1
|
Karas Kuželički N, Doljak B. Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes (Basel) 2024; 15:872. [PMID: 39062651 PMCID: PMC11276067 DOI: 10.3390/genes15070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease is one of the most common congenital malformations and thus represents a considerable public health burden. Hence, the identification of individuals and families with an increased genetic predisposition to congenital heart disease (CHD) and its possible prevention is important. Even though CHD is associated with the lack of folate during early pregnancy, the genetic background of folate and methionine metabolism perturbations and their influence on CHD risk is not clear. While some genes, such as those coding for cytosolic enzymes of folate/methionine cycles, have been extensively studied, genetic studies of folate transporters (de)glutamation enzymes and mitochondrial enzymes of the folate cycle are lacking. Among genes coding for cytoplasmic enzymes of the folate cycle, MTHFR, MTHFD1, MTR, and MTRR have the strongest association with CHD, while among genes for enzymes of the methionine cycle BHMT and BHMT2 are the most prominent. Among mitochondrial folate cycle enzymes, MTHFD2 plays the most important role in CHD formation, while FPGS was identified as important in the group of (de)glutamation enzymes. Among transporters, the strongest association with CHD was demonstrated for SLC19A1.
Collapse
Affiliation(s)
- Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Bojan Doljak
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Zhang Y, Zhang X, Chen J, Jiang S, Han Y, Du H. Maternal Folic Acid Supplementation Improves the Intestinal Health of Offspring Porcine by Promoting the Proliferation and Differentiation of Intestinal Stem Cells. Animals (Basel) 2023; 13:3092. [PMID: 37835698 PMCID: PMC10571947 DOI: 10.3390/ani13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal folic acid intake has important effects on offspring growth and development. The mechanism involved in the renewal of intestinal epithelial cells remains unclear. Thus, this study aimed to investigate the potential effect of maternal folic acid supplementation during gestation and lactation on the structural and functional development of the small intestine in piglet offspring. Twenty-four Duroc sows were assigned to a control group (CON) and a folic-acid-supplemented group (CON + FA, supplemented with 15 mg/kg of folic acid). The results showed that maternal folic acid supplementation throughout gestation and lactation significantly increased the body weight, serum folate level, and intestinal folate metabolism in piglets. It also improved the villus length, villus height-to-crypt depth ratio, and transcript levels of nutrient transporters (GLUT4, SNAT2, FABP2, and SLC7A5) in piglets' duodenum and jejunum. In addition, maternal folic acid supplementation increased Ki67-positive cells and the expression of proliferation-related marker genes (C-Myc, CyclinD1, and PCNA) in piglets' intestinal stem cells. It also boosted the expression of genes associated with mature secreted cells (ChrA, Muc2, Lyz, Vil1), indicating enhanced proliferation and differentiation of intestinal stem cells. These findings demonstrate that maternal folic acid supplementation enhances growth performance and gut health in piglet offspring by promoting epithelial cell renewal equilibrium.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouchuan Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Jamal QMS, Khan MI, Alharbi AH, Ahmad V, Yadav BS. Identification of Natural Compounds of the Apple as Inhibitors against Cholinesterase for the Treatment of Alzheimer's Disease: An In Silico Molecular Docking Simulation and ADMET Study. Nutrients 2023; 15:nu15071579. [PMID: 37049419 PMCID: PMC10097405 DOI: 10.3390/nu15071579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in older people, causes neurological problems associated with memory and thinking. The key enzymes involved in Alzheimer's disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this, there is a lot of interest in finding new AChE inhibitors. Among compounds that are not alkaloids, flavonoids have stood out as good candidates. The apple fruit, Malus domestica (Rosaceae), is second only to cranberries regarding total phenolic compound concentration. Computational tools and biological databases were used to investigate enzymes and natural compounds. Molecular docking techniques were used to analyze the interactions