1
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
2
|
Honda S, Hatamura M, Kunimoto Y, Ikeda S, Minami N. Chimeric PRMT6 protein produced by an endogenous retrovirus promoter regulates cell fate decision in mouse preimplantation embryos†. Biol Reprod 2024; 110:698-710. [PMID: 38196172 DOI: 10.1093/biolre/ioae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2024] Open
Abstract
Murine endogenous retrovirus with leucine tRNA primer, also known as MERVL, is expressed during zygotic genome activation in mammalian embryos. Here we show that protein arginine N-methyltransferase 6 (Prmt6) forms a chimeric transcript with MT2B2, one of the long terminal repeat sequences of murine endogenous retrovirus with leucine tRNA primer, and is translated into an elongated chimeric protein (PRMT6MT2B2) whose function differs from that of the canonical PRMT6 protein (PRMT6CAN) in mouse preimplantation embryos. Overexpression of PRMT6CAN in fibroblast cells increased asymmetric dimethylation of the third arginine residue of both histone H2A (H2AR3me2a) and histone H4 (H4R3me2a), while overexpression of PRMT6MT2B2 increased only H2AR3me2a. In addition, overexpression of PRMT6MT2B2 in one blastomere of mouse two-cell embryos promoted cell proliferation and differentiation of the blastomere into epiblast cells at the blastocyst stage, while overexpression of PRMT6CAN repressed cell proliferation. This is the first report of the translation of a chimeric protein (PRMT6MT2B2) in mouse preimplantation embryos. Our results suggest that analyzing chimeric transcripts with murine endogenous retrovirus with leucine tRNA primer will provide insight into the relationship between zygotic genome activation and subsequent intra- and extra-cellular lineage determination.
Collapse
Affiliation(s)
- Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maho Hatamura
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuri Kunimoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Gerstner M, Heller V, Fechner J, Hermann B, Wang L, Lausen J. Prmt6 represses the pro-adipogenic Ppar-gamma-C/ebp-alpha transcription factor loop. Sci Rep 2024; 14:6656. [PMID: 38509237 PMCID: PMC10954715 DOI: 10.1038/s41598-024-57310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
The feed-forward loop between the transcription factors Ppar-gamma and C/ebp-alpha is critical for lineage commitment during adipocytic differentiation. Ppar-gamma interacts with epigenetic cofactors to activate C/ebp-alpha and the downstream adipocytic gene expression program. Therefore, knowledge of the epigenetic cofactors associated with Ppar-gamma, is central to understanding adipocyte differentiation in normal differentiation and disease. We found that Prmt6 is present with Ppar-gamma on the Ppar-gamma and C/ebp-alpha promoter. It contributes to the repression of C/ebp-alpha expression, in part through its ability to induce H3R2me2a. During adipocyte differentiation, Prmt6 expression is reduced and the methyltransferase leaves the promoters. As a result, the expression of Ppar-gamma and C/ebp-alpha is upregulated and the adipocytic gene expression program is established. Inhibition of Prmt6 by a small molecule enhances adipogenesis, opening up the possibility of epigenetic manipulation of differentiation. Our data provide detailed information on the molecular mechanism controlling the Ppar-gamma-C/ebp-alpha feed-forward loop. Thus, they advance our understanding of adipogenesis in normal and aberrant adipogenesis.
Collapse
Affiliation(s)
- Mirjam Gerstner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Vivien Heller
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Benedikt Hermann
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
4
|
Cao MT, Feng Y, Zheng YG. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. World J Biol Chem 2023; 14:84-98. [PMID: 37901302 PMCID: PMC10600687 DOI: 10.4331/wjbc.v14.i5.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes. AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6. METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites. RESULTS In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation. CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Collapse
Affiliation(s)
- Meng-Tong Cao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - You Feng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
5
|
Mirzadeh Azad F, Struys EA, Wingert V, Hannibal L, Mills K, Jansen JH, Longley DB, Stunnenberg HG, Atlasi Y. Spic regulates one-carbon metabolism and histone methylation in ground-state pluripotency. SCIENCE ADVANCES 2023; 9:eadg7997. [PMID: 37595034 DOI: 10.1126/sciadv.adg7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Understanding mechanisms of epigenetic regulation in embryonic stem cells (ESCs) is of fundamental importance for stem cell and developmental biology. Here, we identify Spic, a member of the ETS family of transcription factors (TFs), as a marker of ground state pluripotency. We show that Spic is rapidly induced in ground state ESCs and in response to extracellular signal-regulated kinase (ERK) inhibition. We find that SPIC binds to enhancer elements and stabilizes NANOG binding to chromatin, particularly at genes involved in choline/one-carbon (1C) metabolism such as Bhmt, Bhmt2, and Dmgdh. Gain-of-function and loss-of-function experiments revealed that Spic controls 1C metabolism and the flux of S-adenosyl methionine to S-adenosyl-L-homocysteine (SAM-to-SAH), thereby, modulating the levels of H3R17me2 and H3K4me3 histone marks in ESCs. Our findings highlight betaine-dependent 1C metabolism as a hallmark of ground state pluripotency primarily activated by SPIC. These findings underscore the role of uncharacterized auxiliary TFs in linking cellular metabolism to epigenetic regulation in ESCs.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
- Princess Maxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Oncogene 2023; 42:1088-1100. [PMID: 36792756 PMCID: PMC10063447 DOI: 10.1038/s41388-023-02624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.
