration of granulocyte colony-stimulating factor, infusion of autologous bone marrow cells, and administration of autologous mesenchymal stem cells derived from bone marrow or umbilical cord. Several recently reported randomized controlled studies have shown the effectiveness of these approaches. However, to promote implementation of new liver regeneration therapies, it is important to develop a system whereby cell therapies with ensured safety can be approved quickly.
Collapse
Affiliation(s)
- Toshihiko Matsumoto
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan.,b Department of Oncology and Laboratory Medicine , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| | - Taro Takami
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| | - Isao Sakaida
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| |
Collapse
|
21
|
Takami T, Yamasaki T, Saeki I, Matsumoto T, Suehiro Y, Sakaida I. Supportive therapies for prevention of hepatocellular carcinoma recurrence and preservation of liver function. World J Gastroenterol 2016; 22:7252-7263. [PMID: 27621572 PMCID: PMC4997645 DOI: 10.3748/wjg.v22.i32.7252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world and is associated with a high risk of recurrence. The development of a wide range of new therapies is therefore essential. In this study, from the perspective of supportive therapy for the prevention of HCC recurrence and preservation of liver function in HCC patients, we surveyed a variety of different therapeutic agents. We show that branched chain amino acids (BCAA) supplementation and late evening snack with BCAA, strategies that address issues of protein-energy malnutrition, are important for liver cirrhotic patients with HCC. For chemoprevention of HCC recurrence, we show that viral control after radical treatment is important. We also reviewed the therapeutic potential of antiviral drugs, sorafenib, peretinoin, iron chelators. Sorafenib is a kinase inhibitor and a standard therapy in the treatment of advanced HCC. Peretinoin is a vitamin A-like molecule that targets the retinoid nuclear receptor to induce apoptosis and inhibit tumor growth in HCC cells. Iron chelators, such as deferoxamine and deferasirox, act to prevent cancer cell growth. These chelators may have potential as combination therapies in conjunction with peretinoin. Finally, we review the potential inhibitory effect of bone marrow cells on hepatocarcinogenesis.
Collapse
|
22
|
Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules 2015; 5:3309-38. [PMID: 26610589 PMCID: PMC4693280 DOI: 10.3390/biom5043309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph M Pachunka
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Eom YW, Kim G, Baik SK. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J Gastroenterol 2015; 21:10253-10261. [PMID: 26420953 PMCID: PMC4579873 DOI: 10.3748/wjg.v21.i36.10253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis occurs as a result of various chronic liver injuries, which may be caused by viral infections, alcohol abuse and the administration of drugs and chemicals. Recently, bone marrow cells (BMCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been used for developing treatments for cirrhosis. Clinical trials have investigated the therapeutic potential of BMCs, HSCs and MSCs for the treatment of cirrhosis based on their potential to differentiate into hepatocytes. Although the therapeutic mechanisms of BMC, HSC and MSC treatments are still not fully characterized, the evidence thus far has indicated that the potential therapeutic mechanisms of MSCs are clearer than those of BMCs or HSCs with respect to liver regenerative medicine. MSCs suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, reverse liver fibrosis and enhance liver functionality. This paper summarizes the clinical studies that have used BMCs, HSCs and MSCs in patients with liver failure or cirrhosis. We also present the potential therapeutic mechanisms of BMCs, HSCs and MSCs for the improvement of liver function.
Collapse
|
24
|
Wang K, Chen X, Ren J. Autologous bone marrow stem cell transplantation in patients with liver failure: a meta-analytic review. Stem Cells Dev 2015; 24:147-59. [PMID: 25356526 DOI: 10.1089/scd.2014.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autologous bone marrow stem cell (ABMSC) transplantation has been utilized in clinical practice to treat patients with liver failure, but the therapeutic effect remains to be defined. A meta-analysis is essential to assess clinical advantages of ABMSC transplantation in patients with liver failure. A systematic search of published works [eg, PubMed, Medline, Embase, Chin J Clinicians (Electronic edition), and Science Citation Index] was conducted to compare clinical outcomes of ABMSC transplantation in patients with liver failure. Meta-analytic results were tested by fixed-effects model or random-effects model, dependent on the characteristics of variables. A total of 534 patients from seven studies were included in final meta-analysis. Subsequent to ABMSC transplantation, there was no significant improvement in general symptom and signs such as loss of appetite, fatigue, and ascites. Activities of serum ALT were not significantly decreased with weighted mean difference (WMD) of -19.36 and 95% confidence interval (CI) -57.53 to 18.80 (P=0.32). Postoperative level of albumin (ALB) was expectedly enhanced by stem cell transplantation (WMD 2.97, 95% CI 0.52 to 5.43, P<0.05, I(2)=84%). Coagulation function was improved as demonstrated by a short prothrombin time (PT) (WMD -1.18, 95% CI -2.32 to -0.03, P<0.05, I(2)=6%), but was not reflected by prothrombin activity (PTA) (P=0.39). Total bilirubin (TBIL) was drastically diminished after ABMSC therapy (WMD -14.85, 95% CI -20.39 to -9.32, P<0.01, I(2)=73%). Model for end-stage liver disease (MELD) scores were dramatically reduced (WMD -2.27, 95% CI -3.53 to -1.02, P<0.01, I(2)=0%). The advantage of ABMSC transplantation could be maintained more than 24 weeks as displayed by time-courses of ALB, TBIL, and MELD score. ABMSC transplantation does provide beneficial effects for patients with liver failure. Therapeutic effects can last for 6 months. However, long-term effects need to be determined.