of natural compounds of the apple with enzymes involved in the central nervous system (CNS), acetylcholinesterase, and butyrylcholinesterase, followed by binding affinity calculations using the AutoDock tool. The molecular docking results revealed that CID: 107905 exhibited the best interactions with AChE, with a binding affinity of -12.2 kcal/mol, and CID: 163103561 showed the highest binding affinity with BuChE, i.e., -11.2 kcal/mol. Importantly, it was observed that amino acid residue Trp286 of AChE was involved in hydrogen bond formation, Van Der Walls interactions, and Pi-Sigma/Pi-Pi interactions in the studied complexes. Moreover, the results of the Molecular Dynamics Simulation (MDS) analysis indicated interaction stability. This study shows that CID: 12000657 could be used as an AChE inhibitor and CID: 135398658 as a BuChE inhibitor to treat Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Alharbi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Varish Ahmad
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Brijesh Singh Yadav
- Faculty of Biosciences and Aquaculture, Nord University, N-8026 Bodø, Norway
| |
Collapse
|
4
|
Patel I, Parchem RJ. Regulation of Oct4 in stem cells and neural crest cells. Birth Defects Res 2022; 114:983-1002. [PMID: 35365980 PMCID: PMC9525453 DOI: 10.1002/bdr2.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
During embryonic development, cells gradually restrict their developmental potential as they exit pluripotency and differentiate into various cell types. The POU transcription factor Oct4 (encoded by Pou5f1) lies at the center of the pluripotency machinery that regulates stemness and differentiation in stem cells, and is required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Several studies have revealed that Oct4 and other stemness genes are also expressed in multipotent cell populations such as neural crest cells (NCCs), and are required to expand the NCC developmental potential. Transcriptional regulation of Oct4 has been studied extensively in stem cells during early embryonic development and reprogramming, but not in NCCs. Here, we review how Oct4 is regulated in pluripotent stem cells, and address some of the gaps in knowledge about regulation of the pluripotency network in NCCs.
Collapse
Affiliation(s)
- Ivanshi Patel
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - Ronald J. Parchem
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
5
|
Yang H, Qin D, Xu S, He C, Sun J, Hua J, Peng S. Folic acid promotes proliferation and differentiation of porcine pancreatic stem cells into insulin-secreting cells through canonical Wnt and ERK signaling pathway. J Steroid Biochem Mol Biol 2021; 205:105772. [PMID: 33091596 DOI: 10.1016/j.jsbmb.2020.105772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Porcine pancreatic stem cells (pPSCs) can be induced to differentiate into insulin-producing cells in vitro and thus serve as a major cells source for β-cell regeneration. However, this application is limited by the weak cell proliferation ability and low insulin induction efficiency. In this study, we explored the role of folic acid in the proliferation of pPSCs and the formation of insulin-secreting cells. We found that FA-treated pPSCs cells had a high EDU positive rate, and the proliferation marker molecules PCNA, CyclinD1 and c-Myc were up-regulated, while the expression of folate receptor α (FOLRα) was up-regulated. In further research, interference FOLRα or adding canonical Wnt signaling pathway or ERK signaling pathway inhibitors could significantly inhibit the effect of FA on pPSCs proliferation. Meanwhile, during the differentiation of pPSCs into insulin-secreting cells, we found that the maturation marker genes Insulin, NKX6.1, MafA, and NeuroD1 was upregulated in insulin-secreting cell masses differentiationed from pPSCs after FA treatment, and the functional molecules Insulin and C-peptide were increased, the ability to secrete insulin in response to high glucose was also increased. With the addition of Wnt and ERK signaling pathway inhibitors, the pro-differentiation effect of FA was weakened. In conclusion, FA promotes the proliferation of pPSCs by binding to folate receptor α (FOLRα) and increase the efficiency of directed differentiation of pPSCs into insulin-producing cells by regulating canonical Wnt and ERK signaling pathway. This study lays theoretical foundation for solving the bottleneck in the treatment of diabetes with stem cell transplantation in future.