Collapse
|
7
|
Zhang Q, Cao J, Zhang Y, Bi Z, Feng Q, Yu L, Li L. Design, synthesis and evaluation of antitumor activity of selective PRMT6 inhibitors. Eur J Med Chem 2023; 247:115032. [PMID: 36566712 DOI: 10.1016/j.ejmech.2022.115032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PRMT6 is a member of the protein arginine methyltransferase family, which is involved in a variety of physiological processes and plays an important role in the occurrence and development of tumors. Due to the high homology of type Ⅰ PRMTs and the two close binding sites of the SAM pocket and the substrate pocket, selective PRMT6 inhibitors have rarely been reported. In this study, a series of (5-phenylpyridin-3-yl)methanamine derivatives were designed and synthesized, which could form hydrogen bonding interactions with the unique Glu49 of PRMT6, thereby improving the selectivity of the compounds for PRMT6. Among them, a25 had the best activity and selectivity, with more than 25-fold selectivity for PRMT1/8 and more than 50-fold selectivity for PRMT3/4/5/7, which was superior to these reported SAM competitive and substrate competitive PRMT6 inhibitors. Importantly, a25 could significantly inhibit the proliferation of various tumor cells and effectively induce apoptosis of cancer cells. Our data clarified that a25 is a promising selective PRMT6 inhibitor for cancer therapy which is worthy of further evaluation.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Jiaying Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Yiqian Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Zhenfei Bi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Lu Li
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Laboratory of Clinical Pharmacology, GCP Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
8
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
9
|
Wang N, Li M, Cao Y, Yang H, Li L, Ge L, Fan Z, Zhang C, Jin L. PRMT6/LMNA/CXCL12 signaling pathway regulated the osteo/odontogenic differentiation ability in dental stem cells isolated from apical papilla. Cell Tissue Res 2022; 389:187-199. [PMID: 35543755 DOI: 10.1007/s00441-022-03628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Miao Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.,Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Le Li
- Stomatological Disease Prevention and Control Center, Tsinghua University Hospital, Tsinghua University, Beijing, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China. .,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chen Zhang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
10
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
11
|
Zuo ZY, Yang GH, Wang HY, Liu SY, Zhang YJ, Cai Y, Chen F, Dai H, Xiao Y, Cheng MB, Huang Y, Zhang Y. Klf4 methylated by Prmt1 restrains the commitment of primitive endoderm. Nucleic Acids Res 2022; 50:2005-2018. [PMID: 35137179 PMCID: PMC8887470 DOI: 10.1093/nar/gkac054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The second cell fate decision in the early stage of mammalian embryonic development is pivotal; however, the underlying molecular mechanism is largely unexplored. Here, we report that Prmt1 acts as an important regulator in primitive endoderm (PrE) formation. First, Prmt1 depletion promotes PrE gene expression in mouse embryonic stem cells (ESCs). Single-cell RNA sequencing and flow cytometry assays demonstrated that Prmt1 depletion in mESCs contributes to an emerging cluster, where PrE genes are upregulated significantly. Furthermore, the efficiency of extraembryonic endoderm stem cell induction increased in Prmt1-depleted ESCs. Second, the pluripotency factor Klf4 methylated at Arg396 by Prmt1 is required for recruitment of the repressive mSin3a/HDAC complex to silence PrE genes. Most importantly, an embryonic chimeric assay showed that Prmt1 inhibition and mutated Klf4 at Arg 396 induce the integration of mouse ESCs into the PrE lineage. Therefore, we reveal a regulatory mechanism for cell fate decisions centered on Prmt1-mediated Klf4 methylation.
Collapse
Affiliation(s)
- Zhen-yu Zuo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang-hui Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hai-yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shu-yu Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yan-jun Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Fei Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hui Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Xiao
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mo-bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
12
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
13
|
Zhang W, Li S, Li K, Li LI, Yin P, Tong G. The role of protein arginine methyltransferase 7 in human developmentally arrested embryos cultured in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 53:925-932. [PMID: 34041522 DOI: 10.1093/abbs/gmab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - L i Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
14
|
Schneider L, Herkt S, Wang L, Feld C, Wesely J, Kuvardina ON, Meyer A, Oellerich T, Häupl B, Seifried E, Bonig H, Lausen J. PRMT6 activates cyclin D1 expression in conjunction with the transcription factor LEF1. Oncogenesis 2021; 10:42. [PMID: 34001852 PMCID: PMC8129428 DOI: 10.1038/s41389-021-00332-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
The establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Lucas Schneider
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Stefanie Herkt
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Christine Feld
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Josephine Wesely
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Automated Systems and Genomics, The New York Stem Cell Foundation Research Institute, New York, USA
| | - Olga N Kuvardina
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Annekarin Meyer
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Erhard Seifried
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Hamey JJ, Rakow S, Bouchard C, Senst JM, Kolb P, Bauer UM, Wilkins MR, Hart-Smith G. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. FEBS J 2021; 288:5668-5691. [PMID: 33764612 DOI: 10.1111/febs.15837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses the asymmetric dimethylation of arginines on numerous substrate proteins within the human cell. In particular, PRMT6 methylates histone H3 arginine 2 (H3R2) which affects both gene repression and activation. However, the substrate specificity of PRMT6 has not been comprehensively analysed. Here, we systematically characterise the substrate recognition motif of PRMT6, finding that it has broad specificity and recognises the RG motif. Working with a H3 tail peptide as a template, on which we made 204 amino acid substitutions, we use targeted mass spectrometry to measure their effect on PRMT6 in vitro activity. We first show that PRMT6 methylates R2 and R8 in the H3 peptide, although H3R8 is methylated with lower efficiency and is not an in vivo PRMT6 substrate. We then quantify the effect of 194 of these amino acid substitutions on methylation at both H3R2 and H3R8. In both cases, we find that PRMT6 tolerates essentially any amino acid substitution in the H3 peptide, but that positively charged and bulky residues are preferred near the target arginine. We show that PRMT6 also has preference for glycine, but only in the position immediately following the target arginine. This indicates that PRMT6 recognises the RG motif rather than the RGG motif. We further confirm this preference for the RG motif on another PRMT6 substrate, histone H4R3. This broad specificity and recognition of RG rather than RGG are distinctive among the PRMT family and has implications for the development of drugs to selectively target PRMT6. DATABASES: Panorama Public (https://panoramaweb.org/PRMT6motif.url); ProteomeXchange (PXD016711).