Collapse
Affiliation(s)
- Kewei Wang
- 1 Department of Surgery, University of Illinois College of Medicine , Peoria, Illinois
| | | | | |
Collapse
|
25
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
26
|
Pankaj P, Zhang Q, Bai XL, Liang TB. Autologous bone marrow transplantation in decompensated liver: Systematic review and meta-analysis. World J Gastroenterol 2015; 21:8697-8710. [PMID: 26229412 PMCID: PMC4515851 DOI: 10.3748/wjg.v21.i28.8697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of autologous bone marrow mononuclear cell transplantation in decompensated liver disease.
METHODS: Medline, EMBASE, PubMed, Science Direct, and the Cochrane Library were searched for relevant studies. Retrospective case-control studies were included along with randomized clinical trials. Meta-analysis was performed in line with recommendations from the Cochrane Collaboration software review manager. Heterogeneity was assessed using a random-effects model.
RESULTS: Four randomized controlled trials and four retrospective studies were included. Cell transplantation increased serum albumin level by 1.96 g/L (95%CI: 0.74-3.17; P = 0.002], 2.55 g/L (95%CI: 0.32-4.79; P = 0.03), and 3.65 g/L (95%CI: 0.76-6.54; P = 0.01) after 1, 3, and 6 mo, respectively. Patients who had undergone cell transplantation also had a lower level of total bilirubin [mean difference (MD): -1.37 mg/dL; 95%CI: -2.68-(-0.06); P = 0.04] after 6 mo. This decreased after 1 year when compared to standard treatment (MD: -1.26; 95%CI: -2.48-(-0.03); P = 0.04]. A temporary decrease in alanine transaminase and aspartate transaminase were significant in the cell transplantation group. However, after 6 mo treatment, patients who had undergone cell transplantation had a slightly longer prothrombin time (MD: 5.66 s, 95%CI: 0.04-11.28; P = 0.05). Changes in the model for end-stage liver disease score and Child-Pugh score were not statistically significant.
CONCLUSION: Autologous bone marrow transplantation showed some benefits in patients with decompensated liver disease. However, further studies are still needed to verify its role in clinical treatment for end-stage liver disease.
Collapse
|
27
|
Huang M, Feng Z, Ji D, Cao Y, Shi X, Chen P, Wang P, Tang M, Liu K. Use of a transjugular intrahepatic portosystemic shunt combined with autologous bone marrow cell infusion in patients with decompensated liver cirrhosis: an exploratory study. Cytotherapy 2015; 16:1575-1583. [PMID: 25287603 DOI: 10.1016/j.jcyt.2014.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Currently, there is no treatment for decompensated liver cirrhosis except for liver transplantation. The safety and effect on liver function of a transjugular intrahepatic portosystemic shunt (TIPS) with and without autologous bone marrow cell (BMC) infusion in patients with decompensated liver cirrhosis were determined. METHODS Ten patients who were diagnosed with decompensated liver cirrhosis during the period from September 2011 to July 2012 were enrolled in this study. The patients underwent TIPS (TIPS group) or combined treatment with TIPS and BMC infusion through the hepatic artery (TIPS+BMC group). All patients were monitored for adverse events, liver function and complications caused by portal hypertension during a period of 52 weeks. RESULTS The number of infused BMCs was 2.65 ± 1.20 ×10(9). Significant improvements in the serum levels of albumin and total bilirubin and decreased Child-Pugh scores were observed in patients treated with both TIPS and BMCs (P < 0.05), whereas no such changes were observed in the TIPS group. Endoscopic findings showed that varices in the esophagus and the gastric fundus were alleviated after either treatment. All 10 patients showed a complete or partial resolution of ascites at 4 weeks. No major adverse effects were noted during the follow-up period for patients in either group. CONCLUSIONS TIPS combined with BMC infusion is clinically safe; the treatment improved liver function and alleviated complications caused by portal hypertension; therefore, this combination has potential for treatment of patients with decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Maotao Huang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China.
