1
|
Jornayvaz FR, Gariani K, Somm E, Jaquet V, Bouzakri K, Szanto I. NADPH oxidases in healthy white adipose tissue and in obesity: function, regulation, and clinical implications. Obesity (Silver Spring) 2024; 32:1799-1811. [PMID: 39315402 DOI: 10.1002/oby.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024]
Abstract
Reactive oxygen species, when produced in a controlled manner, are physiological modulators of healthy white adipose tissue (WAT) expansion and metabolic function. By contrast, unbridled production of oxidants is associated with pathological WAT expansion and the establishment of metabolic dysfunctions, most notably insulin resistance and type 2 diabetes mellitus. NADPH oxidases (NOXs) produce oxidants in an orderly fashion and are present in adipocytes and in other diverse WAT-constituent cell types. Recent studies have established several links between aberrant NOX-derived oxidant production, adiposity, and metabolic homeostasis. The objective of this review is to highlight the physiological roles attributed to diverse NOX isoforms in healthy WAT and summarize current knowledge of the metabolic consequences related to perturbations in their adequate oxidant production. We detail WAT-related alterations in preclinical investigations conducted in NOX-deficient murine models. In addition, we review clinical studies that have employed NOX inhibitors and currently available data related to human NOX mutations in metabolic disturbances. Future investigations aimed at understanding the integration of NOX-derived oxidants in the regulation of the WAT cellular redox network are essential for designing successful redox-related precision therapies to curb obesity and attenuate obesity-associated metabolic pathologies.
Collapse
Affiliation(s)
- François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- RE.A.D.S. Unit (Readers, Assay Development and Screening Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
2
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Jaiklaew S, Tansriratanawong K. Influence of Hypoxic Condition on Cytotoxicity, Cellular Migration, and Osteogenic Differentiation Potential of Aged Periodontal Ligament Cells. Eur J Dent 2024. [PMID: 38759996 DOI: 10.1055/s-0044-1786844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE This study aimed to investigate and compare the influence of hypoxic conditions on cytotoxicity, cellular migration, and osteogenic differentiation of aged periodontal ligament (PDL) cells. MATERIALS AND METHODS Isolated human PDL cells from aged and young subjects were cultured under hypoxic conditions, which were treated with hydrogen peroxide (H2O2) (0, 25, 50, 100, 200, and 500 µM). To assess cytotoxicity, lactate dehydrogenase release was determined by the optical density at 490 nm, and the percentage of cell death was calculated. An in vitro wound healing assay was performed over 24 to 48 hours for cellular migration determination. Osteogenic differentiation was determined by alizarin red staining and osteogenic gene expression, including the expression of runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). RESULTS There was a significant difference in the percentage of cell death with high hypoxic condition (200 and 500 µM) compared to low hypoxic conditions on both day 1 and 2. The highest cellular migration was depicted at 50 µM in both young and aged groups of the in vitro wound healing assay. Osteogenic gene expression of RUNX2 in the aged group was increased at 25 and 50 µM hypoxic condition at day 7, but the expression was gradually decreased after 14 days. On the contrary, the expression of ALP and OPN in the aged group was increased at day 14. Only OPN had been found to be statistically significantly different when compared with gene expression at day 7 and 14 (p < 0.05). The results showed no statistically significant differences when compared with the young and aged groups in all genes and all concentrations. CONCLUSION The concentration of low hypoxic condition (25-50 µM) was proposed to promote cell viability, cellular migration, and osteogenic differentiation in aged PDL cells. We suggested that the potential of aged PDL cells for use in cell therapy for periodontal regeneration might possibly be similar to that of young PDL cells.
Collapse
Affiliation(s)
- Sukrit Jaiklaew
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Chaiwong S, Sretrirutchai S, Sung JH, Kaewsuwan S. Antioxidative and Anti-photooxidative Potential of Interruptins from the Edible Fern Cyclosorus terminans in Human Skin Cells. Curr Pharm Biotechnol 2024; 25:468-476. [PMID: 37317921 DOI: 10.2174/1389201024666230614162152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Background: Human skin is exposed daily to oxidative stress factors such as UV light, chemical pollutants, and invading organisms. Reactive oxygen species (ROS) are intermediate molecules that cause cellular oxidative stress. In order to survive in an oxygen-rich environment, all aerobic organisms, including mammals, have evolved enzymatic and non-enzymatic defence systems. The interruptins from an edible fern Cyclosorus terminans possess antioxidative properties and can scavenge intracellular ROS in adipose-derived stem cells. Objectives: This study aimed to evaluate the antioxidative efficacy of interruptins A, B, and C in cultured human dermal fibroblasts (HDFs) and epidermal keratinocytes (HEKs). Moreover, the anti-photooxidative activity of interruptins in ultraviolet (UV)-exposed skin cells was investigated. Methods: The intracellular ROS scavenging capacity of interruptins in skin cells was measured by flow cytometry. Their induction effects on gene expression of the endogenous antioxidant enzymes was monitored using real-time polymerase chain reaction. Results: Interruptins A and B, but not interruptin C, were highly effective in ROS scavenging, particularly in HDFs. Interruptins A and B upregulated gene expression of superoxide dismutase (SOD)1, SOD2, catalase (CAT), and glutathione peroxidase (GPx) in HEKs, but they only induced SOD1, SOD2, and GPx gene expression in HDFs. Additionally, interruptins A and B efficiently suppressed UVA- and UVB-induced ROS generation in both HEKs and HDFs. Conclusion: The results suggest that these naturally occurring interruptins A and B are potent natural antioxidants and therefore may have the potential in the future of inclusion in antiaging cosmeceutical products. .