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Johanna M Senst
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ng ZL, Siew J, Li J, Ji G, Huang M, Liao X, Yu S, Chew Y, Png CW, Zhang Y, Wen S, Yang H, Zhou Y, Long YC, Jiang ZH, Wu Q. PATZ1 (MAZR) Co-occupies Genomic Sites With p53 and Inhibits Liver Cancer Cell Proliferation via Regulating p27. Front Cell Dev Biol 2021; 9:586150. [PMID: 33598459 PMCID: PMC7882738 DOI: 10.3389/fcell.2021.586150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Liver cancer is the third most common cause of cancer death in the world. POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1/MAZR) is a transcription factor associated with various cancers. However, the role of PATZ1 in cancer progression remains controversial largely due to lack of genome-wide studies. Here we report that PATZ1 regulates cell proliferation by directly regulating CDKN1B (p27) in hepatocellular carcinoma cells. Our PATZ1 ChIP-seq and gene expression microarray analyses revealed that PATZ1 is strongly related to cancer signatures and cellular proliferation. We further discovered that PATZ1 depletion led to an increased rate of colony formation, elevated Ki-67 expression and greater S phase entry. Importantly, the increased cancer cell proliferation was accompanied with suppressed expression of the cyclin-dependent kinase inhibitor CDKN1B. Consistently, we found that PATZ1 binds to the genomic loci flanking the transcriptional start site of CDKN1B and positively regulates its transcription. Notably, we demonstrated that PATZ1 is a p53 partner and p53 is essential for CDKN1B regulation. In conclusion, our study provides novel mechanistic insights into the inhibitory role of PATZ1 in liver cancer progression, thereby yielding a promising therapeutic intervention to alleviate tumor burden.
Collapse
Affiliation(s)
- Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Guanxu Ji
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Min Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xiaohua Liao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuanyuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology, Immunology Programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology, Immunology Programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shijun Wen
- Medicinal Chemistry and Molecular Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yiting Zhou
- The Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
17
|
Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194567. [PMID: 32360393 PMCID: PMC7294231 DOI: 10.1016/j.bbagrm.2020.194567] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription. However, approximately 70% of vertebrate gene promoters are associated with DNA elements called CpG islands (CGIs) that are refractory to DNA methylation. CGIs integrate the activity of a range of chromatin-regulating factors that can post-translationally modify histones and modulate gene expression. This is exemplified by the trimethylation of histone H3 at lysine 4 (H3K4me3), which is enriched at CGI-associated gene promoters and correlates with transcriptional activity. Through studying H3K4me3 at CGIs it has become clear that CGIs shape the distribution of H3K4me3 and, in turn, H3K4me3 influences the chromatin landscape at CGIs. Here we will discuss our understanding of the emerging relationship between CGIs, H3K4me3, and gene expression.
Collapse
|
18
|
Niu H, Xiao J, Ma Z, Chen L. Prmt4-mediated methylation of NF-κB is critical for neural differentiation of embryonic stem cells. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30340-5. [PMID: 32070496 DOI: 10.1016/j.bbrc.2020.02.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
Neural differentiation is a complex process regulated by multiple signaling at different regulatory levels. Though great progresses have been made in understanding the mechanisms of neural differentiation, post-translational regulation of neural differentiation remains largely unknown. In this study, we found Prmt4, one of the methyltransferases catalyzing protein arginine methylation, is highly expressed in neural stem cells (NSCs) and associated with neural differentiation. Knockout of Prmt4 in mESCs blocked neural differentiation by inhibiting NF-κB activation. Mechanistically, Prmt4 interacts with NF-κB component p65 to promote its methylation, resulting in increased activation of NF-κB signaling during neural differentiation. Our study not only identified Prmt4 as novel regulator of neural differentiation, but also highlighted the importance of protein arginine methylation in cell fate transition.