Collapse
Affiliation(s)
- Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chen He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
6
|
Sudiwala S, Palmer A, Massa V, Burns AJ, Dunlevy LPE, de Castro SCP, Savery D, Leung KY, Copp AJ, Greene NDE. Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid. Dis Model Mech 2019; 12:dmm042234. [PMID: 31636139 PMCID: PMC6899032 DOI: 10.1242/dmm.042234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alexandra Palmer
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Valentina Massa
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alan J Burns
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Louisa P E Dunlevy
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sandra C P de Castro
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kit-Yi Leung
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
7
|
Kang WB, Chen YJ, Lu DY, Yan JZ. Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor. Neural Regen Res 2019; 14:132-139. [PMID: 30531087 PMCID: PMC6263007 DOI: 10.4103/1673-5374.243718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study explored whether folic acid promotes peripheral nerve injury repair by affecting Schwann cell function. Primary Schwann cells were obtained from rats by in vitro separation and culture. Cell proliferation, assayed using the Cell Counting Kit-8 assay, was higher in cells cultured for 72 hours with 100 mg/L folic acid compared with the control group. Cell proliferation was also higher in the 50, 100, 150, and 200 mg/L folic acid groups compared with the control group after culture for 96 hours. Proliferation was markedly higher in the 100 mg/L folic acid group compared with the 50 mg/L folic acid group and the 40 ng/L nerve growth factor group. In Transwell assays, the number of migrated Schwann cells dramatically increased after culture with 100 and 150 mg/L folic acid compared with the control group. In nerve growth factor enzyme-linked immunosorbent assays, treatment of Schwann cell cultures with 50, 100, and 150 mg/L folic acid increased levels of nerve growth factor in the culture medium compared with the control group at 3 days. The nerve growth factor concentration of Schwann cell cultures treated with 100 mg/L folic acid group was remarkably higher than that in the 50 and 150 mg/L folic acid groups at 3 days. Nerve growth factor concentration in the 10, 50, and 100 mg/L folic acid groups was higher than that in the control group at 7 days. The nerve growth factor concentration in the 50 mg/L folic acid group was remarkably higher than that in the 10 and 100 mg/L folic acid groups at 7 days. In vivo, 80 μg/kg folic acid was intraperitoneally administrated for 7 consecutive days after sciatic nerve injury. Immunohistochemical staining showed that the number of Schwann cells in the folic acid group was greater than that in the control group. We suggest that folic acid may play a role in improving the repair of peripheral nerve injury by promoting the proliferation and migration of Schwann cells and the secretion of nerve growth factors.
Collapse
Affiliation(s)
- Wei-Bo Kang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Jie Chen
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yi Lu
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Zhi Yan
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Xu M, Li Y, Du J, Lin H, Cao S, Mao Z, Wu R, Liu M, Liu Y, Yin Q. PAX3 Promotes Cell Migration and CXCR4 Gene Expression in Neural Crest Cells. J Mol Neurosci 2017; 64:1-8. [PMID: 29134414 DOI: 10.1007/s12031-017-0995-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
Abstract
Neural crest (NC) cells are a multipotent cell population with powerful migration ability during development. C-X-C chemokine receptor type 4 (CXCR4) is a chemokine receptor implicated to mediate NC migration in various species, whereas the underlying mechanism is not well documented yet. PAX3 is a critical transcription factor for the formation of neural crest and the migration and differentiation of NCs. In this study, we retrieved a potential PAX3 binding element in the promoter of the CXCR4 gene, and we further found that PAX3 could promote the expression of CXCR4 and facilitate the migration of NCs. We finally demonstrated that PAX3 could bind the promoter region of CXCR4 and increase CXCR4 transcription by luciferase assay and electrophoretic mobility shift assay (EMSA). These findings suggested that PAX3 is a pivotal modulator of NC migration via regulating CXCR4 expression.
