1
|
Rintz E, Celik B, Fnu N, Herreño-Pachón AM, Khan S, Benincore-Flórez E, Tomatsu S. Molecular therapy and nucleic acid adeno-associated virus-based gene therapy delivering combinations of two growth-associated genes to MPS IVA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102211. [PMID: 38831899 PMCID: PMC11145352 DOI: 10.1016/j.omtn.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and Future Perspective in Hematopoietic Stem Progenitor Cell-gene Therapy for Inborn Errors of Metabolism. Hemasphere 2023; 7:e953. [PMID: 37711990 PMCID: PMC10499111 DOI: 10.1097/hs9.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Matilde Cossutta
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University of Rome Tor Vergata, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- “Vita-Salute” San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Long-term effect of hematopoietic cell transplantation on systemic inflammation in patients with mucopolysaccharidoses. Blood Adv 2021; 5:3092-3101. [PMID: 34402882 DOI: 10.1182/bloodadvances.2020003824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are devastating inherited diseases treated with hematopoietic cell transplantation (HCT). However, disease progression, especially skeletal, still occurs in all patients. Secondary inflammation has been hypothesized to be a cause. To investigate whether systemic inflammation is present in untreated patients and to evaluate the effect of HCT on systemic inflammation, dried blood spots (n = 66) of patients with MPS (n = 33) treated with HCT between 2003 and 2019 were included. Time points consisted of pre-HCT and, for patients with MPS type I (MPS I), also at 1, 3, and 10 years of follow-up. Ninety-two markers of the OLINK inflammation panel were measured and compared with those of age-matched control subjects (n = 31) by using principal component analysis and Wilcoxon rank sum tests with correction. Median age at transplantation was 1.3 years (range, 0.2-4.8 years), and median time of pre-HCT sample to transplantation was 0.1 year. Normal leukocyte enzyme activity levels were achieved in 93% of patients post-HCT. Pretransplant samples showed clear separation of patients and control subjects. Markers that differentiated pre-HCT between control subjects and patients were mainly pro-inflammatory (50%) or related to bone homeostasis and extracellular matrix degradation (33%). After 10 years' follow-up, only 5 markers (receptor activator of nuclear factor kappa-Β ligand, osteoprotegerin, axis inhibition protein 1 [AXIN1], stem cell factor, and Fms-related tyrosine kinase 3 ligand) remained significantly increased, with a large fold change difference between patients with MPS I and control subjects. In conclusion, systemic inflammation is present in untreated MPS patients and is reduced upon treatment with HCT. Markers related to bone homeostasis remain elevated up to 10 years after HCT and possibly reflect the ongoing skeletal disease, making them potential biomarkers for the evaluation of new therapies.
Collapse
|
4
|
Hurdles in treating Hurler disease: potential routes to achieve a "real" cure. Blood Adv 2021; 4:2837-2849. [PMID: 32574368 DOI: 10.1182/bloodadvances.2020001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace. To design better therapies, we need to understand why and where current therapies fail. In this review, we discuss important aspects of the underlying disease and the disease progression. We note that the majority of progressive symptoms that occur in "hard-to-treat" tissues are actually tissues that are difficult to reach, such as avascular connective tissue or tissues isolated from the circulation by a specific barrier (eg, blood-brain barrier, blood-retina barrier). Although easily reached tissues are effectively cured by HCT, disease progression is observed in these "hard-to-reach" tissues. We used these insights to critically appraise ongoing experimental endeavors with regard to their potential to overcome the encountered hurdles and improve long-term clinical outcomes in MPS patients treated with HCT.