Collapse
Affiliation(s)
- Hengli Niu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jiyuan Xiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| | - Zhongxing Ma
- Department of Orthopedics, 6th People's Hospital, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Ling Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
19
|
He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, Li H. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics 2020; 10:133-150. [PMID: 31903111 PMCID: PMC6929624 DOI: 10.7150/thno.37362] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hair cells in the inner ear have been shown to be susceptible to ototoxicity from some beneficial pharmaceutical drugs, such as aminoglycosides and cisplatin. Thus, there is great interest in discovering new targets or compounds that protect hair cells from these ototoxic drugs. Epigenetic regulation is closely related to inner ear development; however, little is known about epigenetic regulation in the process of ototoxic drugs-induced hearing loss. Methods: In this study, we investigated the role of protein arginine methyltransferase 6 (PRMT6) in aminoglycoside- and cisplatin-induced hair cell loss by using EPZ020411, a selective small molecule PRMT6 inhibitor, in vitro in neonatal mouse cochlear explants and in vivo in C57BL/6 mice. We also took advantage of the HEI-OC1 cell line to evaluate the anti-apoptosis effects of PRMT6 knockdown on cisplatin-induced ototoxicity. Apoptotic cells were identified using cleaved caspase-3 staining and TUNEL assay. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) were determined by JC-1, TMRM, and rhodamine 123 staining. Results: We found that EPZ020411 significantly alleviated neomycin- and cisplatin-induced cell apoptosis and increased hair cell survival. Moreover, pretreatment with EPZ020411 could attenuate neomycin- and cisplatin-induced hearing loss in vivo. Mechanistic studies revealed that inhibition of PRMT6 could reverse the increased expression of caspase-3 and cytochrome c translocation, mitochondrial dysfunction, increased accumulation of ROS, and activation of cell apoptosis after cisplatin injury. Conclusions: Our findings suggested that PRMT6 might serve as a new therapeutic target to prevent hearing loss caused by aminoglycoside- and cisplatin-induced ototoxicity by preventing ROS formation and modulating the mitochondria-related damage and apoptosis.
Collapse
|
20
|
Chan LH, Zhou L, Ng KY, Wong TL, Lee TK, Sharma R, Loong JH, Ching YP, Yuan YF, Xie D, Lo CM, Man K, Artegiani B, Clevers H, Yan HH, Leung SY, Richard S, Guan XY, Huen MSY, Ma S. PRMT6 Regulates RAS/RAF Binding and MEK/ERK-Mediated Cancer Stemness Activities in Hepatocellular Carcinoma through CRAF Methylation. Cell Rep 2019; 25:690-701.e8. [PMID: 30332648 DOI: 10.1016/j.celrep.2018.09.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/26/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
Arginine methylation is a post-translational modification that plays pivotal roles in signal transduction and gene transcription during cell fate determination. We found protein methyltransferase 6 (PRMT6) to be frequently downregulated in hepatocellular carcinoma (HCC) and its expression to negatively correlate with aggressive cancer features in HCC patients. Silencing of PRMT6 promoted the tumor-initiating, metastasis, and therapy resistance potential of HCC cell lines and patient-derived organoids. Consistently, loss of PRMT6 expression aggravated liver tumorigenesis in a chemical-induced HCC PRMT6 knockout (PRMT6-/-) mouse model. Integrated transcriptome and protein-protein interaction studies revealed an enrichment of genes implicated in RAS signaling and showed that PRMT6 interacted with CRAF on arginine 100, which decreased its RAS binding potential and altered its downstream MEK/ERK signaling. Our work describes a critical repressive function for PRMT6 in maintenance of HCC cells by regulating RAS binding and MEK/ERK signaling via methylation of CRAF on arginine 100.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Kinase 1/genetics
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Protein-Arginine N-Methyltransferases/physiology
- TNF Receptor-Associated Factor 3/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- raf Kinases/genetics
- raf Kinases/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Lok Hei Chan
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei Zhou
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kai Yu Ng
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tin Lok Wong
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Terence K Lee
- Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Rakesh Sharma
- Proteomics & Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jane H Loong
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yick Pang Ching
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory for Liver Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Chung Mau Lo
- State Key Laboratory for Liver Research, University of Hong Kong, Pokfulam, Hong Kong, China; Department of Surgery, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Kwan Man
- State Key Laboratory for Liver Research, University of Hong Kong, Pokfulam, Hong Kong, China; Department of Surgery, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Benedetta Artegiani
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Helen H Yan
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Suet Yi Leung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Stéphane Richard
- Lady Davis Institute, Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montreal, QC, Canada
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, University of Hong Kong, Pokfulam, Hong Kong, China; Department of Clinical Oncology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Michael S Y Huen
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Stephanie Ma
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory for Liver Research, University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
21
|
Bouchard C, Sahu P, Meixner M, Nötzold RR, Rust MB, Kremmer E, Feederle R, Hart-Smith G, Finkernagel F, Bartkuhn M, Savai Pullamsetti S, Nist A, Stiewe T, Philipsen S, Bauer UM. Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes. Cell Rep 2019; 24:3339-3352. [PMID: 30232013 DOI: 10.1016/j.celrep.2018.08.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/19/2018] [Accepted: 08/17/2018] [Indexed: 11/20/2022] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyzes asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a). This mark has been reported to associate with silent genes. Here, we use a cell model of neural differentiation, which upon PRMT6 knockout exhibits proliferation and differentiation defects. Strikingly, we detect PRMT6-dependent H3R2me2a at active genes, both at promoter and enhancer sites. Loss of H3R2me2a from promoter sites leads to enhanced KMT2A binding and H3K4me3 deposition together with increased target gene transcription, supporting a repressive nature of H3R2me2a. At enhancers, H3R2me2a peaks co-localize with the active enhancer marks H3K4me1 and H3K27ac. Here, loss of H3R2me2a results in reduced KMT2D binding and H3K4me1/H3K27ac deposition together with decreased transcription of associated genes, indicating that H3R2me2a also exerts activation functions. Our work suggests that PRMT6 via H3R2me2a interferes with the deposition of adjacent histone marks and modulates the activity of important differentiation-associated genes by opposing transcriptional effects.