Collapse
Affiliation(s)
- Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yongle Li
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Department of Pediatric Surgery, Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Jinfeng Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Hengrong Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China.
| | - Qiyou Yin
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Kagawa Y, Hiraoka M, Kageyama M, Kontai Y, Yurimoto M, Nishijima C, Sakamoto K. Medical cost savings in Sakado City and worldwide achieved by preventing disease by folic acid fortification. Congenit Anom (Kyoto) 2017; 57:157-165. [PMID: 28185308 PMCID: PMC5600128 DOI: 10.1111/cga.12215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023]
Abstract
The introduction of mandatory fortification of grains with folate in 1998 in the United States resulted in 767 fewer spina bifida cases annually and a cost saving of $603 million per year. However, far more significant medical cost savings result from preventing common diseases, including myocardial infarction, stroke, dementia and osteoporosis. A cost-effectiveness analysis showed a gain of 266 649 quality-adjusted life-years and $3.6 billion saved annually, mainly due to the reduction of cardiac infarction. The recommended folate intake in Japan is 240 μg/day whereas it is 400 μg/day internationally. Our Sakado Folate Project targeted individuals with genetic polymorphism of methylenetetrahydrofolate reductase or with hyperhomocysteinemia. Using, for example, folate-fortified rice, resulted in an increase in serum folate and a decrease in serum homocysteine in the participants, and reduced medical costs were achieved by decreasing myocardial infarction, stroke, dementia and fracture. Due to the small population of Sakado City (approximately 101 000) and small number of births (693) in 2015, a decrease in spina bifida could not be confirmed but there was a significant decrease in the number of very low birthweight infants. The genome notification of subjects was effective in motivating intake of folate, but the increase in serum folate (from 17.4 to 22.5 nmol/L, 129%) was less than that observed following compulsory folic acid fortification of cereals in the USA (from 12.1 to 30.2 nmol/L, 149.6%). Mandatory folic acid fortification is cheap in decreasing medical costs and is thus recommended in Japan.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, Sakado City, Japan
| | - Mami Hiraoka
- Shukutoku University, College of Nursing and Nutrition, School of Nutrition, Chiba City, Japan
| | - Mitsuyo Kageyama
- Yamanashi Gakuin University Faculty of Health and Nutrition, Kofu City, Japan
| | - Yoshiko Kontai
- University of Niigata Prefecture Faculty of Human Life Studies Department of Health and Nutrition, Niigata City, Japan
| | | | - Chiharu Nishijima
- Department of Medical Chemistry, Kagawa Nutrition University, Sakado City, Japan
| | - Kaori Sakamoto
- Department of Medical Chemistry, Kagawa Nutrition University, Sakado City, Japan
| |
Collapse
|
11
|
Kobus-Bianchini K, Bourckhardt GF, Ammar D, Nazari EM, Müller YMR. Homocysteine-induced changes in cell proliferation and differentiation in the chick embryo spinal cord: implications for mechanisms of neural tube defects (NTD). Reprod Toxicol 2017; 69:167-173. [PMID: 28242235 DOI: 10.1016/j.reprotox.2017.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
Abstract
Maternal hyperhomocysteinemia during pregnancy is associated with increased risk of NTD in the offspring. Our study investigated the effects of homocysteine (Hcy) on proliferation and neuronal differentiation of the spinal cord cells in a chick embryo model. Embryos were treated with 20μmol D-L Hcy/50μL saline solution at embryonic day 2 (E2) and analyzed at embryonic days 4 (E4) and 6 (E6). Control embryos received exclusively 50μL saline solution. We performed immunolocalization and flow cytometry analyses using antibodies anti-phosphohistone H3 (pH3), anti-proliferating cell nuclear antigen (PCNA), anti-β-tubulin III and anti-p53. Our results revealed that Hcy interferes in the proliferation of the neural cells, and that this effect is age-dependent and differed between Hcy-treated embryos with and without NTD. Also, Hcy induced a decrease of neuronal differentiation in the spinal cord at both embryonic ages. These findings contribute to clarifying the cellular bases of NTD genesis, under experimental hiperhomocysteinemia.