Collapse
|
5
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
6
|
Ferreira NY, do Nascimento CC, Pereira VG, de Oliveira F, Medalha CC, da Silva VC, D'Almeida V. Biomechanical and histological characterization of MPS I mice femurs. Acta Histochem 2021; 123:151678. [PMID: 33434858 DOI: 10.1016/j.acthis.2020.151678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by alpha-L-iduronidase (IDUA) deficiency, an enzyme responsible for glycosaminoglycan degradation. Musculoskeletal impairment is an important component of the morbidity related to the disease, as it has a major impact on patients' quality of life. To understand how this disease affects bone structure, morphological, biomechanical and histological analyses of femurs from 3- and 6-month-old wild type (Idua +/+) and MPS I knockout mice (Idua -/-) were performed. Femurs from 3-month-old Idua -/- mice were found to be smaller and less resistant to fracture when compared to their age matched controls. In addition, at this age, the femurs presented important alterations in articular cartilage, trabecular bone architecture, and deposition of type I and III collagen. At 6 months of age, femurs from Idua -/- mice were more resistant to fracture than those from Idua +/+. Our results suggest that the abnormalities observed in bone matrix and articular cartilage in 3-month-old Idua -/- animals caused bone tissue to be less flexible and more likely to fracture, whereas in 6-month-old Idua -/- group the ability to withstand more load before fracturing than wild type animals is possibly due to changes in the bone matrix.
Collapse
Affiliation(s)
- Nicole Yolanda Ferreira
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cinthia Castro do Nascimento
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Flávia de Oliveira
- Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Sarhan D, Wang J, Sunil Arvindam U, Hallstrom C, Verneris MR, Grzywacz B, Warlick E, Blazar BR, Miller JS. Mesenchymal stromal cells shape the MDS microenvironment by inducing suppressive monocytes that dampen NK cell function. JCI Insight 2020; 5:130155. [PMID: 32045384 PMCID: PMC7141401 DOI: 10.1172/jci.insight.130155] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Altered BM hematopoiesis and immune suppression are hallmarks of myelodysplastic syndrome (MDS). While the BM microenvironment influences malignant hematopoiesis, the mechanism leading to MDS-associated immune suppression is unknown. We tested whether mesenchymal stromal cells (MSCs) contribute to this process. Here, we developed a model to study cultured MSCs from patients with MDS (MDS-MSCs) compared with those from aged-matched normal controls for regulation of immune function. MDS-MSCs and healthy donor MSCs (HD-MSCs) exhibited a similar in vitro phenotype, and neither had a direct effect on NK cell function. However, when MDS- and HD-MSCs were cultured with monocytes, only the MDS-MSCs acquired phenotypic and metabolic properties of myeloid-derived suppressor cells (MDSCs), with resulting suppression of NK cell function, along with T cell proliferation. A MSC transcriptome was observed in MDS-MSCs compared with HD-MSCs, including increased expression of the ROS regulator, ENC1. High ENC1 expression in MDS-MSCs induced suppressive monocytes with increased INHBA, a gene that encodes for a member of the TGF-β superfamily of proteins. These monocytes also had reduced expression of the TGF-β transcriptional repressor MAB21L2, further adding to their immune-suppressive function. Silencing ENC1 or inhibiting ROS production in MDS-MSCs abrogated the suppressive function of MDS-MSC-conditioned monocytes. In addition, silencing MAB21L2 in healthy MSC-conditioned monocytes mimicked the MDS-MSC-suppressive transformation of monocytes. Our data demonstrate that MDS-MSCs are responsible for inducing an immune-suppressive microenvironment in MDS through an indirect mechanism involving monocytes.