Collapse
Affiliation(s)
- Suriya Chaiwong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Sireewan Kaewsuwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| |
Collapse
|
5
|
Jeon SH, Kim H, Sung JH. Hypoxia enhances the hair growth-promoting effects of embryonic stem cell-derived mesenchymal stem cells via NADPH oxidase 4. Biomed Pharmacother 2023; 159:114303. [PMID: 36706635 DOI: 10.1016/j.biopha.2023.114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human embryonic stem cell (hES)-derived mesenchymal stem cells (-MSCs) are an unlimited source of MSCs. The hair growth-promoting effects of diverse MSCs have been reported, but not that of hES-MSCs. In the present study, we investigated the hair growth-promoting effects of hES-MSCs and their underlying mechanisms. hES-MSCs or conditioned medium of hES-MSCs exhibited hair-growth effects, which increased the length of mouse vibrissae and human hair follicles. hES-MSCs accelerated the telogen-to-anagen transition in C3H mice and were more effective than adipose-derived stem cells. We further examined whether hypoxia could enhance the hair-growth promoting effects of hES-MSCs. The injection of hES-MSCs or conditioned medium (Hyp-CM) cultured under hypoxia (2% O2) enhanced the telogen-to-anagen transition in C3H mice. Additionally, Hyp-CM increased the length of mouse vibrissae, human hair follicles, and the proliferation of human dermal papilla and outer root sheath cells. Moreover, fibroblast growth factor 7, interleukin 12B, and teratocarcinoma-derived growth factor 1 were upregulated under hypoxia, and the co-treatment with these three proteins increased the hair length and induced telogen-to-anagen transition. Hypoxia increased reactive oxygen species (ROS) production, and ROS scavenging attenuated the secretion of growth factors. NADPH oxidase 4 was primarily expressed in hES-MSCs and generated ROS under hypoxia. Collectively, our results suggest that hES-MSCs exhibit hair-growth effects, which is enhanced by hypoxia.
Collapse
Affiliation(s)
- Seng-Ho Jeon
- Daewoong Pharmaceutical, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| | - Hyunju Kim
- Epi Biotech Co., Ltd. Incheon, South Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
6
|
Kim J, Kim J, Lim HJ, Lee S, Bae YS, Kim J. Nox4-IGF2 Axis Promotes Differentiation of Embryoid Body Cells Into Derivatives of the Three Embryonic Germ Layers. Stem Cell Rev Rep 2021; 18:1181-1192. [PMID: 34802139 PMCID: PMC8942977 DOI: 10.1007/s12015-021-10303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) play important roles as second messengers in a wide array of cellular processes including differentiation of stem cells. We identified Nox4 as the major ROS-generating enzyme whose expression is induced during differentiation of embryoid body (EB) into cells of all three germ layers. The role of Nox4 was examined using induced pluripotent stem cells (iPSCs) generated from Nox4 knockout (Nox4−/−) mouse. Differentiation markers showed significantly reduced expression levels consistent with the importance of Nox4-generated ROS during this process. From transcriptomic analyses, we found insulin-like growth factor 2 (IGF2), a member of a gene family extensively involved in embryonic development, as one of the most down-regulated genes in Nox4−/− cells. Indeed, addition of IGF2 to culture partly restored the differentiation competence of Nox4−/− iPSCs. Our results reveal an important signaling axis mediated by ROS in control of crucial events during differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Jusong Kim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jaewon Kim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Ewha Research Center for Systems Biology, Seoul, 03760, Korea
| | - Hee Jung Lim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Ewha Research Center for Systems Biology, Seoul, 03760, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea. .,Ewha Research Center for Systems Biology, Seoul, 03760, Korea.
| |
Collapse
|
7
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto R, Prijosedjati A, Utomo P, Prakoeswa CRS, Rantam FA, Tinduh D, Notobroto HB, Rhatomy S. Preconditioning of Hypoxic Culture Increases The Therapeutic Potential of Adipose Derived Mesenchymal Stem Cells. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Various in vitro preconditioning strategies have been implemented to increase the regenerative capacity of MSCs. Among them are modulation of culture atmosphere (hypoxia or anoxia), three-dimensional culture (3D), addition of trophic factors (in the form of growth factors, cytokines or hormones), lipopolysaccharides, and pharmacological agents. Preconditioning mesenchymal stem cells by culturing them in a hypoxic environment, which resembles the natural oxygen environment of the tissues (1% –7%) and not with standard culture conditions (21%), increases the survival of these cells via Hypoxia Inducible Factor-1α (HIF-1a) and via Akt-dependent mechanisms. In addition, the hypoxic precondition stimulates the secretion of pro-angiogenic growth factors, increases the expression of chemokines SDF-1 (stromal cell-derived factor-1) and its receptor CXCR4 (chemokine receptor type 4) - CXCR7 (chemokine receptor type 7) and increases engraftment of stem cell. This review aims to provide an overview of the preconditioned hypoxic treatment to increase the therapeutic potential of adipose-derived mesenchymal stem cells.