Collapse
Affiliation(s)
- Karoline Kobus-Bianchini
- Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte, UDESC, Rua Pascoal Simone 358, Coqueiros, Florianópolis, SC, 88080-350, Brazil; Centro Universitário Estácio de Sá Santa Catarina, Avenida Leoberto Leal 431, São José, SC, 88117-001, Brazil.
| | - Gilian Fernando Bourckhardt
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, UFSC, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Dib Ammar
- Centro Universitário Católica de Santa Catarina, Rua Visconde de Taunay 427, Centro, Joinville, SC, 89203-005, Brazil
| | - Evelise Maria Nazari
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, UFSC, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil; Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, UFSC, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Yara Maria Rauh Müller
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, UFSC, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil; Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, UFSC, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
12
|
Wei T, Jia W, Qian Z, Zhao L, Yu Y, Li L, Wang C, Zhang W, Liu Q, Yang D, Wang G, Wang Z, Wang K, Duan T, Kang J. Folic Acid Supports Pluripotency and Reprogramming by Regulating LIF/STAT3 and MAPK/ERK Signaling. Stem Cells Dev 2016; 26:49-59. [PMID: 27676194 DOI: 10.1089/scd.2016.0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells act as an excellent cell source for disease therapy because of its specific characteristics of self-renewal and differentiation. Pluripotent stem cells are heterogeneous, consisting of naive stem cells as well as primed epiblast stem cells. However, the strategies and mechanisms of maintaining naive pluripotent stem cells remain unclear. In this study, we found that folic acid (FA) sustained mouse embryonic stem cell (ESC) pluripotency and enabled long-term maintenance of the naive state of ESCs under CHIR99021 conditions. Mechanistic experiments showed that STAT3 pathway partially mediated the effect of FA after which the interaction between STAT3 and importin α5 was enhanced. Meanwhile, MEK/ERK signaling also acted downstream of FA in maintaining ESC pluripotency. Furthermore, FA significantly promoted mouse somatic cell reprogramming. Overall, our study identified an effective chemical condition for maintaining homogeneous ESCs and highlighted the important roles of LIF/STAT3 and MEK/ERK signaling in naive ESC pluripotency.
Collapse
Affiliation(s)
- Tingyi Wei
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhen Qian
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Liangyuan Zhao
- 2 School of Pharmaceutical Science, Shanxi Medical University , Taiyuan, China
| | - Yangyang Yu
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lian Li
- 2 School of Pharmaceutical Science, Shanxi Medical University , Taiyuan, China
| | - Chenxin Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wei Zhang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Qi Liu
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Dandan Yang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zikang Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kai Wang
- 3 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China
| | - Tao Duan
- 3 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China
| | - Jiuhong Kang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
13
|
MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 2016; 54:6304-6316. [PMID: 27714636 DOI: 10.1007/s12035-016-0164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Dishevelled (DVL/Dvl) genes play roles in canonical and noncanonical Wnt signaling, both of which are essential in neural tube closing and are involved in balancing neural progenitor growth and differentiation, or neuroepithelial cell polarity, respectively. In mouse Dvl haploinsufficiency leads to neural tube defects (NTDs), which represent the second most common birth defects. However, DVL genes' genetic contributions in human NTDs are modest. We sought to explore the molecular impact on such genes in human NTDs in a Han Chinese cohort. In 47 cases with NTDs and 61 matched controls, in brain tissues, the DVL1/2 mRNA levels were correlated with the levels of a serine/threonine protein kinase MARK2, and in 20 cases with lumbosacral spina bifida, the mRNA levels of DVL1 and MARK2 were significantly decreased; by contrast, only an intronic rare variant was found. Moreover, in an extended population, we found merely three novel rare missense variants in 1 % of individuals with NTDs. In cell-based assays, Mark2 depletion indeed reduces Dvl gene expression and interrupts neural stem cell (NSCs) growth and differentiation, which are likely to be mediated through a decrease in class IIa HDAC phosphorylation and reduced H3K4ac and H3K27ac occupancies at the Dvl1/2 promoters. Finally, the detections of folate concentration in human brain tissue and NSCs and MEF cells indicates that folate deficiency contributes to the observed decreases in Mark2 and Dvl1 expression. Our present study raises a potential common pathogenicity mechanism in human lumbosacral spina bifida about DVL genes rather than their genetic pathogenic role.