Collapse
Affiliation(s)
- Dhifaf Sarhan
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinhua Wang
- Masonic Cancer Center and
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Michael R. Verneris
- Pediatric Bone Marrow Transplantation, University of Colorado, Aurora, Colorado, USA
| | | | - Erica Warlick
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center and
| |
Collapse
|
8
|
Amin N, Boccardi V, Taghizadeh M, Jafarnejad S. Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 2020; 32:363-371. [PMID: 31119697 DOI: 10.1007/s40520-019-01223-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
The skeleton is the framework and in charge of body configuration preservation. As a living tissue, bones are constantly being formed and absorbed. Osteoblasts and osteoclasts are the main bone cells and balance between their activities indicates bone health. Several mechanisms influence the bone turnover and RANKL/RANK/OPG pathway is one of them. This system, whose components are part of the tumor necrosis factor (TNF) superfamily, exists in many organs and could play a role in bone modeling and remodeling. RANKL/RANK pathway controls osteoclasts activity and formation. In addition, they are identified as key factors on bone turnover in different pathological situations. At the same time, OPG (RANKL's decoy receptor) plays role as a bone-protective factor by binding to RANKL and prevention of extra resorption. The lack of balance between RANKL and OPG could result in excessive bone resorption. Probiotics, the beneficial microorganisms for human health, entail bones in their advantages. Recent studies suggest that probiotics could reduce inflammatory factors (for example TNF-α and IL-1β) and increase bone OPG expression. In addition, probiotics have shown to maintain bones in various ways. Although current evidence is not enough for definitive approval of probiotics' efficacy on RANKL/RANK/OPG, its positive responses from conducted studies are significant. Understanding of the probiotics' effects on RANKL/RANK/OPG pathway will help focus future studies, and assist in developing efficient treatment strategies.
Collapse
Affiliation(s)
- Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Virginia Boccardi
- Section of Gerontology and Geriatrics, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Bone Marrow-Derived Mesenchymal Stromal Cells: A Novel Target to Optimize Hematopoietic Stem Cell Transplantation Protocols in Hematological Malignancies and Rare Genetic Disorders. J Clin Med 2019; 9:jcm9010002. [PMID: 31861268 PMCID: PMC7019991 DOI: 10.3390/jcm9010002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
: Mesenchymal stromal cells (MSCs) are crucial elements in the bone marrow (BM) niche where they provide physical support and secrete soluble factors to control and maintain hematopoietic stem progenitor cells (HSPCs). Given their role in the BM niche and HSPC support, MSCs have been employed in the clinical setting to expand ex-vivo HSPCs, as well as to facilitate HSPC engraftment in vivo. Specific alterations in the mesenchymal compartment have been described in hematological malignancies, as well as in rare genetic disorders, diseases that are amenable to allogeneic hematopoietic stem cell transplantation (HSCT), and ex-vivo HSPC-gene therapy (HSC-GT). Dissecting the in vivo function of human MSCs and studying their biological and functional properties in these diseases is a critical requirement to optimize transplantation outcomes. In this review, the role of MSCs in the orchestration of the BM niche will be revised, and alterations in the mesenchymal compartment in specific disorders will be discussed, focusing on the need to correct and restore a proper microenvironment to ameliorate transplantation procedures, and more in general disease outcomes.
Collapse
|
10
|
Fraldi A, Serafini M, Sorrentino NC, Gentner B, Aiuti A, Bernardo ME. Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Ital J Pediatr 2018; 44:130. [PMID: 30442177 PMCID: PMC6238250 DOI: 10.1186/s13052-018-0565-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a deficiency in lysosomal enzymes catalyzing the stepwise degradation of glycosaminoglycans (GAGs). The current therapeutic strategies of enzyme replacement therapy and allogeneic hematopoietic stem cell transplantation have been reported to reduce patient morbidity and to improve their quality of life, but they are associated with persistence of residual disease burden, in particular at the neurocognitive and musculoskeletal levels. This indicates the need for more efficacious treatments capable of effective and rapid enzyme delivery to the affected organs, especially the brain and the skeleton. Gene therapy (GT) strategies aimed at correcting the genetic defect in patient cells could represent a significant improvement for the treatment of MPS when compared with conventional approaches. While in-vivo GT strategies foresee the administration of viral vector particles directly to patients with the aim of providing normal complementary DNA to the affected cells, ex-vivo GT approaches are based on the ex-vivo transduction of patient cells that are subsequently infused back. This review provides insights into the state-of-art accomplishments made with in vivo and ex vivo GT-based approaches in MPS and provide a vision for the future in the medical community.