Collapse
|
8
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
9
|
Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?". BIOLOGY 2021; 10:723. [PMID: 34439955 PMCID: PMC8389254 DOI: 10.3390/biology10080723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a condition characterized by insufficient tissue oxygenation, which results in impaired oxidative energy production. A reduction in cellular oxygen levels induces the stabilization of hypoxia inducible factor α (HIF-1α), master regulator of the molecular response to hypoxia, involved in maintaining cellular homeostasis and driving hypoxic adaptation through the control of gene expression. Due to its high energy requirement, the brain is particularly vulnerable to oxygen shortage. Thus, hypoxic injury can cause significant metabolic changes in neural cell populations, which are associated with neurodegeneration. Recent evidence suggests that regulating HIF-1α may ameliorate the cellular damage in neurodegenerative diseases. Indeed, the hypoxia/HIF-1α signaling pathway has been associated to several processes linked to Parkinson's disease (PD) including gene mutations, risk factors and molecular pathways such as mitochondrial dysfunction, oxidative stress and protein degradation impairment. This review will explore the impact of hypoxia and HIF-1α signaling on these specific molecular pathways that influence PD development and will evaluate different novel neuroprotective strategies involving HIF-1α stabilization.
Collapse
Affiliation(s)
- Laura Lestón Pinilla
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Aslihan Ugun-Klusek
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Luigi A. De Girolamo
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
10
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
11
|
Cheng N, Wu Y, Zhang H, Wei S, Wang R. Injectable Cryogels Associate with Adipose-Derived Stem Cells for Cardiac Healing After Acute Myocardial Infarctions. J Biomed Nanotechnol 2021; 17:981-988. [PMID: 34082883 DOI: 10.1166/jbn.2021.3082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Treatment of adipose-derived stem cells (ADSCs) provides support for novel methods of conveying baseline cell protein endothelial cells to promote acute myocardial infarction in gelatin sericin (GS) lamin-coated antioxidant systems (GS@L). The ratio of fixity modules, pores, absorption, and inflammation in the range of ka (65 ka), 149 ±39.8 μm, 92.2%, 42 ± 1.38, and 29 ± 1.9 were observed in the synthesized frames for GS. Herein, ADSC-GS@L was prepared, and the relevant substance for the development of cardiac regenerative applications was stable and physically chemical. In vitro assessments of ADSC-GS@L injectable cryogels established the enhanced survival rates of the cell and improved pro- angiogenic factors as well as pro-inflammatory expression, confirming the favorable outcomes of fractional ejections, fibro-areas, and vessel densities with reduced infraction dimensions. The novel ADSC-injecting cryogel method could be useful for successful heart injury therapies during acute myocardial infarction. Additionally, the method could be useful for successful heart injury therapies during coronary heart disease.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Cardiovascular Surgery, People's Liberation Army General Hospital, Beijing 100853, China
| | - Yuanbin Wu
- Department of Cardiovascular Surgery, People's Liberation Army General Hospital, Beijing 100853, China
| | - Huajun Zhang
- Department of Cardiovascular Surgery, People's Liberation Army General Hospital, Beijing 100853, China
| | - Shixiong Wei
- Department of Cardiovascular Surgery, People's Liberation Army General Hospital, Beijing 100853, China
| | - Rong Wang
- Department of Cardiovascular Surgery, People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
13
|
HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. Int J Mol Sci 2019; 21:ijms21010122. [PMID: 31878047 PMCID: PMC6981845 DOI: 10.3390/ijms21010122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Although adipose-derived stem cells (ASCs) have hair regenerative potential, their hair inductive capabilities are limited. The mitogenic and hair inductive effects of heparin binding-epidermal growth factor-like growth factor (HB-EGF) on ASCs were investigated in this study and the underlying mechanism of stimulation was examined. Cell growth, migration, and self-renewal assays, as well as quantitative polymerase chain reactions and immunostaining, were carried out. Telogen-to-anagen transition and organ culture using vibrissa follicles were also conducted. HB-EGF significantly increased ASC motility, including cell proliferation, migration, and self-renewal activity. The preconditioning of ASCs with HB-EGF induced telogen-to-anagen transition more rapidly in vivo, and injected PKH26-ASCs survived for longer periods of time. Conditioned medium obtained from HB-EGF-treated ASCs promoted hair growth in vivo, upregulating growth factors. In particular, thrombopoietin (THPO) also induced hair growth in vivo, stimulating dermal papilla cells (DPCs). Reactive oxygen species (ROS) appeared to play a key role in ASC stimulation as the inhibition of ROS generation and NOX4 knockout attenuated ASC stimulation and THPO upregulation by HB-EGF. In addition, the Hck phosphorylation pathway mediated the stimulation of ASCs by HB-EGF. In summary, HB-EGF increased the motility and paracrine effects of ASCs releasing THPO growth factor and THPO promoted hair growth-stimulating DPCs. ROS generation and Hck phosphorylation are key factors in HB-EGF-induced ASC stimulation. Therefore, combination therapy involving HB-EGF and ASCs may provide a novel solution for hair-loss treatment.