Collapse
Affiliation(s)
- Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Hans-Meerwein-Strasse 2, BMFZ, 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Hans-Meerwein-Strasse 2, BMFZ, 35043 Marburg, Germany
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Hans-Meerwein-Strasse 2, BMFZ, 35043 Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Hans-Meerwein-Strasse 2, BMFZ, 35043 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35043 Marburg, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps-University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps-University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; Institute of Molecular Oncology, Philipps-University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Hans-Meerwein-Strasse 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
22
|
Okuno K, Akiyama Y, Shimada S, Nakagawa M, Tanioka T, Inokuchi M, Yamaoka S, Kojima K, Tanaka S. Asymmetric dimethylation at histone H3 arginine 2 by PRMT6 in gastric cancer progression. Carcinogenesis 2019; 40:15-26. [PMID: 30508037 DOI: 10.1093/carcin/bgy147] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Histone modification plays important molecular roles in development and progression of cancers. Dysregulation of histone H3 arginine (R) methylation is still unknown in primary cancer, including gastric cancer (GC). Although PRMT6 contributes to asymmetric dimethylation at H3R2 (H3R2me2as) in cancer cells, its molecular functions are poorly understood in GC. In this study, we assessed H3R2me2as and PRMT6 expression levels in 133 primary GC tissues by immunohistochemistry. Increased H3R2me2as was found in 68 GC (51.1%) cases and independently related to poor prognosis. PRMT6 was overexpressed in 70 GC (52.6%) and strongly correlated with the global H3R2me2as levels (P < 0.001). By analyzing biological functions of PRMT6 in GC cell lines by lentivirus-based systems, PRMT6 overexpression enhanced global H3R2me2as and invasiveness in vitro, while PRMT6 knockout (PRMT6-KO) suppressed these effects and tumorigenicity in vivo. ChIP and microarray assays demonstrated that PRMT6-KO GC cells decreased the enrichments of H3R2me2as at the promoter regions of PCDH7, SCD and IGFBP5, resulting in upregulation of their gene expression. PRMT6 was recruited to the promoter regions of PCDH7 and SCD in the PRMT6-overexpressed cells. Knockdown of tumor suppressor PCDH7 in the PRMT6-KO GC cells elevated cell migration and invasion. PRMT6 expression inversely correlated with PCDH7 expression in primary GC (P = 0.021). Collectively, our findings strongly indicate that H3R2me2as is a strong prognostic indicator of GC patients, and PRMT6-overexpressing GC cells may acquire invasiveness through direct transcriptional inhibition of PCDH7 by increasing H3R2me2as level. Thus, inhibition of the PRMT6-H3R2me2as pathway could be a promising new therapeutic strategy in GC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Minimally Invasive Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Nakagawa
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Tanioka
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikito Inokuchi
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Minimally Invasive Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Rakow S, Pullamsetti SS, Bauer UM, Bouchard C. Assaying epigenome functions of PRMTs and their substrates. Methods 2019; 175:53-65. [PMID: 31542509 DOI: 10.1016/j.ymeth.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.
Collapse
Affiliation(s)
- Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
24
|
Optineurin downregulation induces endoplasmic reticulum stress, chaperone-mediated autophagy, and apoptosis in pancreatic cancer cells. Cell Death Discov 2019; 5:128. [PMID: 31428460 PMCID: PMC6689035 DOI: 10.1038/s41420-019-0206-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival. Therefore, the role of OPTN on proliferation, migration, and colony formation was investigated by transient knockdown in Miapaca, BXPC3, and Suit2-007 human PDAC cells. Furthermore, gene expression modulation in response to OPTN knockdown was assessed by microarray. The influence on cell cycle distribution and cell death signaling cascades was followed by FACS, assays for apoptosis, RT-PCR, and western blot. Finally, autophagy and ROS induction were screened by acridine orange and DCFH-DA fluorescent staining respectively. OPTN knockdown caused significant inhibition of colony formation, increased migration and no significant effect on proliferation in Miapaca, BXPC3 and Suit2-007 cells. The microarray showed modulation of 293 genes in Miapaca versus 302 in Suit2-007 cells, of which 52 genes overlapped. Activated common pathways included the ER stress response and chaperone-mediated autophagy, which was confirmed at mRNA and protein levels. Apoptosis was activated as shown by increased levels of cleaved PARP, Annexin V binding and nuclear fragmentation. OPTN knockdown caused no increased vacuole formation as assessed by acridine orange. Also, there was only marginally increased ROS production. Combination of OPTN knockdown with the autophagy inducer erufosine or LY294002, an inhibitor of autophagy, showed additive effects, which led us to hypothesize that they address different pathways. In conclusion, OPTN knockdown was related to activation of ER stress response and chaperone-mediated autophagy, which tend to confine the damage caused by OPTN knockdown and thus question its value for PDAC therapy.