Collapse
Affiliation(s)
- Alessandro Fraldi
- Telethon Institute of Genetic and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, Naples Italy
- Department of Medical and Translational Science, Federico II University, Via Pansini 5, Naples, 80131 Italy
| | - Marta Serafini
- Department of Pediatrics, Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, University of Milano-Bicocca, Monza, Italy
| | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
| |
Collapse
|
11
|
Pievani A, Sacchetti B, Corsi A, Rambaldi B, Donsante S, Scagliotti V, Vergani P, Remoli C, Biondi A, Robey PG, Riminucci M, Serafini M. Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid in vivo. Development 2017; 144:1035-1044. [PMID: 28292847 DOI: 10.1242/dev.142836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Human umbilical cord blood (CB) has attracted much attention as a reservoir for functional hematopoietic stem and progenitor cells, and, recently, as a source of blood-borne fibroblasts (CB-BFs). Previously, we demonstrated that bone marrow stromal cell (BMSC) and CB-BF pellet cultures make cartilage in vitro Furthermore, upon in vivo transplantation, BMSC pellets remodelled into miniature bone/marrow organoids. Using this in vivo model, we asked whether CB-BF populations that express characteristics of the hematopoietic stem cell (HSC) niche contain precursors that reform the niche. CB ossicles were regularly observed upon transplantation. Compared with BM ossicles, CB ossicles showed a predominance of red marrow over yellow marrow, as demonstrated by histomorphological analyses and the number of hematopoietic cells isolated within ossicles. Marrow cavities from CB and BM ossicles included donor-derived CD146-expressing osteoprogenitors and host-derived mature hematopoietic cells, clonogenic lineage-committed progenitors and HSCs. Furthermore, human CD34+ cells transplanted into ossicle-bearing mice engrafted and maintained human HSCs in the niche. Our data indicate that CB-BFs are able to recapitulate the conditions by which the bone marrow microenvironment is formed and establish complete HSC niches, which are functionally supportive of hematopoietic tissue.
Collapse
Affiliation(s)
- Alice Pievani
- Dulbecco Telethon Institute, Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza 20900, Italy
| | - Benedetto Sacchetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Benedetta Rambaldi
- Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza 20900, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Valeria Scagliotti
- Dulbecco Telethon Institute, Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza 20900, Italy
| | - Patrizia Vergani
- Department of Obstetrics and Gynecology, University of Milano-Bicocca, Monza 20900, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Andrea Biondi
- Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza 20900, Italy
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute, Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
12
|
Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M. Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep 2017; 7:9473. [PMID: 28842642 PMCID: PMC5573317 DOI: 10.1038/s41598-017-09958-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases.
Collapse
Affiliation(s)
- Isabella Azario
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alice Pievani
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Federica Del Priore
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Laura Antolini
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Ludovica Santi
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Lucia Cardinale
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Francyne Kubaski
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Grazia Valsecchi
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita Salute San Raffaele University, Milan, 20132, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy.
| |
Collapse
|
13
|
Schena F, Menale C, Caci E, Diomede L, Palagano E, Recordati C, Sandri M, Tampieri A, Bortolomai I, Capo V, Pastorino C, Bertoni A, Gattorno M, Martini A, Villa A, Traggiai E, Sobacchi C. Murine Rankl -/- Mesenchymal Stromal Cells Display an Osteogenic Differentiation Defect Improved by a RANKL-Expressing Lentiviral Vector. Stem Cells 2017; 35:1365-1377. [PMID: 28100034 DOI: 10.1002/stem.2574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/02/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.