Collapse
|
14
|
Maraldi T, Prata C, Marrazzo P, Hrelia S, Angeloni C. Natural Compounds as a Strategy to Optimize " In Vitro" Expansion of Stem Cells. Rejuvenation Res 2019; 23:93-106. [PMID: 31368407 DOI: 10.1089/rej.2019.2187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficient use of stem cells for transplantation is often limited by the relatively low number of stem cells collected. The ex vivo expansion of human stem cells for clinical use is a potentially valuable approach to increase stem cell number. Currently, most of the procedures used to expand stem cells are carried out using a 21% oxygen concentration, which is about 4- to 10-fold greater than the concentration characteristic of their natural niches. Hyperoxia might cause oxidative stress with a deleterious effect on the physiology of cultured stem cells. In this review, we investigate and critically examine the available information on the ability of natural compounds to counteract hyperoxia-induced damage in different types of stem cells ex vivo. In particular, we focused on proliferation and stemness maintenance in an attempt to draw up useful indications to define new culture media with a promoting activity on cell expansion in vitro.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | | |
Collapse
|
15
|
Zheng M, Jang Y, Choi N, Kim DY, Han TW, Yeo JH, Lee J, Sung JH. Hypoxia improves hair inductivity of dermal papilla cells via nuclear NADPH oxidase 4-mediated reactive oxygen species generation'. Br J Dermatol 2019; 181:523-534. [PMID: 30703252 DOI: 10.1111/bjd.17706] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis. Therefore, tremendous efforts have been made to promote DPC hair inductivity. OBJECTIVES The aim of this study was to investigate the mitogenic and hair inductive effects of hypoxia on DPCs and examine the underlying mechanism of hypoxia-induced stimulation of DPCs. METHODS DPCs' hair inductivity was examined under normoxia (20% O2 ) and hypoxia (2% O2 ). RESULTS Hypoxia significantly increased the proliferation and delayed senescence of DPCs via Akt phosphorylation and downstream pathways. Hypoxia upregulated growth factor secretion of DPCs through the mitogen-activated protein kinase pathway. Hypoxia-preconditioned DPCs induced the telogen-to-anagen transition in C3 H mice, and also enhanced hair neogenesis in a hair reconstitution assay. Injected green fluorescent protein-labelled DPCs migrated to the outer root sheath of the hair follicle, and hypoxia-preconditioning increased survival and migration of DPCs in vivo. Conditioned medium obtained from hypoxia increased the hair length of mouse vibrissa follicles via upregulation of alkaline phosphatase, vascular endothelial growth factor, and glial cell line-derived neurotrophic factor. We examined the mechanism of this hypoxia-induced stimulation, and found that reactive oxygen species (ROS) play a key role. For example, inhibition of ROS generation by N-acetylcysteine or diphenyleneiodonium treatment attenuated DPCs' hypoxia-induced stimulation, but treatment with ROS donors induced mitogenic effects and anagen transition. NADPH oxidase 4 is highly expressed in the DPC nuclear region, and NOX4 knockout by CRISPR-Cas9 attenuated the hypoxia-induced stimulation of DPCs. CONCLUSIONS Our results suggest that DPC culture under hypoxia has great advantages over normoxia, and is a novel solution for producing DPCs for cell therapy. What's already known about this topic? Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis, but they are difficult to isolate and expand for use in cell therapy. Tremendous efforts have been made to increase proliferation of DPCs and promote their hair formation ability. What does this study add? Hypoxia (2% O2 ) culture of DPCs increases proliferation, delays senescence and enhances hair inductivity of DPCs. Reactive oxygen species play a key role in hypoxia-induced stimulation of DPC. What is the translational message? Preconditioning DPCs under hypoxia improves their hair regenerative potential, and is a novel solution for producing DPCs for cell therapy to treat hair loss.
Collapse
Affiliation(s)
- M Zheng
- STEMORE Co. Ltd, Incheon, South Korea
| | - Y Jang
- STEMORE Co. Ltd, Incheon, South Korea
| | - N Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - D Y Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - T W Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J H Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J-H Sung
- STEMORE Co. Ltd, Incheon, South Korea.,College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| |
Collapse
|
16
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
17
|
Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel) 2019; 11:cancers11010112. [PMID: 30669417 PMCID: PMC6357097 DOI: 10.3390/cancers11010112] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a mainstay treatment for many types of cancer and kills cancer cells via generation of reactive oxygen species (ROS). Incorporating radiation with pharmacological ROS inducers, therefore, has been widely investigated as an approach to enhance aerobic radiosensitization. However, this strategy was overlooked in hypoxic counterpart, one of the most important causes of radiotherapy failure, due to the notion that hypoxic cells are immune to ROS insults because of the shortage of ROS substrate oxygen. Paradoxically, evidence reveals that ROS are produced more in hypoxic than normoxic cells and serve as signaling molecules that render cells adaptive to hypoxia. As a result, hypoxic tumor cells heavily rely on antioxidant systems to sustain the ROS homeostasis. Thereby, they become sensitive to insults that impair the ROS detoxification network, which has been verified in diverse models with or without radiation. Of note, hypoxic radioresistance has been overviewed in different contexts. To the best of our knowledge, this review is the first to systemically summarize the interplay among radiation, hypoxia, and ROS, and to discuss whether perturbation of ROS homeostasis could provide a new avenue to tackle hypoxic radioresistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Melissa Van De Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