Collapse
|
25
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
26
|
Herkt SC, Kuvardina ON, Herglotz J, Schneider L, Meyer A, Pommerenke C, Salinas-Riester G, Seifried E, Bonig H, Lausen J. Protein arginine methyltransferase 6 controls erythroid gene expression and differentiation of human CD34 + progenitor cells. Haematologica 2017; 103:18-29. [PMID: 29025910 PMCID: PMC5777187 DOI: 10.3324/haematol.2017.174516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A. Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.
Collapse
Affiliation(s)
- Stefanie C Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Julia Herglotz
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| |
Collapse
|
27
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 647] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
28
|
Mata-Miranda MM, Vazquez-Zapien GJ, Rojas-Lopez M, Sanchez-Monroy V, Perez-Ishiwara DG, Delgado-Macuil RJ. Morphological, molecular and FTIR spectroscopic analysis during the differentiation of kidney cells from pluripotent stem cells. Biol Res 2017; 50:14. [PMID: 28376862 PMCID: PMC5379680 DOI: 10.1186/s40659-017-0119-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/28/2017] [Indexed: 12/23/2022] Open
Abstract
Background Kidney diseases are a global health problem. Currently, over 2 million people require dialysis or transplant which are associated with high morbidity and mortality; therefore, new researches focused on regenerative medicine have been developed, including the use of stem cells. Results In this research, we generate differentiated kidney cells (DKCs) from mouse pluripotent stem cells (mPSCs) analyzing their morphological, genetic, phenotypic, and spectroscopic characteristics along differentiation, highlighting that there are no reports of the use of Fourier transform infrared (FTIR) spectroscopy to characterize the directed differentiation of mPSCs to DKCs. The genetic and protein experiments proved the obtention of DKCs that passed through the chronological stages of embryonic kidney development. Regarding vibrational spectroscopy analysis by FTIR, bands related with biomolecules were shown on mPSCs and DKCs spectra, observing distinct differences between cell lineages and maturation stages. The second derivative of DKCs spectra showed changes in the protein bands compared to mPSCs. Finally, the principal components analysis obtained from FTIR spectra allowed to characterize chemical and structurally mPSCs and their differentiation process to DKCs in a rapid and non-invasive way. Conclusion Our results indicated that we obtained DKCs from mPSCs, which passed through the chronological stages of embryonic kidney development. Moreover, FTIR spectroscopy resulted in a non-invasive, rapid and precise technic that together with principal component analysis allows to characterize chemical and structurally both kind of cells and also discriminate and determine different stages along the cell differentiation process.
Collapse
Affiliation(s)
- Monica Maribel Mata-Miranda
- Centro de Investigación en Biotecnología Aplicada, CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico.,Laboratorio de Biología Celular y Tisular, Escuela Médico Militar, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | - Gustavo Jesus Vazquez-Zapien
- Centro de Investigación en Biotecnología Aplicada, CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico.,Laboratorio de Embriología, Escuela Médico Militar, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | - Marlon Rojas-Lopez
- Centro de Investigación en Biotecnología Aplicada, CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico
| | - Virginia Sanchez-Monroy
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320, Mexico City, Mexico
| | | | - Raul Jacobo Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico.
| |
Collapse
|
29
|
Mills AA. The Chromodomain Helicase DNA-Binding Chromatin Remodelers: Family Traits that Protect from and Promote Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026450. [PMID: 28096241 DOI: 10.1101/cshperspect.a026450] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plethora of mutations in chromatin regulators in diverse human cancers is emerging, attesting to the pivotal role of chromatin dynamics in tumorigenesis. A recurrent theme is inactivation of the chromodomain helicase DNA-binding (CHD) family of proteins-ATP-dependent chromatin remodelers that govern the cellular machinery's access to DNA, thereby controlling fundamental processes, including transcription, proliferation, and DNA damage repair. This review highlights what is currently known about how genetic and epigenetic perturbation of CHD proteins and the pathways that they regulate set the stage for cancer, providing new insight for designing more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| |
Collapse
|
30
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
31
|
Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 2016; 473:3049-63. [PMID: 27480107 DOI: 10.1042/bcj20160537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.
Collapse
|
32
|
Greenblatt SM, Liu F, Nimer SD. Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 2016; 44:435-41. [PMID: 27026282 DOI: 10.1016/j.exphem.2016.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 02/02/2023]
Abstract
Arginine methylation is an abundant covalent modification that regulates diverse cellular processes, including transcription, translation, DNA repair, and RNA processing. The enzymes that catalyze these marks are known as the protein arginine methyltransferases (PRMTs), and they can generate asymmetric dimethyl arginine (type I arginine methyltransferases), symmetric dimethylarginine (type II arginine methyltransferases), or monomethyarginine (type III arginine methyltransferases). The PRMTs are capable of modifying diverse substrates, from histone components to specific nuclear and cytoplasmic proteins. Additionally, the PRMTs can orchestrate chromatin remodeling by blocking the docking of other epigenetic modifying enzymes or by recruiting them to specific gene loci. In the hematopoietic system, PRMTs can regulate cell behavior, including the critical balance between stem cell self-renewal and differentiation, in at least two critical ways, via (i) the covalent modification of transcription factors and (ii) the regulation of histone modifications at promoters critical to cell fate determination. Given these important functions, it is not surprising that these processes are altered in hematopoietic malignancies, such as acute myeloid leukemia, where they promote increased self-renewal and impair hematopoietic stem and progenitor cell differentiation.