Collapse
Affiliation(s)
- Francesca Schena
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Ciro Menale
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Emanuela Caci
- Molecular Genetics Laboratory G. Gaslini Children's Hospital, Genova, Italy
| | - Lorenzo Diomede
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Eleonora Palagano
- Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milano, Italy
| | - Monica Sandri
- ISTEC-CNR, Institute of Science & Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Anna Tampieri
- ISTEC-CNR, Institute of Science & Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Ileana Bortolomai
- Milan Unit, CNR-IRGB, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastorino
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Arinna Bertoni
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Marco Gattorno
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Alberto Martini
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Anna Villa
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Elisabetta Traggiai
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy.,Novartis Institute for Biomedical Research, Klybeckstrasse, Basel, Switzerland
| | - Cristina Sobacchi
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| |
Collapse
|
14
|
Gray-Edwards HL, Brunson BL, Holland M, Hespel AM, Bradbury AM, McCurdy VJ, Beadlescomb PM, Randle AN, Salibi N, Denney TS, Beyers RJ, Johnson AK, Voyles ML, Montgomery RD, Wilson DU, Hudson JA, Cox NR, Baker HJ, Sena-Esteves M, Martin DR. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol Genet Metab 2015; 116:80-7. [PMID: 25971245 DOI: 10.1016/j.ymgme.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Brandon L Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Merrilee Holland
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Adrien-Maxence Hespel
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Patricia M Beadlescomb
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nouha Salibi
- MR R&D Siemens Healthcare, Malvern, PA, USA; Auburn University MRI Research Center, Auburn, AL, USA
| | - Thomas S Denney
- Auburn University MRI Research Center, Auburn, AL, USA; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | | | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Meredith L Voyles
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ronald D Montgomery
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
15
|
β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep 2015. [PMID: 26219508 PMCID: PMC4518212 DOI: 10.1038/srep12593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present study tested whether activation of the sympathetic tone by aberrant joint loading elicits abnormal subchondral bone remodeling in temporomandibular joint (TMJ) osteoarthritis. Abnormal dental occlusion was created in experimental rats, which were then intraperitoneally injected by saline, propranolol or isoproterenol. The norepinephrine contents, distribution of sympathetic nerve fibers, expression of β-adrenergic receptors (β-ARs) and remodeling parameters in the condylar subchondral bone were investigated. Mesenchymal stem cells (MSCs) from condylar subchondral bones were harvested for comparison of their β-ARs, pro-osteoclastic gene expressions and pro-osteoclastic function. Increases in norepinephrine level, sympathetic nerve fiber distribution and β2-AR expression were observed in the condylar subchondral bone of experimental rats, together with subchondral bone loss and increased osteoclast activity. β-antagonist (propranolol) suppressed subchondral bone loss and osteoclast hyperfunction while β-agonist (isoproterenol) exacerbated those responses. MSCs from experimental condylar subchondral bone expressed higher levels of β2-AR and RANKL; norepinephrine stimulation further increased their RANKL expression and pro-osteoclastic function. These effects were blocked by inhibition of β2-AR or the PKA pathway. RANKL expression by MSCs decreased after propranolol administration and increased after isoproterenol administration. It is concluded that β2-AR signal-mediated subchondral bone loss in TMJ osteoarthritisis associated with increased RANKL secretion by MSCs.
Collapse
|
16
|
Li J, Chen L, Sun L, Chen H, Sun Y, Jiang C, Cheng B. Silencing of TGIF1 in bone mesenchymal stem cells applied to the post-operative rotator cuff improves both functional and histologic outcomes. J Mol Histol 2015; 46:241-9. [PMID: 25782868 DOI: 10.1007/s10735-015-9615-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
Stem cells have long been hypothesized to improve outcomes following rotator cuff repair. However, these cells must be signaled in order to do so. TGIF1 is a transcription factor that has been found to be down-regulated in cells involved in chondrogenesis. We therefore wished to examine whether stem cells expressing lower levels of TGIF1 could better improve outcomes following rotator cuff repair than stem cells expressing normal levels of TGIF1. Bone mesenchymal stem cells (BMSCs) were transduced with TGIF1 siRNA to suppress native TGIF1. Nontransduced BMSCs were also obtained for the control group. Following suprapinatus tendon repair, rats were either treated with transduced BMSCs or nontransduced BMSCs. Histologic and functional testing were performed on both groups. Rats treated with transduced TGIF1 siRNA BMSCs following suprapinatus repair expressed significantly higher levels of chondrogenic proteins at 4 weeks than rats treated with nontransduced BMSCs. Further, rats treated with BMSCs transduced with TGIF1 siRNA had both a significantly greater maximum load at failure and stiffness. Rats treated with transduced TGIF1 siRNA BMSCs following supraspinatus repair perform better both histologically and functionally at 4 weeks.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, No. 301, Yanchang Road, Shanghai, 200072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Heppner JM, Zaucke F, Clarke LA. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol Genet Metab 2015; 114:146-55. [PMID: 25410057 DOI: 10.1016/j.ymgme.2014.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications.