| | - Zaoming Feng
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Daijin Ji
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Yaling Cao
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Xiaoying Shi
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Ping Chen
- Department of Nursing, The 452(nd) Hospital of PLA, Chengdu, China
| | - Ping Wang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Min Tang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Kai Liu
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| |
Collapse
|
28
|
Okura H, Soeda M, Morita M, Fujita M, Naba K, Ito C, Ichinose A, Matsuyama A. Therapeutic potential of human adipose tissue-derived multi-lineage progenitor cells in liver fibrosis. Biochem Biophys Res Commun 2014; 456:860-5. [PMID: 25490388 DOI: 10.1016/j.bbrc.2014.11.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Liver fibrosis is characterized by excessive accumulation of extracellular matrix. In a mouse model of liver fibrosis, systemic injection of bone marrow mesenchymal stem cells (BM-MSCs) was considered to rescue the diseased phenotype. The aim of this study was to assess the effectiveness of human adipose tissue-derived multi-lineage progenitor cells (hADMPCs) in improving liver fibrosis. METHODS AND RESULTS hADMPCs were isolated from subcutaneous adipose tissues of healthy volunteers and expanded. Six week-old male nude mice were treated with carbon tetra-chloride (CCl4) by intraperitoneal injection twice a week for 6 weeks, followed by a tail vein injection of hADMPCs or placebo control. After 6 more weeks of CCl4 injection (12 weeks in all), nude mice with hADMPCs transplants exhibited a significant reduction in liver fibrosis, as evidenced by Sirius Red staining, compared with nude mice treated with CCl4 for 12 weeks without hADMPCs transplants. Moreover, serum glutamic pyruvate transaminase and total bilirubin levels in hADMPCs-treated nude mice were lower levels than those in placebo controls. Production of fibrinolytic enzyme MMPs from hADMPCs were examined by ELISA and compared to that from BM-MSCs. MMP-2 levels in the culture media were not significantly different, whereas those of MMP-3 and -9 of hADMPCs were higher than those by BM-MSCs. CONCLUSION These results showed the mode of action and proof of concept of systemic injection of hADMPCs, which is a promising therapeutic intervention for the treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Hanayuki Okura
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879, Japan
| | - Mayumi Soeda
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuko Morita
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maiko Fujita
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kyoko Naba
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chiyoko Ito
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Akihiro Ichinose
- Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, 5-5-2-602 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879, Japan.
| |
Collapse
|
29
|
Logan GJ, de Alencastro G, Alexander IE, Yeoh GC. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. Int J Biochem Cell Biol 2014; 56:141-52. [PMID: 25449261 DOI: 10.1016/j.biocel.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Gustavo de Alencastro
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia; University of Sydney Discipline of Paediatrics and Child Health, Westmead, NSW 2145, Australia
| | - George C Yeoh
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Crawley, WA 6009, Australia.
| |
Collapse
|
30
|
Quintanilha LF, Takami T, Hirose Y, Fujisawa K, Murata Y, Yamamoto N, Goldenberg RCDS, Terai S, Sakaida I. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol Res 2014; 44:E206-17. [PMID: 23889977 DOI: 10.1111/hepr.12204] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
AIM To overcome current limitations of therapy for liver diseases, cell-based therapies using mesenchymal stem cells (MSC) have been attempted through basic and clinical approaches. Oxidative stress is a crucial factor in hepatology, and reactive oxygen species (ROS) are well-established molecules responsible for its deleterious effects. The antioxidant properties of MSC were recently demonstrated, and therefore we examined the antioxidant activity of canine MSC (cMSC), their effects on isolated hepatocytes in vitro and their curative potential against thioacetamide (TAA)-induced liver injury in vivo. METHODS To evaluate the ability of cMSC to challenge oxidative stress, cell viability, cytotoxicity and ROS were measured in cultured cMSC treated with TAA. Also, cMSC were co-cultured with hepatocytes in the same injury condition, and the ROS level was measured exclusively in hepatocytes. Finally, to verify the curative potential of cMSC, 2.0 × 10(6) cells or phosphate-buffered saline were injected systemically in non-obese diabetic/severe combined immunodeficiency mice that received TAA injections twice a week for 13 weeks. We then evaluated histological parameters, serum injury markers and redox homeostasis. RESULTS cMSC overcame TAA-induced oxidative stress in vitro, as shown by increased viability and lower cytotoxicity and ROS levels. Moreover, hepatocytes co-cultured with cMSC also showed decreased cellular ROS. The in vivo study showed that mice treated with cMSC presented with an ameliorated histological pattern, suppressed fibrosis, lower serum injury marker levels and better oxidative parameters. CONCLUSION We concluded that cMSC injection reduce TAA-induced liver injury through antioxidant activities and hepatoprotective effects, showing a curative potential in liver diseases.
Collapse
Affiliation(s)
- Luiz Fernando Quintanilha
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Behbahan IS, Keating A, Gale RP. Concise review: bone marrow autotransplants for liver disease? Stem Cells 2014; 31:2313-29. [PMID: 23939914 DOI: 10.1002/stem.1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
There are increasing reports of using bone marrow-derived stem cells to treat advanced liver disease. We consider several critical issues that underlie this approach. For example, are there multipotent stem cell populations in human adult bone marrow? Can they develop into liver cells or supporting cell types? What are stromal stem/progenitor cells, and can they promote tissue repair without replacing hepatocytes? Does reversal of end-stage liver disease require new hepatocytes, a new liver microenvironment, both, neither or something else? Although many of these questions are unanswered, we consider the conceptual and experimental bases underlying these issues and critically analyze results of clinical trials of stem cell therapy of end-stage liver disease.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
32
|
Tomita K, Haga H, Mizuno K, Katsumi T, Sato C, Okumoto K, Nishise Y, Watanabe H, Saito T, Ueno Y. Epiregulin promotes the emergence and proliferation of adult liver progenitor cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G50-7. [PMID: 24812054 DOI: 10.1152/ajpgi.00434.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously reported that epiregulin is a growth factor that seems to act on liver progenitor cells (LPCs) during liver regeneration. However, the relationship between epiregulin and LPCs has remained unclear. The aim of the present study was to clarify the role of epiregulin during liver regeneration. The serum levels of epiregulin in patients with acute liver failure were examined. A liver injury model was developed using mice fed a diet containing 0.1% 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) to induce LPCs. We then evaluated the expression of epiregulin and LPCs in these mice. The proliferation of epithelial cell adhesion molecule + LPCs cultured with epiregulin was examined in vitro, and finally epiregulin was overexpressed in mouse liver. In patients with acute liver failure, serum epiregulin levels were elevated significantly. In DDC mice, LPCs emerged around the portal area. Epiregulin was also detected around the portal area during the course of DDC-induced liver injury and was partially coexpressed with Thy1. Serum epiregulin levels in DDC mice were also significantly elevated. Recombinant epiregulin augmented the proliferative capacity of the LPCs in a dose-dependent manner. In mice showing overexpression of epiregulin, the expression of PCNA on hepatocytes was increased significantly. Finally, LPCs emerged around the portal area after epiregulin gene delivery. We concluded that epiregulin promotes the proliferation of LPCs and DNA synthesis by hepatocytes and is upregulated in the serum of patients with liver injury. Furthermore, induction of epiregulin leads to the appearance of LPCs. Epiregulin would be a useful biomarker of liver regeneration.