Collapse
|
14
|
Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, G McLone D, Tomita T, Mayanil CS. Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-let-7 in Cranial Neural Crest Cells. Stem Cells 2016; 34:2721-2732. [PMID: 27300003 DOI: 10.1002/stem.2421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Prenatal folic acid (FA) supplementation prevents neural tube defects. Folate receptor alpha (FRα) is critical for embryonic development, including neural crest (NC) development. Previously we showed that FRα translocates to the nucleus in response to FA, where it acts as a transcription factor. In this study, we examined if FA through interaction with FRα regulates stem cell characteristics of cranial neural crest cells (CNCCs)-critical for normal development. We hypothesized that FRα upregulates coding genes and simultaneously downregulates non-coding miRNA which targets coding genes in CNCCs. Quantitative RT-PCR and chromatin immunoprecipitation showed that FRα upregulates Oct4, Sox2, and Klf4 by binding to their cis-regulator elements-5' enhancer/promoters defined by H3K27Ac and p300 occupancy. FA via FRα downregulates miRNAs, miR-138 and miR-let-7, which target Oct4 and Trim71 (an Oct4 downstream effector), respectively. Co-immunoprecipitation data suggests that FRα interacts with the Drosha-DGCR8 complex to affect pre-miRNA processing. Transfecting anti-miR-138 or anti-miR-let-7 into non-proliferating neural crest cells (NCCs) derived from Splotch (Sp-/- ), restored their proliferation potential. In summary, these results suggest a novel pleiotropic role of FRα: (a) direct activation of Oct4, Sox2, and Klf4 genes; and (b) repression of biogenesis of miRNAs that target these genes or their effector molecules. Stem Cells 2016;34:2721-2732.
Collapse
Affiliation(s)
- Vineet Mohanty
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amar Shah
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elise Allender
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Rizwan Siddiqui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Monick
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shunsuke Ichi
- Department of Neurosurgery, Japanese Red Cross Medical Center, Shibuya-Ku, Tokyo, Japan
| | | | - David G McLone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tadanori Tomita
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chandra Shekhar Mayanil
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube. Neurosci Lett 2015; 594:6-11. [PMID: 25818329 DOI: 10.1016/j.neulet.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.