Collapse
Affiliation(s)
- Jonathan M Heppner
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada.
| |
Collapse
|
18
|
Riminucci M, Remoli C, Robey PG, Bianco P. Stem cells and bone diseases: new tools, new perspective. Bone 2015; 70:55-61. [PMID: 25240458 PMCID: PMC5524373 DOI: 10.1016/j.bone.2014.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone.
Collapse
Affiliation(s)
- Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
19
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
20
|
Pievani A, Scagliotti V, Russo FM, Azario I, Rambaldi B, Sacchetti B, Marzorati S, Erba E, Giudici G, Riminucci M, Biondi A, Vergani P, Serafini M. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy 2014; 16:893-905. [PMID: 24794181 PMCID: PMC4062948 DOI: 10.1016/j.jcyt.2014.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 12/20/2022]
Abstract
Background aims Cord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated. Methods MSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Results We were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Conclusions Our results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.
Collapse
Affiliation(s)
- Alice Pievani
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Valeria Scagliotti
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | - Isabella Azario
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Benedetta Rambaldi
- Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | - Simona Marzorati
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Eugenio Erba
- Department of Oncology, Flow Cytometry Unit, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni Giudici
- Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Andrea Biondi
- Pediatric Department, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Patrizia Vergani
- Department of Obstetrics and Gynecology, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
21
|
Opoka-Winiarska V, Jurecka A, Emeryk A, Tylki-Szymańska A. Osteoimmunology in mucopolysaccharidoses type I, II, VI and VII. Immunological regulation of the osteoarticular system in the course of metabolic inflammation. Osteoarthritis Cartilage 2013; 21:1813-23. [PMID: 23954699 DOI: 10.1016/j.joca.2013.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/27/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mucopolysaccharidoses (MPSs) are rare genetic diseases caused by a deficient activity of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. These metabolic blocks lead to the accumulation of GAGs in various organs and tissues, resulting in a multisystemic clinical picture. The pathological GAG accumulation begins a cascade of interrelated responses: metabolic, inflammatory and immunological with systemic effects. Metabolic inflammation, secondary to GAG storage, is a significant cause of osteoarticular symptoms in MPS disorders. OBJECTIVE AND METHOD The aim of this review is to present recent progress in the understanding of the role of inflammatory and immune processes in the pathophysiology of osteoarticular symptoms in MPS disorders and potential therapeutic interventions based on published reports in MPS patients and studies in animal models. RESULTS AND CONCLUSIONS The immune and skeletal systems have a number of shared regulatory molecules and many relationships between bone disorders and aberrant immune responses in MPS can be explained by osteoimmunology. The treatment options currently available are not sufficiently effective in the prevention, inhibition and treatment of osteoarticular symptoms in MPS disease. A lot can be learnt from interactions between skeletal and immune systems in autoimmune diseases such as rheumatoid arthritis (RA) and similarities between RA and MPS point to the possibility of using the experience with RA in the treatment of MPS in the future. The use of different anti-inflammatory drugs requires further study, but it seems to be an important direction for new therapeutic options for MPS patients.