Collapse
Affiliation(s)
- Kyoko Tomita
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kei Mizuno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Chikako Sato
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazuo Okumoto
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuko Nishise
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hisayoshi Watanabe
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
33
|
Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39:673-85. [PMID: 24528093 DOI: 10.1111/apt.12645] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/24/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND As morbidity and mortality from liver disease continues to rise, new strategies are necessary. Liver transplantation is not only an expensive resource committing the patient to lifelong immunosuppression but also suitable donor organs are in short supply. Against this background, autologous stem cell therapy has emerged as a potential treatment option. AIM To evaluate if it is possible to make a judgement on the safety, feasibility and effect of autologous stem cell therapy for patients with liver disease. METHODS MEDLINE and EMBASE were searched up until July 2013 to identify studies where autologous stem cell therapy was administered to patients with liver disease. RESULTS Of 1668 studies identified, 33 were eligible for inclusion evaluating a median sample size of 10 patients for a median follow-up of 6 months. Although there was marked heterogeneity between studies with regards to type, dose and route of delivery of stem cell, the treatment was shown to be safe and feasible largely when a peripheral route of administration was used. Of the studies which also looked at biochemical outcome, statistically significant improvement in liver function tests was seen in 16 studies post-treatment. CONCLUSION Although autologous stem cell therapy is a much needed possibility in the treatment of liver disease, further robust clinical trials and collaborative protocols are required.
Collapse
Affiliation(s)
- J K Moore
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
34
|
Terai S, Takami T, Yamamoto N, Fujisawa K, Ishikawa T, Urata Y, Tanimoto H, Iwamoto T, Mizunaga Y, Matsuda T, Oono T, Marumoto M, Burganova G, Fernando Quintanilha L, Hidaka I, Marumoto Y, Saeki I, Uchida K, Yamasaki T, Tani K, Taura Y, Fujii Y, Nishina H, Okita K, Sakaida I. Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:206-10. [PMID: 24450831 DOI: 10.1089/ten.teb.2013.0527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies.
Collapse
Affiliation(s)
- Shuji Terai
- 1 Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine , Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc 2014; 89:414-24. [PMID: 24582199 PMCID: PMC4212517 DOI: 10.1016/j.mayocp.2013.10.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Regenerative medicine is energizing and empowering basic science and has the potential to dramatically transform health care in the future. Given the remarkable intrinsic regenerative properties of the liver, as well as widespread adoption of regenerative strategies for liver disease (eg, liver transplant, partial hepatectomy, living donor transplant), hepatology has always been at the forefront of clinical regenerative medicine. However, an expanding pool of patients awaiting liver transplant, a limited pool of donor organs, and finite applicability of the current surgical approaches have created a need for more refined and widely available regenerative medicine strategies. Although cell-based therapies have been used extensively for hematologic malignant diseases and other conditions, the potential application of cellular therapy for acute and chronic liver diseases has only more recently been explored. New understanding of the mechanisms of liver regeneration and repair, including activation of local stem/progenitor cells and contributions from circulating bone marrow-derived stem cells, provide the theoretical underpinnings for the rational use of cell-based therapies in clinical trials. In this review, we dissect the scientific rationale for various modalities of cell therapy for liver diseases being explored in animal models and review those tested in human clinical trials. We also attempt to clarify some of the important ongoing questions that need to be addressed in order to bring these powerful therapies to clinical translation. Discussions will cover transplant of hepatocytes and liver stem/progenitor cells as well as infusion or stimulation of bone marrow-derived stem cells. We also highlight tremendous scientific advances on the horizon, including the potential use of induced pluripotent stem cells and their derivatives as individualized regenerative therapy for liver disease.