18
|
Oliva-Olivera W, Moreno-Indias I, Coín-Aragüez L, Lhamyani S, Alcaide Torres J, Fernández-Veledo S, Vendrell J, Camargo A, El Bekay R, Tinahones FJ. Different response to hypoxia of adipose-derived multipotent cells from obese subjects with and without metabolic syndrome. PLoS One 2017; 12:e0188324. [PMID: 29166648 PMCID: PMC5699836 DOI: 10.1371/journal.pone.0188324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022] Open
Abstract
Background/Objectives Multiple studies suggest that hypoxia, together with inflammation, could be one of the phenomena involved in the onset and progression of obesity-related insulin resistance. In addition, dysfunction of adipose tissue in obese subjects with metabolic syndrome is associated with decreased angiogenesis. However, some subjects with a high body mass index do not develop metabolic abnormalities associated with obesity. The aim of the current study was to examine the neovascular properties of visceral adipose tissue-derived multipotent mesenchymal cells subjected to hypoxia (hypox-visASCs) from normal-weight subjects (Nw) and obese patients with metabolic syndrome (MS) and without metabolic syndrome (NonMS). Methods This was a 2-year study to enroll subjects who underwent bariatric surgery or cholecystectomy. Eight patients who underwent either bariatric surgery or cholecystectomy (27 patients) participated in the study. Visceral adipose tissue samples from Nw, MS and NonMS subjects were processed by enzymatic digestion. VisASCs cultured under hypoxic conditions were characterized by tubule formation assay, ELISA, flow cytometry, migration rate, and qRT-PCR, and the effects of visASCs-conditioned medium on survival and endothelial cell tubule formation were evaluated. Results Hypox-visASCs from NonMS subjects showed a greater capacity for tubule formation than hypox-visASCs from Nw and MS subjects. The lower percentage of CD140b+/CD44+ and CD140b+/CD184+ cells observed in hypox-visASCs from NonMS subjects compared to MS subjects was accompanied not only by a lower migration rate from the chemotactic effects of stromal cell derived factor 1α, but also by lower levels of NOX5 mRNA expression. While the levels of monocyte chemoattractant protein 1 mRNA expressed by hypox-visASCs correlated positively with the body mass index and waist circumference of the subjects, the concentration of vascular endothelial growth factor present in hypox-visASC-conditioned culture medium decreased significantly with increasing plasma glucose. The survival rate and tubules formed by endothelial cells cultured in hypox-visASC-conditioned medium decreased significantly with increasing homeostasis model assessment to quantify insulin resistance. Conclusions Our results suggest that hypox-visASCs from NonMS subjects could promote healthy adipose tissue expansion, while hypox-visASCs from MS subjects appear to contribute to the decreased angiogenic potential and increased inflammation underlying adipose tissue dysfunction in obesity. Our results emphasize the importance of taking into account not only the BMI but also the metabolic profile of the subjects during the implementation of ASCs-based therapy to promote neovascularization.
Collapse
Affiliation(s)
- Wilfredo Oliva-Olivera
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (FJT); (REB); (WOO)
| | - Isabel Moreno-Indias
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia Coín-Aragüez
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Said Lhamyani
- Research Laboratory, Science School, University of Málaga (UMA), Málaga, Spain
| | - Juan Alcaide Torres
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovirai Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovirai Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Camargo
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain
| | - Rajaa El Bekay
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (FJT); (REB); (WOO)
| | - Francisco José Tinahones
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (FJT); (REB); (WOO)
| |
Collapse
|
19
|
Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel) 2017; 6:antiox6040090. [PMID: 29135921 PMCID: PMC5745500 DOI: 10.3390/antiox6040090] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.
Collapse
|
20
|
Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 2017; 18:816-27. [PMID: 27260205 DOI: 10.1016/j.jcyt.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs), which resemble bone marrow mesenchymal stromal cells (BMSCs), have shown great advantages and promise in the field of regenerative medicine. They can be readily harvested in large numbers with low donor-site morbidity. To date, a great number of preclinical and clinical studies have shown ADSCs' safety and efficacy in regenerative medicine. However, a better understanding of the mechanisms of homing of ADSCs is needed to advance the clinical utility of this therapy. In this review, the reports of the homing of ADSCs were searched using Pubmed and Google Scholar to update our knowledge. ADSCs were proved to interact with endothelial cells by expressing the similar integrins with BMSCs. In addition, ADSCs do not possess the dominant ligand for P-selectin, just like BMSCs. Stromal derived factor-1 (SDF-1)/CXCR4 and CXC ligand-5 (CXCL5)/CXCR2 interactions are the two main axes governing ADSCs extravasation from bone marrow vessels. Some more signaling pathways involved in migration of ADSCs have been investigated, including LPA/LPA1 signaling pathway, MAPK/Erk1/2 signaling pathway, RhoA/Rock signaling pathway and PDGF-BB/PDGFR-β signaling pathway. Status quo of a lack of intensive studies on the details of homing of ADSCs should be improved in the near future before clinical application.