Collapse
|
16
|
Tsurubuchi T, Allender EV, Siddiqui MR, Shim KW, Ichi S, Boshnjaku V, Mania-Farnell B, Xi G, Finnell RH, McLone DG, Tomita T, Mayanil CS. A critical role of noggin in developing folate-nonresponsive NTD in Fkbp8 -/- embryos. Childs Nerv Syst 2014; 30:1343-53. [PMID: 24817375 DOI: 10.1007/s00381-014-2428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE Maternal folate intake has reduced the incidence of human neural tube defects by 60-70 %. However, 30-40 % of cases remain nonresponsive to folate intake. The main purpose of this study was to understand the molecular mechanism of folate nonresponsiveness in a mouse model of neural tube defect. METHODS We used a folate-nonresponsive Fkbp8 knockout mouse model to elucidate the molecular mechanism(s) of folate nonresponsiveness. Neurospheres were grown from neural stem cells isolated from the lumbar neural tube of E9.5 Fkbp8 (-/-) and wild-type embryos. Immunostaining was used to determine the protein levels of oligodendrocyte transcription factor 2 (Olig2), Nkx6.1, class III beta-tubulin (TuJ1), O4, glial fibrillary acidic protein (GFAP), histone H3 Lys27 trimethylation (H3K27me3), ubiquitously transcribed tetratricopeptide repeat (UTX), and Msx2, and quantitative real-time (RT)-PCR was used to determine the message levels of Olig2, Nkx6.1, Msx2, and noggin in neural stem cells differentiated in the presence and absence of folic acid. RESULTS Fkbp8 (-/-)-derived neural stem cells showed (i) increased noggin expression; (ii) decreased Msx2 expression; (iii) premature differentiation--neurogenesis, oligodendrogenesis (Olig2 expression), and gliogenesis (GFAP expression); and (iv) increased UTX expression and decreased H3K27me3 polycomb modification. Exogenous folic acid did not reverse these markers. CONCLUSIONS Folate nonresponsiveness could be attributed in part to increased noggin expression in Fkbp8 (-/-) embryos, resulting in decreased Msx2 expression. Folate treatment further increases Olig2 and noggin expression, thereby exacerbating ventralization.
Collapse
Affiliation(s)
- Takao Tsurubuchi
- Developmental Neurobiology Laboratory, Department of Pediatric Neurosurgery, Developmental Biology Program, Lurie Children's Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Feltes BC, de Faria Poloni J, Nunes IJG, Bonatto D. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:344-63. [PMID: 24816220 DOI: 10.1089/omi.2013.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.
Collapse
Affiliation(s)
- Bruno César Feltes
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul , Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
18
|
Wang L, Yu L, Zhang T, Wang L, Leng Z, Guan Y, Wang X. HMGB1 enhances embryonic neural stem cell proliferation by activating the MAPK signaling pathway. Biotechnol Lett 2014; 36:1631-9. [PMID: 24748429 DOI: 10.1007/s10529-014-1525-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Neural stem cells (NSCs) are involved in neural tube formation. As the high-mobility group box 1 (HMGB1) protein is involved in neurulation and is present at elevated levels in neural tube defects (NTDs) induced by hyperthermia, we have now investigated the effects of HMGB1 on proliferation, differentiation, and MAPK signaling pathways of NSCs in vitro. We constructed a lentivirus vector with HMGB1 siRNA and used it to infect NSCs. Down-regulation of HMGB1 expression was confirmed. Proliferation of NSCs was determined by MTS and nestin/BrdU double-labeling. Differentiation of NSCs was assessed using β-tubulinIII and GFAP. Knockdown of HMGB1 significantly suppressed NSC proliferation but hardly affected differentiation, which was regulated by decreased expression of MAPK signaling pathways. Thus, HMGB1 has beneficial effects on neurulation and may serve as a new target for the prevention of NTDs.
Collapse
Affiliation(s)
- Li Wang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27:118-26. [PMID: 24727244 DOI: 10.1016/j.conb.2014.03.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The development and repair of the nervous system requires the coordinated expression of a large number of specific genes. Epigenetic modifications of histones represent an essential principle by which neurons regulate transcriptional responses and adapt to environmental cues. The post-translational modification of histones by chromatin-modifying enzymes histone acetyltransferases (HATs) and histone deacetylases (HDACs) shapes chromatin to adjust transcriptional profiles during neuronal development. Recent observations also point to a critical role for histone acetylation and deacetylation in the response of neurons to injury. While HDACs are mostly known to attenuate transcription through their deacetylase activity and their interaction with co-repressors, these enzymes are also found in the cytoplasm where they display transcription-independent activities by regulating the function of diverse proteins. Here we discuss recent studies that go beyond the traditional use of HDAC inhibitors and have begun to dissect the roles of individual HDAC isoforms in neuronal development and repair after injury.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA.
| |
Collapse
|
20
|
Silencing Pax3 by shRNA inhibits the proliferation and differentiation of duck (Anas platyrhynchos) myoblasts. Mol Cell Biochem 2013; 386:211-22. [PMID: 24126784 DOI: 10.1007/s11010-013-1859-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.