Collapse
Affiliation(s)
| | - Jorge Rakela
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
| |
Collapse
|
36
|
Kochat V, Baligar P, Maiwall R, Mukhopadhyay A. Bone marrow stem-cell therapy for genetic and chronic liver diseases. Hepatol Int 2014. [DOI: 10.1007/s12072-013-9499-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Bone marrow cell-based regenerative therapy for liver cirrhosis. World J Methodol 2013; 3:65-9. [PMID: 25237624 PMCID: PMC4145572 DOI: 10.5662/wjm.v3.i4.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Bone marrow cells are capable of differentiation into liver cells. Therefore, transplantation of bone marrow cells has considerable potential as a future therapy for regeneration of damaged liver tissue. Autologous bone marrow infusion therapy has been applied to patients with liver cirrhosis, and improvement of liver function parameters has been demonstrated. In this review, we summarize clinical trials of regenerative therapy using bone marrow cells for advanced liver diseases including cirrhosis, as well as topics pertaining to basic in vitro or in vivo approaches in order to outline the essentials of this novel treatment modality.
Collapse
|
38
|
Tanimoto H, Terai S, Taro T, Murata Y, Fujisawa K, Yamamoto N, Sakaida I. Improvement of liver fibrosis by infusion of cultured cells derived from human bone marrow. Cell Tissue Res 2013; 354:717-28. [PMID: 24104560 DOI: 10.1007/s00441-013-1727-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/29/2013] [Indexed: 01/12/2023]
Abstract
We develop "autologous bone marrow cell infusion (ABMi) therapy" for the treatment of human decompensated liver cirrhosis and confirm the efficacy and safety of this treatment in multicenter clinical studies. With the goal of further expanding the applications of ABMi, we first cultured human bone marrow cells and then determined whether a cell fraction found to be effective in improving liver fibrosis can be amplified. Cells harvested after two passages (P2 cells) consistently contained approximately 94% mesenchymal stem cells (MSCs); conversely, the cells harvested after only medium change (P0 cells) contained many macrophages. MSCs (2.8 × 10(8)) in P2 cells were harvested from 3.8 × 10(8) bone marrow-derived mononuclear cells after 22 days. DNA-chip analysis also showed during the culturing step that bone marrow-derived cells decreased with macrophage phenotype. The infused 5 × 10(5) P2 cells significantly improved liver fibrosis in the nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse carbon tetrachloride (CCl4) liver cirrhosis model and induced the expression of matrix metalloproteinase (MMP)-9 and suppressed expressions of alpha smooth muscle actin (αSMA), tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) in the liver. Cultured human bone marrow-derived cells (P2 cells) significantly inhibited liver fibrosis. The increase of MMP-9 and suppressed activation of hepatic stellate cells (HSCs) through the regulation of humoral factors (TNFα and TGFβ) contribute to the improvement of liver fibrosis by MSCs comprising about 94% of P2 cells. MSCs in cultured human bone marrow-derived mono-nuclear cells (BM-MNCs) proliferate sufficiently in cell therapy, so we believe our cultured bone marrow-derived cell therapy can lead to expanded clinical applications and enable outpatient therapy.
Collapse
Affiliation(s)
- Haruko Tanimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Kato T, Hisasue M, Segawa K, Fujimoto A, Makiishi E, Neo S, Yasuno K, Kobayashi R, Tsuchiya R. Accumulation of xenotransplanted canine bone marrow cells in NOD/SCID/γc(null) mice with acute hepatitis induced by CCl4. J Vet Med Sci 2013; 75:847-55. [PMID: 23411484 DOI: 10.1292/jvms.12-0530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone marrow cell infusion (BMI) has recently been suggested as an effective therapy for refractory liver disease; however, the efficiency of BMI using canine bone marrow cells (cBMCs) has not been reported. We evaluated the accumulation potential of cBMCs in a mouse model of acute liver failure. Acute hepatitis was induced by carbon tetrachloride (CCl4) treatment in NOD/SCID/γc(null)(NOG) mice and wild-type (WT) C57BL mice, and the characteristics of liver dysfunction and the degree of hepatic injury and regeneration were compared between the two mouse models. Next, female CCl4-treated NOG mice were xenotransplanted with male PKH26-labeled cBMCs, and the potential of cBMCs to accumulate in injured liver tissue compartments was examined. Fluorescence microscopy was performed to histologically detect the infused cBMCs, and DNA polymerase chain reaction was performed for detection of the male Y chromosome (SRY gene) in the recipient female NOG mice. The number of PKH26-positive cBMCs transplanted in the liver tissue gradually increased in the NOG mice. The infused cBMCs were located in the necrotic area of the liver at an early stage after transplantation, and most had accumulated a week after transplantation. However, the therapeutic efficacy of the xenotransplantation remained unclear, because no significant differences were observed concerning the extent liver injury and regeneration between the cBMC-transplanted and saline control mice. These results suggest that cBMCs will specifically accumulate in injured liver tissue and that BMC transplantation may have the potential to repair liver deficiency.