Collapse
Affiliation(s)
- Yong Zhao
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China; Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Effects of Redox Modulation on Cell Proliferation, Viability, and Migration in Cultured Rat and Human Tendon Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8785042. [PMID: 28761625 PMCID: PMC5518521 DOI: 10.1155/2017/8785042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
Tendon healing is slow and usually results in inferior fibrotic tissue formation. Recently, application of tendon derived stem cells (TDSCs) improved tendon healing in animal studies. In a chicken model, local injection of antioxidants reduced tendon adhesion after tendon injury. An in vitro study demonstrated that supplementation of H2O2 reduced tenogenic marker expression in TDSCs. These findings suggested that the possibility of TDSCs is involved in tendon healing and the cellular activities of TDSCs might be affected by oxidative stress of the local environment. After tendon injury, oxidative stress is increased. Redox modulation might affect healing outcomes via affecting cellular activities in TDSCs. To study the effect of oxidative stress on TDSCs, the cellular activities of rat/human TDSCs were measured under different dosages of vitamin C or H2O2 in this study. Lower dose of vitamin C increased cell proliferation, viability and migration; H2O2 affected colony formation and suppressed cell migration, cell viability, apoptosis, and proliferation. Consistent with previous studies, oxidative stresses (H2O2) affect both recruitment and survival of TDSCs, while the antioxidant vitamin C may exert beneficial effects at low doses. In conclusion, redox modulation affected cellular activities of TDSCs and might be a potential strategy for tendon healing treatment.
Collapse
|
22
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
23
|
Burns JA, Zhang H, Hill E, Kim E, Kerney R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 2017; 6:e22054. [PMID: 28462779 PMCID: PMC5413350 DOI: 10.7554/elife.22054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial.
Collapse
Affiliation(s)
- John A Burns
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Huanjia Zhang
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Elizabeth Hill
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, United States
| |
Collapse
|
24
|
Leegwater NC, Bakker AD, Hogervorst JMA, Nolte PA, Klein-Nulend J. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia. PLoS One 2017; 12:e0171492. [PMID: 28166273 PMCID: PMC5293214 DOI: 10.1371/journal.pone.0171492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation.
Collapse
Affiliation(s)
- Nick C. Leegwater
- Department of Orthopaedics, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Peter A. Nolte
- Department of Orthopaedics, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Kang X, Wei X, Jiang L, Niu C, Zhang J, Chen S, Meng D. Nox2 and Nox4 regulate self-renewal of murine induced-pluripotent stem cells. IUBMB Life 2016; 68:963-970. [PMID: 27797149 DOI: 10.1002/iub.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) and redox homeostasis have a pivotal role in the maintenance of stem cell pluripotency and in stem cell self-renewal; however, the mechanisms by which ROS regulate the self-renewal of stem cells have not been thoroughly studied. Here, we evaluated the role of the ROS produced by NADPH oxidase 2 (Nox2) and NADPH oxidase 4 (Nox4) in the self-renewal and stemness of murine induced-pluripotent stem cells (miPSCs). Targeted silencing of Nox2 or Nox4 reduced both NADPH oxidase activity and intracellular ROS levels, as well as alkaline phosphatase activity, the total number of miPSCs, the expression of insulin-like growth factor-1 (IGF-1), IGF-1 receptor, and the phosphorylation of extracellular signal regulated kinase (ERK) 1/2. Nox2/Nox4 overexpression or low, nontoxic concentration of H2 O2 increased cell proliferation in miPSCs. Furthermore, expression of the stemness genes Sox2 and Oct4 was lower in Nox2/Nox4-deficient miPSCs, and higher in Nox2/Nox4-overexpressing miPSCs, than in miPSCs with normal levels of Nox2/Nox4 expression. Collectively, these results suggest that Nox2- and Nox4-derived ROS contribute to stem cell pluripotency maintenance and self-renewal. © 2016 IUBMB Life, 68(12):963-970, 2016.
Collapse
Affiliation(s)
- Xueling Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cong Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Park HS, Kim JH, Sun BK, Song SU, Suh W, Sung JH. Hypoxia induces glucose uptake and metabolism of adipose‑derived stem cells. Mol Med Rep 2016; 14:4706-4714. [PMID: 27748854 DOI: 10.3892/mmr.2016.5796] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 11/05/2022] Open
Abstract
It has previously been demonstrated that hypoxia has diverse stimulatory effects on adipose‑derived stem cells (ASCs), however, metabolic responses under hypoxia remain to be elucidated. Thus, the present study aimed to investigate the glucose uptake and metabolism of ASCs under hypoxic conditions, and to identify the underlying molecular mechanisms. ASCs were cultured in 1% oxygen, and experiments were conducted in vitro. As determined by proteomic analysis and western blotting, GAPDH and enolase 1 (ENO1) expression were upregulated under hypoxia. In addition, lactate production was significantly increased, and mRNA levels of glycolytic enzymes, including GAPDH, ENO1, hexokinase 2 (HK2), and lactate dehydrogenase α (LDHα) were upregulated. Hypoxia‑inducible factor 1‑α (HIF‑1α) expression was increased as demonstrated by western blotting, and a pharmacological inhibitor of HIF‑1α significantly attenuated hypoxia‑induced lactate production and expression of glycolytic enzymes. It was also observed that hypoxia significantly increased glucose uptake in ASCs, and glucose transporter (GLUT)1 and GLUT3 expression were upregulated under hypoxia. Pharmacological inhibition of the HIF‑1α signaling pathways also attenuated hypoxia‑induced GLUT1 and GLUT3 expression. These results collectively indicate that hypoxia increases glucose uptake via GLUT1 and GLUT3 upregulation, and induces lactate production of ASCs via GAPDH, ENO1, HK2, and LDHα. Furthermore, HIF‑1α is involved in glucose uptake and metabolism of ASCs.