Collapse
Affiliation(s)
- V Opoka-Winiarska
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
22
|
Pischiutta F, D'Amico G, Dander E, Biondi A, Biagi E, Citerio G, De Simoni MG, Zanier ER. Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology 2013; 79:119-26. [PMID: 24246661 DOI: 10.1016/j.neuropharm.2013.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 01/18/2023]
Abstract
The need for immunosuppression after allo/xenogenic mesenchymal stromal cell (MSC) transplantation is debated. This study compared the long-term effects of human (h) bone marrow MSC transplant in immunocompetent or immunosuppressed traumatic brain injured (TBI) mice. C57Bl/6 male mice were subjected to TBI or sham surgery followed 24 h later by an intracerebroventricular infusion of phosphate buffer saline (PBS, control) or hMSC (150,000/5 μl). Immunocompetent and cyclosporin A immunosuppressed (CsA) mice were analyzed for gene expression at 72 h, functional deficits and histological analysis at five weeks. Gene expression analysis showed the effectiveness of immunosuppression (INFγ reduction in CsA treated groups), with no evidence of early rejection (no changes of MHCII and CD86 in all TBI groups) and selective induction of T-reg (increase of Foxp3) only in the TBI hMSC group. Five weeks after TBI, hMSC had comparable efficacy, with functional recovery (on both sensorimotor and cognitive deficits) and structural protection (contusion volume, vessel rescue effect, gliotic scar reduction, induction of neurogenesis) in immunosuppressed and immunocompetent mice. Therefore, long-term hMSC efficacy in TBI is not dependent on immunosuppressive treatment. These findings could have important clinical implication since immunosuppression in acute TBI patients may increase their risk of infection and not be tolerated.
Collapse
Affiliation(s)
- Francesca Pischiutta
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Milan, Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- Laboratory for Cell Therapy "Stefano Verri", Paediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Citerio
- Neuroanesthesia and Neurointensive Care Unit, Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Maria Grazia De Simoni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Milan, Italy.
| | - Elisa R Zanier
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Milan, Italy
| |
Collapse
|
23
|
André V, Longoni D, Bresolin S, Cappuzzello C, Dander E, Galbiati M, Bugarin C, Di Meglio A, Nicolis E, Maserati E, Serafini M, Warren AJ, Te Kronnie G, Cazzaniga G, Sainati L, Cipolli M, Biondi A, D'Amico G. Mesenchymal stem cells from Shwachman-Diamond syndrome patients display normal functions and do not contribute to hematological defects. Blood Cancer J 2012; 2:e94. [PMID: 23064742 PMCID: PMC3483621 DOI: 10.1038/bcj.2012.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shwachman–Diamond syndrome (SDS) is a rare inherited disorder characterized by bone marrow (BM) dysfunction and exocrine pancreatic insufficiency. SDS patients have an increased risk for myelodisplastic syndrome and acute myeloid leukemia. Mesenchymal stem cells (MSCs) are the key component of the hematopoietic microenvironment and are relevant in inducing genetic mutations leading to leukemia. However, their role in SDS is still unexplored. We demonstrated that morphology, growth kinetics and expression of surface markers of MSCs from SDS patients (SDS-MSCs) were similar to normal MSCs. Moreover, SDS-MSCs were able to differentiate into mesengenic lineages and to inhibit the proliferation of mitogen-activated lymphocytes. We demonstrated in an in vitro coculture system that SDS-MSCs, significantly inhibited neutrophil apoptosis probably through interleukin-6 production. In a long-term coculture with CD34+-sorted cells, SDS-MSCs were able to sustain CD34+ cells survival and to preserve their stemness. Finally, SDS-MSCs had normal karyotype and did not show any chromosomal abnormality observed in the hematological components of the BM of SDS patients. Despite their pivotal role in the hematopoietic stem cell niche, our data suggest that MSC themselves do not seem to be responsible for the hematological defects typical of SDS patients.
Collapse
Affiliation(s)
- V André
- Centro Ricerca 'M Tettamanti', Clinica Pediatrica Università degli Studi di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|