Collapse
Affiliation(s)
- Takashi Kato
- Laboratory of Internal Medicine II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoku, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Park CH, Bae SH, Kim HY, Kim JK, Jung ES, Chun HJ, Song MJ, Lee SE, Cho SG, Lee JW, Choi JY, Yoon SK, Han NI, Lee YS. A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in five patients with liver failure. Cytotherapy 2013; 15:1571-9. [PMID: 23849977 DOI: 10.1016/j.jcyt.2013.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/15/2013] [Accepted: 05/19/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Many rodent experiments and human studies on stem cell therapy have shown promising therapeutic approaches to liver diseases. We investigated the clinical outcomes of five patients with liver failure of various causes who received autologous CD34-depleted bone marrow-derived mononuclear cell (BM-MNC) transplantation, including mesenchymal stromal cells, through the hepatic artery. METHODS CD34-depleted BM-MNCs were obtained from five patients waiting for liver transplantation by bone marrow aspiration and using the CliniMACS CD34 Reagent System (Miltenyi Biotech, Bergisch Gladbach, Germany), and autologous hepatic artery infusion was performed. The causes of hepatic decompensation were hepatitis B virus (HBV), hepatitis C virus (HCV), propylthiouracil-induced toxic hepatitis and Wilson disease. RESULTS Serum albumin levels improved 1 week after transplantation from 2.8 g/dL, 2.4 g/dL, 2.7 g/dL and 1.9 g/dL to 3.3 g/dL, 3.1 g/dL, 2.8 g/dL and 2.6 g/dL. Transient liver elastography data showed some change from 65 kPa, 33 kPa, 34.8 kPa and undetectable to 46.4 kPa, 19.8 kPa, 29.1 kPa and 67.8 kPa at 4 weeks after transplantation in a patient with Wilson disease, a patient with HCV, and two patients with HBV. Ascites decreased in two patients. One of the patients with HBV underwent liver transplantation 4 months after the infusion, and the hepatic progenitor markers (cytokeratin [CD]-7, CD-8, CD-9, CD-18, CD-19, c-Kit and epithelial cell adhesion molecule [EpCAM]) were highly expressed in the explanted liver. CONCLUSIONS Serum albumin levels, liver stiffness, liver volume, subjective healthiness and quality of life improved in the study patients. Although these findings were observed in a small population, the results may suggest a promising future for autologous CD34-depleted BM-MNC transplantation as a bridge to liver transplantation in patients with liver failure.
Collapse
Affiliation(s)
- Chung-Hwa Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Spahr L, Chalandon Y, Terraz S, Kindler V, Rubbia-Brandt L, Frossard JL, Breguet R, Lanthier N, Farina A, Passweg J, Becker CD, Hadengue A. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 2013; 8:e53719. [PMID: 23341981 PMCID: PMC3544843 DOI: 10.1371/journal.pone.0053719] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022] Open
Abstract
Objective Impaired liver regeneration is associated with a poor outcome in patients with decompensated alcoholic liver disease (ALD). We assessed whether autologous bone marrow mononuclear cell transplantation (BMMCT) improved liver function in decompensated ALD. Design 58 patients (mean age 54 yrs; mean MELD score 19, all with cirrhosis, 81% with alcoholic steatohepatitis at baseline liver biopsy) were randomized early after hospital admission to standard medical therapy (SMT) alone (n = 30), including steroids in patients with a Maddrey’s score ≥32, or combined with G-CSF injections and autologous BMMCT into the hepatic artery (n = 28). Bone marrow cells were harvested, isolated and reinfused the same day. The primary endpoint was a ≥3 points decrease in the MELD score at 3 months, corresponding to a clinically relevant improvement in liver function. Liver biopsy was repeated at week 4 to assess changes in Ki67+/CK7+ hepatic progenitor cells (HPC) compartment. Results Both study groups were comparable at baseline. After 3 months, 2 and 4 patients died in the BMMCT and SMT groups, respectively. Adverse events were equally distributed between groups. Moderate alcohol relapse occurred in 31% of patients. The MELD score improved in parallel in both groups during follow-up with 18 patients (64%) from the BMMCT group and 18 patients (53%) from the SMT group reaching the primary endpoint (p = 0.43 (OR 1.6, CI 0.49–5.4) in an intention to treat analysis. Comparing liver biopsy at 4 weeks to baseline, steatosis improved (p<0.001), and proliferating HPC tended to decrease in both groups (−35 and −33%, respectively). Conclusion Autologous BMMCT, compared to SMT is a safe procedure but did not result in an expanded HPC compartment or improved liver function. These data suggest either insufficient regenerative stimulation after BMMCT or resistance to liver regenerative drive in patients with decompensated alcoholic cirrhosis. Trial Registration Controlled-Trials.com ISRCTN83972743.