Collapse
Affiliation(s)
- Hyoung Sook Park
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hye Kim
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Bo Kyung Sun
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Wonhee Suh
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
27
|
Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int J Mol Sci 2016; 17:ijms17091389. [PMID: 27563882 PMCID: PMC5037669 DOI: 10.3390/ijms17091389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O₂) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation.
Collapse
|
28
|
Popov AL, Popova NR, Selezneva II, Akkizov AY, Ivanov VK. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:406-413. [PMID: 27524035 DOI: 10.1016/j.msec.2016.05.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022]
Abstract
The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing.
Collapse
Affiliation(s)
- Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - Nelly R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Irina I Selezneva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia; Pushchino State Institute of Natural sciences, Pushchino, Moscow region, Russia
| | | | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
29
|
Zhang P, Li J, Qi Y, Zou Y, Liu L, Tang X, Duan J, Liu H, Zeng G. Vitamin C promotes the proliferation of human adipose-derived stem cells via p53-p21 pathway. Organogenesis 2016; 12:143-151. [PMID: 27231022 DOI: 10.1080/15476278.2016.1194148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although adipose-derived stem cells (ADSCs) have demonstrated a promising potential for the applications of cell-based therapy and regenerative medicine, excessive reactive oxygen species (ROS) are harmful to ADSCs cell survival and proliferation. Vitamin C is an important antioxidant, and is often added into culture media as an essential micronutrient. However, its roles on the proliferation of human ADSCs have not been studied. Therefore, in this study, human ADSCs were isolated, and detected by flow cytometry for the analysis of their cell surface antigens. Cell proliferation and cell cycle progression were measured with cell counting kit-8 assay and flow cytometry, respectively. Western blotting was used to detect the expression levels of cyclin E1, p53, p21, and CDK2 proteins. The effect of vitamin C pretreatment on the production of hydrogen peroxide (H2O2)-mediated ROS in the ADSCs was evaluated by flow cytometry. Our results indicated that vitamin C treatment significantly increased cell proliferation, and changed the cell cycle distribution of ADSCs by decreasing the percentage of G1 phase, and concurrently increased the percentage of S and G2/M phase. Western blot analysis indicated that vitamin C treatment up-regulated the expression levels of cyclin E1 and CDK2, but down-regulated p53 and p21 proteins expression, which contributed to cell proliferation and cell cycle progression. Vitamin C pretreatment significantly reduced the production of H2O2-induced ROS in the ADSCs. These findings suggest that vitamin C can promote the proliferation and cell cycle progression in the ADSCs possibly through regulation of p53-p21 signal pathway.
Collapse
Affiliation(s)
- Peihua Zhang
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Jin Li
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Yawei Qi
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Yaqing Zou
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Li Liu
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Xudong Tang
- b Institute of Biochemistry and Molecular Biology, Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Jianfeng Duan
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Hongwei Liu
- c Department of Plastic Surgery , the First Affiliated Hospital of Jinan University, Key Laboratory for Regenerative Medicine, Ministry of Education , Guangzhou, Guangdong Province , China
| | - Guofang Zeng
- a Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| |
Collapse
|
30
|
Rozycki M, Bialik JF, Speight P, Dan Q, Knudsen TET, Szeto SG, Yuen DA, Szászi K, Pedersen SF, Kapus A. Myocardin-related Transcription Factor Regulates Nox4 Protein Expression: LINKING CYTOSKELETAL ORGANIZATION TO REDOX STATE. J Biol Chem 2015; 291:227-43. [PMID: 26555261 DOI: 10.1074/jbc.m115.674606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator of serum response factor, drives myofibroblast transition from various precursors. We have shown that TGFβ is necessary but insufficient for epithelial-myofibroblast transition in intact epithelia; the other prerequisite is the uncoupling of intercellular contacts, which induces Rho-dependent nuclear translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application of contact uncoupling and TGFβ. Nox4 knockdown abrogates epithelial-myofibroblast transition-associated reactive oxygen species production. Laser capture microdissection reveals increased Nox4 expression in the tubular epithelium also during obstructive nephropathy. MRTF down-regulation/inhibition suppresses TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact- and cytoskeleton-regulated Smad3-interacting coactivators. Down-regulation/inhibition of TAZ/YAP mitigates injury-induced epithelial Nox4 expression in vitro and in vivo. These findings uncover new MRTF- and TAZ/YAP-dependent mechanisms, which link cytoskeleton remodeling and redox state and impact epithelial plasticity and myofibroblast transition.