Collapse
|
21
|
Imbard A, Benoist JF, Blom HJ. Neural tube defects, folic acid and methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4352-89. [PMID: 24048206 PMCID: PMC3799525 DOI: 10.3390/ijerph10094352] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
Abstract
Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.
Collapse
Affiliation(s)
- Apolline Imbard
- Biochemistry-Hormonology Laboratory, Robert Debré Hospital, APHP, 48 bd Serrurier, Paris 75019, France; E-Mail:
- Metabolic Unit, Department of Clinical Chemistry, VU Free University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| | - Jean-François Benoist
- Biochemistry-Hormonology Laboratory, Robert Debré Hospital, APHP, 48 bd Serrurier, Paris 75019, France; E-Mail:
| | - Henk J. Blom
- Metabolic Unit, Department of Clinical Chemistry, VU Free University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| |
Collapse
|
22
|
High dose folic acid supplementation of rats alters synaptic transmission and seizure susceptibility in offspring. Sci Rep 2013; 3:1465. [PMID: 23492951 PMCID: PMC3598003 DOI: 10.1038/srep01465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/28/2013] [Indexed: 11/08/2022] Open
Abstract
Maternal folic acid supplementation is essential to reduce the risk of neural tube defects. We hypothesize that high levels of folic acid throughout gestation may produce neural networks more susceptible to seizure in offspring. We hence administered large doses of folic acid to rats before and during gestation and found their offspring had a 42% decrease in their seizure threshold. In vitro, acute application of folic acid or its metabolite 4Hfolate to neurons induced hyper-excitability and bursting. Cultured neuronal networks which develop in the presence of a low concentration (50 nM) of 4Hfolate had reduced capacity to stabilize their network dynamics after a burst of high-frequency activity, and an increase in the frequency of mEPSCs. Networks reared in the presence of the folic acid metabolite 5M4Hfolate developed a spontaneous, distinctive bursting pattern, and both metabolites produced an increase in synaptic density.
Collapse
|
23
|
Rosenquist TH. Folate, Homocysteine and the Cardiac Neural Crest. Dev Dyn 2013; 242:201-18. [DOI: 10.1002/dvdy.23922] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
- Thomas H. Rosenquist
- Department of Genetics; Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha; Nebraska
| |
Collapse
|
24
|
Boshnjaku V, Shim KW, Tsurubuchi T, Ichi S, Szany EV, Xi G, Mania-Farnell B, McLone DG, Tomita T, Mayanil CS. Nuclear localization of folate receptor alpha: a new role as a transcription factor. Sci Rep 2012; 2:980. [PMID: 23243496 PMCID: PMC3522071 DOI: 10.1038/srep00980] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022] Open
Abstract
Folic acid (FA) has traditionally been associated with prevention of neural tube defects; more recent work suggests that it may also be involved in in the prevention of adult onset diseases. As the role of FA in human health and disease expands, it also becomes more critical to understand the mechanisms behind FA action. In this work we examined the hypothesis that folate receptor alpha (FRα) acts as a transcription factor. FRα is a GPI-anchored protein and a component of the caveolae fraction. The work described here shows that FRα translocates to the nucleus, where it binds to cis-regulatory elements at promoter regions of Fgfr4 and Hes1, and regulates their expression. The FRα recognition domain mapped to AT rich regions on the promoters. Until this time FRα has only been considered as a folate transporter, these studies describe a novel role for FRα as a transcription factor.
Collapse
Affiliation(s)
- Vanda Boshnjaku
- Department of Pediatric Neurosurgery, Ann and Robert H Lurie Children's Hospital of Chicago Research Center and Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|