Collapse
Affiliation(s)
- Laurent Spahr
- Division of Gastroenterology and Hepatology, University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iwamoto T, Terai S, Hisanaga T, Takami T, Yamamoto N, Watanabe S, Sakaida I. Bone-marrow-derived cells cultured in serum-free medium reduce liver fibrosis and improve liver function in carbon-tetrachloride-treated cirrhotic mice. Cell Tissue Res 2012. [PMID: 23183782 DOI: 10.1007/s00441-012-1528-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously developed autologous bone marrow cell infusion (ABMi) therapy for liver cirrhosis patients. One problem associated with ABMi therapy is that general anesthesia is required to obtain 400 ml bone marrow fluid from liver cirrhosis patients. However, many patients with decompensated cirrhosis do not meet the criteria, because of decreased liver function or an increased bleeding tendency. To overcome these issues, our aim is to derive liver repair cells from small amounts of autologous bone marrow aspirates obtained under local anesthesia and to use these cells in liver cirrhosis patients. Here, we conducted, by using a mouse model, basic research aimed at achieving novel liver regeneration therapy. We cultured bone marrow cells aspirated from the femurs of C57 BL/6 Tg14 (act-EGFP) OsbY01 mice (green fluoresent protein [GFP]-transgenic mice). After 14 days of culture with serum-free medium (good manufacturing practice grade), the obtained spindle-shaped GFP-positive cells were injected (1×10(4) cells) via the caudal vein into mice with carbon tetrachloride (CCl4)-induced cirrhosis. Numerous cultured macrophages and some mesenchymal stem cells repopulated the cirrhotic liver. The results showed that serum albumin, liver fibrosis and liver function were significantly improved in the group treated with cultured bone marrow cells (P<0.01). Moreover, matrix metalloproteinase-9 expression was increased in the liver (P<0.01). Thus, infusion of bone-marrow-derived cultured cells improved liver function and liver fibrosis in mice with CCl4-induced cirrhosis.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Gastroenterology & Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim RH, Mehrazarin S, Kang MK. Therapeutic potential of mesenchymal stem cells for oral and systemic diseases. Dent Clin North Am 2012; 56:651-75. [PMID: 22835544 PMCID: PMC3426923 DOI: 10.1016/j.cden.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells whose self-renewal, multipotency, and immunosuppressive functions have been investigated for therapeutic applications. MSCs have used for various systemic organ regenerative therapies, allowing rescue of tissue function in damaged or failing organs. This article reviews the regenerative and immunomodulatory functions of MSCs and their applications in dental, orofacial, and systemic tissue regeneration and treatment of inflammatory disorders. It also addresses challenges to MSC-mediated therapeutics arising from tissue and MSC aging and host immune response against allogenic MSC transplantation, and discusses alternative sources of MSCs aimed at overcoming these limitations.
Collapse
Affiliation(s)
- Reuben H. Kim
- Phone: (310) 825-7312, , UCLA School of Dentistry, Division of Restorative Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095
| | - Shebli Mehrazarin
- , Phone: (310) 267-2810, UCLA School of Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095
| | - Mo K. Kang
- Jack Weichman Endowed Chair, Phone: (310) 825-8048, , UCLA School of Dentistry, Division of Associated Clinical Specialty, Section of Endodontics, 10833 Le Conte Ave., Los Angeles, CA 90095
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To provide an overview of the current status of liver regeneration therapies for liver cirrhosis and future prospects. RECENT FINDINGS Various clinical studies for liver disease have been reported, including hepatic administration of autologous CD34-positive cells induced by granulocyte colony-stimulating factor, portal vein administration of CD133-positive mononuclear cells, and administration of autologous bone marrow-derived mesenchymal stem cells. Effectiveness of these approaches has been shown in some patients. We have also reported improved liver fibrosis and function with infusion of autologous bone marrow cells in a basic study with mice, and on the basis of those results started autologous bone marrow cell infusion (ABMi) therapy for liver cirrhosis. The efficacy and safety of ABMi therapy has also been reported by other institutions. SUMMARY Results of recent clinical studies strongly suggest that liver function-improving effects can be achieved using infusion of bone marrow (stem) cells for cirrhosis. New treatment methods using less-invasive bone marrow-derived cultured cells need to be developed.
Collapse
|
45
|
Terai S, Tanimoto H, Maeda M, Zaitsu J, Hisanaga T, Iwamoto T, Fujisawa K, Mizunaga Y, Matsumoto T, Urata Y, Marumoto Y, Hidaka I, Ishikawa T, Yokoyama Y, Aoyama K, Tsuchiya M, Takami T, Omori K, Yamamoto N, Segawa M, Uchida K, Yamasaki T, Okita K, Sakaida I. Timeline for development of autologous bone marrow infusion (ABMi) therapy and perspective for future stem cell therapy. J Gastroenterol 2012; 47:491-7. [PMID: 22488349 DOI: 10.1007/s00535-012-0580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
Liver cirrhosis patients generally progress to liver failure. To cure this progressive disease, we developed a novel cell therapy using bone marrow cells; autologous bone marrow cell infusion (ABMi) therapy. We previously described the possible action mechanism of ABMi therapy in the cirrhotic liver, and showed the timeline and results of clinical studies of ABMi therapy. We have also carried out other clinical studies using bone marrow cells and granulocyte colony-stimulating factor. Here, we report a new randomized clinical trial to evaluate the effects of ABMi therapy. However, ABMi therapy may not be possible in patients who are unable to undergo general anesthesia; therefore, we have started to develop a next-generation stem cell therapy using cultured mesenchymal stem cells.