Collapse
Affiliation(s)
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL.
| |
Collapse
|
33
|
Stein C, Nötzold RR, Riedl S, Bouchard C, Bauer UM. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression. PLoS One 2016; 11:e0148892. [PMID: 26848759 PMCID: PMC4746130 DOI: 10.1371/journal.pone.0148892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Riedl
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Yu S, Ma H, Ow JR, Goh Z, Chiang R, Yang H, Loh YH, Wu Q. Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells Dev 2016; 25:55-67. [DOI: 10.1089/scd.2015.0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Ma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Rong Ow
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ziyi Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Chiang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Luo M, Li Y, Guo H, Lin S, Chen J, Ma Q, Gu Y, Jiang Z, Gui Y. Protein Arginine Methyltransferase 6 Involved in Germ Cell Viability during Spermatogenesis and Down-Regulated by the Androgen Receptor. Int J Mol Sci 2015; 16:29467-81. [PMID: 26690413 PMCID: PMC4691129 DOI: 10.3390/ijms161226186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Androgens and the androgen receptor (AR) are of great importance to spermatogenesis and male fertility. AR knockout (ARKO) mice display a complete insensitivity to androgens and male infertility; however, the exact molecular mechanism for this effect remains unclear. In this study, we found that the expression levels of Prmt6 mRNA and protein were significantly up-regulated in the testes of ARKO mice compared to wild type (WT) mice. PRMT6 was principally localized to the nucleus of spermatogonia and spermatocytes by immunofluorescence staining. Furthermore, luciferase assay data showed that AR together with testosterone treatment suppressed Prmt6 transcription via binding to the androgen-responsive element (ARE) of the Prmt6 promoter. Moreover, knockdown of Prmt6 suppressed germ cells migration and promoted apoptosis. In addition, both of these cellular activities could not be enhanced by testosterone treatment. Taken together, these data indicate that PRMT6, which was down-regulated by AR and influenced cell migration and apoptosis of germ cells, could play a potentially important role in spermatogenesis.
Collapse
Affiliation(s)
- Manling Luo
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
| | - Yuchi Li
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Huan Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
- Department of Surgery, Guangzhou Medical University, Guangzhou 510182, China.
| | - Shouren Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Jianbo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
- Department of Surgery, Anhui Medical University, Hefei 230032, China.
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Yanli Gu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| |
Collapse
|
36
|
Zhao XX, Zhang YB, Ni PL, Wu ZL, Yan YC, Li YP. Protein Arginine Methyltransferase 6 (Prmt6) Is Essential for Early Zebrafish Development through the Direct Suppression of gadd45αa Stress Sensor Gene. J Biol Chem 2015; 291:402-12. [PMID: 26487724 DOI: 10.1074/jbc.m115.666347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Indexed: 01/13/2023] Open
Abstract
Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa.
Collapse
Affiliation(s)
- Xin-Xi Zhao
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Bin Zhang
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pei-Li Ni
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Li Wu
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan-Chang Yan
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Ping Li
- From the State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
37
|
Mitchell LH, Drew AE, Ribich SA, Rioux N, Swinger KK, Jacques SL, Lingaraj T, Boriack-Sjodin PA, Waters NJ, Wigle TJ, Moradei O, Jin L, Riera T, Porter-Scott M, Moyer MP, Smith JJ, Chesworth R, Copeland RA. Aryl Pyrazoles as Potent Inhibitors of Arginine Methyltransferases: Identification of the First PRMT6 Tool Compound. ACS Med Chem Lett 2015; 6:655-9. [PMID: 26101569 DOI: 10.1021/acsmedchemlett.5b00071] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/06/2015] [Indexed: 01/27/2023] Open
Abstract
A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.
Collapse
Affiliation(s)
- Lorna H. Mitchell
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Allison E. Drew
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Scott A. Ribich
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Nathalie Rioux
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Kerren K. Swinger
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Suzanne L. Jacques
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Trupti Lingaraj
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - P. Ann Boriack-Sjodin
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Nigel J. Waters
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Tim J. Wigle
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Oscar Moradei
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Lei Jin
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Tom Riera
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Margaret Porter-Scott
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Mikel P. Moyer
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Jesse J. Smith
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Richard Chesworth
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| | - Robert A. Copeland
- Epizyme, Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
The histone acetyltransferase Myst2 regulates Nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. FEBS Lett 2015; 589:941-50. [PMID: 25743411 DOI: 10.1016/j.febslet.2015.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/28/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The histone acetyltransferase Myst2 plays an important role in embryogenesis, but its function in undifferentiated ES cells remains poorly understood. Here, we show that Myst2 plays a role in pluripotency and self-renewal of ES cells. Myst2 deficiency results in loss of characteristic morphology, decreased alkaline phosphatase staining and reduced histone acetylation, as well as aberrant expression of pluripotency and differentiation markers. Our ChIP data reveal a direct association of Myst2 with the Nanog promoter and Myst2-dependent Oct4 binding on the Nanog promoter. Together our data suggest that Myst2-mediated histone acetylation may be required for recruitment of Oct4 to the Nanog promoter, thereby regulating Nanog transcription in ES cells.