Collapse
Affiliation(s)
- Shuji Terai
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mizunaga Y, Terai S, Yamamoto N, Uchida K, Yamasaki T, Nishina H, Fujita Y, Shinoda K, Hamamoto Y, Sakaida I. Granulocyte colony-stimulating factor and interleukin-1β are important cytokines in repair of the cirrhotic liver after bone marrow cell infusion: comparison of humans and model mice. Cell Transplant 2012; 21:2363-75. [PMID: 22507241 DOI: 10.3727/096368912x638856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously described the effectiveness of autologous bone marrow cell infusion (ABMi) therapy for patients with liver cirrhosis (LC). We analyzed chronological changes in 19 serum cytokines as well as levels of specific cytokines in patients after ABMi therapy and in a mouse model of cirrhosis generated using green fluorescent protein (GFP)/carbon tetrachloride (CCl4). We measured expression profiles of cytokines in serum samples collected from 13 patients before and at 1 day and 1 week after ABMi. Child-Pugh scores significantly improved in all of these patients. To analyze the meaning of early cytokine change, we infused GFP-positive bone marrow cells (BMCs) into mice with CCl4-induced LC and obtained serum and tissue samples at 1 day and as well as at 1, 2, 3, and 4 weeks later. We compared chronological changes in serum cytokine expression in humans and in the model mice at 1 day and 1 week after BMC infusion. Among 19 cytokine, both granulocyte colony-stimulating factor (G-CSF) and interleukin-1β(IL-1β) in serum was found to show the same chronological change pattern between human and mice model. Next, we examined changes in cytokine expression in cirrhosis liver before and at 1, 2, 3, and 4 weeks after BMC infusion. Both G-CSF and IL-1β were undetectable in the liver tissues before and at 1 week after BMC infusion but increased at 2 weeks and continued until 4 weeks after infusion. The infused BMCs induced an early decrease of both G-CSF and IL-1β in serum and an increase in the model mice with LC. These dynamic cytokine changes might be important to repair liver cirrhosis after BMC infusion.
Collapse
Affiliation(s)
- Yuko Mizunaga
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maeda M, Takami T, Terai S, Sakaida I. Autologous bone marrow cell infusions suppress tumor initiation in hepatocarcinogenic mice with liver cirrhosis. J Gastroenterol Hepatol 2012; 27 Suppl 2:104-11. [PMID: 22320927 DOI: 10.1111/j.1440-1746.2011.07016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously reported the efficacy and safety of autologous bone marrow cell infusion (ABMi) therapy for liver cirrhosis patients without hepatocellular carcinoma in a multicenter clinical trial. However, since liver cirrhosis is highly oncogenic, evaluation of the effects of ABMi on the mechanisms of hepatocarcinogenesis is of great importance. Therefore, frequent ABMi was performed in hepatocarcinogenic mice, and its effects on hepatocarcinogenesis were analyzed. The N-nitrosodiethylamine (DEN)/green fluorescent protein (GFP)-carbon tetrachloride (CCl(4) ) model was developed by administering DEN once, followed by repeated administration of CCl(4) intraperitoneally as for the control group. In the administration (ABMi) group, GFP-positive bone marrow cells were infused through a tail vein. The kinetics of hepatocarcinogenesis were evaluated histologically 4.5 months after DEN treatment. At 4.5 months, there was significantly lower incidence of foci and tumors in the ABMi group, and they were smaller in number, while their size was almost equal. No GFP-positive tumors were found in ABMi livers. Moreover, ABMi livers showed significantly reduced liver fibrosis, consistent with significantly lower 8-hydroxy-2'-deoxyguanosine levels, higher superoxide dismutase activity, and increased nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2. These results demonstrate that frequent ABMi might contribute to suppressed tumor initiation during stages of hepatocarcinogenesis, consistent with improvements in liver fibrosis and stabilization of redox homeostasis.
Collapse
Affiliation(s)
- Masaki Maeda
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | |
Collapse
|
48
|
Iwamoto T, Terai S, Mizunaga Y, Yamamoto N, Omori K, Uchida K, Yamasaki T, Fujii Y, Nishina H, Sakaida I. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol 2012; 47:300-12. [PMID: 22065159 DOI: 10.1007/s00535-011-0486-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/11/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND In 2003, we initiated a clinical trial to examine autologous bone marrow cell infusion (ABMi) therapy for cirrhotic patients and reported the clinical effect of the therapy. To analyze how splenectomy may potentiate the effects of bone marrow cell infusion on cirrhosis, we performed a mouse study and a clinical trial on patients with cirrhosis. METHODS In mice, we analyzed the effect of splenectomy on bone marrow cell infusion in four experimental groups (group A, splenectomy + bone marrow cell infusion + CCl(4); group B, sham operation + bone marrow cell infusion + CCl(4); group C, splenectomy + CCl(4); group D, sham operation + CCl(4)). In clinical, we compared the effect of splenectomy on ABMi therapy. RESULTS We observed significantly increased average serum albumin levels and higher expression of green fluorescent protein (GFP), matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen in the livers of group A. We observed MMP9/GFP double-positive cells in the cirrhotic livers. A significant decrease in the liver fibrosis areas was observed in group A. Splenectomy enhanced the repopulation of bone marrow cells into the cirrhotic liver and improved the liver microenvironment via expression of MMP9 secreted from repopulating GFP-positive cells. Next, we performed a clinical trial to compare the effect of splenectomy on the efficacy of ABMi therapy. Cirrhotic patients who underwent splenectomy before ABMi therapy tended to have a greater improvement in liver function. CONCLUSION ABMi therapy with splenectomy may be an effective therapeutic modality for cirrhosis.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang M, Zhong Y, Chen J. Model systems and clinical applications of hepatic stem cells for liver regeneration. Hepatol Int 2011. [DOI: 10.1007/s12072-011-9323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Okamoto R. Introduction for special issue “Epithelial regeneration in inflammatory diseases”. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|