Collapse
|
39
|
Simandi Z, Czipa E, Horvath A, Koszeghy A, Bordas C, Póliska S, Juhász I, Imre L, Szabó G, Dezso B, Barta E, Sauer S, Karolyi K, Kovacs I, Hutóczki G, Bognár L, Klekner Á, Szucs P, Bálint BL, Nagy L. PRMT1 and PRMT8 Regulate Retinoic Acid-Dependent Neuronal Differentiation with Implications to Neuropathology. Stem Cells 2015; 33:726-41. [DOI: 10.1002/stem.1894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltan Simandi
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Erik Czipa
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Aron Koszeghy
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Csilla Bordas
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - István Juhász
- Department of Dermatology; University of Debrecen; Debrecen Hungary
- Department of Surgery and Operative Techniques; Faculty of Dentistry University of Debrecen; Debrecen Hungary
| | - László Imre
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Balazs Dezso
- Department of Pathology; University of Debrecen; Debrecen Hungary
| | - Endre Barta
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Katalin Karolyi
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Ilona Kovacs
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - László Bognár
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Álmos Klekner
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Peter Szucs
- Department of Physiology; University of Debrecen; Debrecen Hungary
- MTA-DE-NAP B-Pain Control Group; University of Debrecen; Debrecen Hungary
| | - Bálint L. Bálint
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
- MTA-DE “Lendulet” Immunogenomics Research Group; University of Debrecen; Debrecen Hungary
- Sanford-Burnham Medical Research Institute at Lake Nona; Orlando Florida USA
| |
Collapse
|
40
|
Ow JR, Ma H, Jean A, Goh Z, Lee YH, Chong YM, Soong R, Fu XY, Yang H, Wu Q. Patz1 regulates embryonic stem cell identity. Stem Cells Dev 2014; 23:1062-73. [PMID: 24380431 DOI: 10.1089/scd.2013.0430] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from the inner cell mass (ICM) of blastocysts are pluripotent. Pluripotency is maintained by a transcriptional network in which Oct4 and Nanog are master regulators. Notably, several zinc finger transcription factors have important roles in this network. Patz1, a BTB/POZ-domain-containing zinc finger protein, is expressed at higher levels in the ICM relative to the trophectoderm. However, its function in pluripotency has been poorly studied. Here, we show that Patz1 is an important regulator of pluripotency in ESCs. Patz1 RNAi, chromatin immunoprecipitation (ChIP), and reporter assays indicate that Patz1 directly regulates Pou5f1 and Nanog. Global transcriptome changes upon Patz1 knockdown largely involve upregulation of apoptotic genes and downregulation of cell cycle and cellular metabolism genes. Patz1 ChIP sequencing further identified more than 5,000 binding sites of Patz1 in mouse genome, from which two binding motifs were extracted. Further, gene ontology analysis of genes associated with the binding sites displays enrichment for proximity to developmental genes. In addition, embryoid body assays suggest that Patz1 represses developmental genes. Together, these results propose that Patz1 is important for ESC pluripotency.
Collapse
Affiliation(s)
- Jin Rong Ow
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zfp322a Regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet 2014; 10:e1004038. [PMID: 24550733 PMCID: PMC3923668 DOI: 10.1371/journal.pgen.1004038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts are characterised by their ability to self-renew and their potential to differentiate into many different cell types. Recent studies have shown that zinc finger proteins are crucial for maintaining pluripotent ES cells. Mouse zinc finger protein 322a (Zfp322a) is expressed in the ICM of early mouse embryos. However, little is known regarding the role of Zfp322a in the pluripotency maintenance of mouse ES cells. Here, we report that Zfp322a is required for mES cell identity since depletion of Zfp322a directs mES cells towards differentiation. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays revealed that Zfp322a binds to Pou5f1 and Nanog promoters and regulates their transcription. These data along with the results obtained from our ChIP-seq experiment showed that Zfp322a is an essential component of mES cell transcription regulatory network. Targets which are directly regulated by Zfp322a were identified by correlating the gene expression profile of Zfp322a RNAi-treated mES cells with the ChIP-seq results. These experiments revealed that Zfp322a inhibits mES cell differentiation by suppressing MAPK pathway. Additionally, Zfp322a is found to be a novel reprogramming factor that can replace Sox2 in the classical Yamanaka's factors (OSKM). It can be even used in combination with Yamanaka's factors and that addition leads to a higher reprogramming efficiency and to acceleration of the onset of the reprogramming process. Together, our results demonstrate that Zfp322a is a novel essential component of the transcription factor network which maintains the identity of mouse ES cells. Embryonic stem (ES) cells are featured by their ability to self-renew and by their potential to differentiate into many different cell types. Recent studies have revealed that the unique properties of mouse ES cells are governed by a specific transcription regulatory network, including master regulators Oct4/Sox2/Nanog and other pluripotency factors. The importance of these factors was highlighted by the subsequent finding that combination of several transcription factors can reprogram differentiated fibroblasts back to pluripotent stem cells. Here, we report that Zfp322a is a novel factor which is required for mES cell identity. We revealed that Zfp322a can regulate the key pluripotency genes Pou5f1 and Nanog and functions as a repressor of MAPK/ERK pathway in mES cells, therefore preventing mES cell differentiation. Furthermore, we discovered that Zfp332a can promote the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Our results reveal that Zfp322a is a novel essential transcription factor which not only regulates ES cell pluripotency but also enhances iPSC formation.
Collapse
|