Collapse
Affiliation(s)
- Matthew Rozycki
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Teresa E T Knudsen
- the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Stephen G Szeto
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Darren A Yuen
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Departments of Surgery and
| | - Stine F Pedersen
- the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Departments of Surgery and Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8, Canada and
| |
Collapse
|
31
|
Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K. Hypoxia Enhances Proliferation of Human Adipose-Derived Stem Cells via HIF-1ɑ Activation. PLoS One 2015; 10:e0139890. [PMID: 26465938 PMCID: PMC4605777 DOI: 10.1371/journal.pone.0139890] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background Adipose tissue-derived stem cells (ASCs) have been recently isolated from human subcutaneous adipose tissue. ASCs may be useful in regenerative medicine as an alternative to bone marrow-derived stem cells. Changes in the oxygen concentration influence physiological activities, such as stem cell proliferation. However, the effects of the oxygen concentration on ASCs remain unclear. In the present study, the effects of hypoxia on ASC proliferation were examined. Methods Normal human adipose tissue was collected from the lower abdomen, and ASCs were prepared with collagenase treatment. The ASCs were cultured in hypoxic (1%) or normoxic (20%) conditions. Cell proliferation was investigated in the presence or absence of inhibitors of various potentially important kinases. Hypoxia inducible factor (HIF)-1α expression and MAP kinase phosphorylation in the hypoxic culture were determined with western blotting. In addition, the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 in hypoxic or normoxic conditions were determined with real-time RT-PCR. The effects of these growth factors on ASC proliferation were investigated. Chromatin immunoprecipitation (ChIP) of the HIF–1α-binding hypoxia responsive element in FGF–2 was performed. HIF–1α was knocked down by siRNA, and FGF–2 expression was investigated. Results ASC proliferation was significantly enhanced in the hypoxic culture and was inhibited by ERK and Akt inhibitors. Hypoxia for 5–15 minutes stimulated the phosphorylation of ERK1/2 among MAP kinases and induced HIF–1α expression. The levels of VEGF and FGF–2 mRNA and protein in the ASCs were significantly enhanced in hypoxia, and FGF–2 increased ASC proliferation. The ChIP assay revealed an 8-fold increase in the binding of HIF–1α to FGF–2 in hypoxia. HIF–1α knockdown by siRNA partially inhibited the FGF–2 expression of ASCs induced by hypoxia. Conclusion ASC proliferation was enhanced by hypoxia. HIF–1α activation, FGF–2 production, and the ERK1/2 and Akt pathway were involved in this regulatory mechanism.
Collapse
Affiliation(s)
- Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
- * E-mail:
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Takeshi Ogawa
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
32
|
Hye Kim J, Gyu Park S, Kim WK, Song SU, Sung JH. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015; 33:542-56. [PMID: 25332166 DOI: 10.1002/stem.1865] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) was recently identified, and acts as potent mitogen for mesenchymal cells. PDGF-D also induces cellular transformation and promotes tumor growth. However, the functional role of PDGF-D in adipose-derived stem cells (ASCs) has not been identified. Therefore, we primarily investigated the autocrine and paracrine roles of PDGF-D in this study. Furthermore, we identified the signaling pathways and the molecular mechanisms involved in PDGF-D-induced stimulation of ASCs. It is of interest that PDGF-B is not expressed, but PDGF-D and PDGF receptor-β are expressed in ASCs. PDGF-D showed the strongest mitogenic effect on ASCs, and PDGF-D regulates the proliferation and migration of ASCs through the PI3K/Akt pathways. PDGF-D also increases the proliferation and migration of ASCs through generation of mitochondrial reactive oxygen species (mtROS) and mitochondrial fission. mtROS generation and fission were mediated by p66Shc phosphorylation, and BCL2-related protein A1 and Serpine peptidase inhibitor, clade E, member 1 mediated the proliferation and migration of ASCs. In addition, PDGF-D upregulated the mRNA expression of diverse growth factors such as vascular endothelial growth factor A, fibroblast growth factor 1 (FGF1), FGF5, leukemia inhibitory factor, inhibin, beta A, interleukin 11, and heparin-binding EGF-like growth factor. Therefore, the preconditioning of PDGF-D enhanced the hair-regenerative potential of ASCs. PDGF-D-induced growth factor expression was attenuated by a pharmacological inhibitor of mitogen-activated protein kinase pathway. In summary, PDGF-D is highly expressed by ASCs, where it acts as a potent mitogenic factor. PDGF-D also upregulates growth factor expression in ASCs. Therefore, PDGF-D can be considered a novel ASC stimulator, and used as a preconditioning agent before ASC transplantation.
Collapse
Affiliation(s)
- Ji Hye Kim
- College of Pharmacy, Yonsei University, Incheon, Korea
| | | | | | | | | |
Collapse
|
33
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
34
|
KANG SANGJIN, HAN JUHEE, SONG SEUNGYONG, KIM WONSERK, SHIN SOYOUNG, KIM JIHYE, AHN HYOSUN, JEONG JINHYUN, HWANG SUNGJOO, SUNG JONGHYUK. Lysophosphatidic acid increases the proliferation and migration of adipose-derived stem cells via the generation of reactive oxygen species. Mol Med Rep 2015; 12:5203-10. [DOI: 10.3892/mmr.2015.4023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
|
35
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
36
|
Sung JH, An HS, Jeong JH, Shin S, Song SY. Megestrol Acetate Increases the Proliferation, Migration, and Adipogenic Differentiation of Adipose-Derived Stem Cells via Glucocorticoid Receptor. Stem Cells Transl Med 2015; 4:789-99. [PMID: 25972147 DOI: 10.5966/sctm.2015-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : Because adipose-derived stem cells (ASCs) are usually expanded to acquire large numbers of cells for therapeutic applications, it is important to increase the production yield and regenerative potential during expansion. Therefore, a tremendous need exists for alternative ASC stimuli during cultivation to increase the proliferation and adipogenic differentiation of ASCs. The present study primarily investigated the involvement of megestrol acetate (MA), a progesterone analog, in the stimulation of ASCs, and identifies the target receptors underlying stimulation. Mitogenic and adipogenic effects of MA were investigated in vitro, and pharmacological inhibition and small interfering (si) RNA techniques were used to identify the molecular mechanisms involved in the MA-induced stimulation of ASCs. MA significantly increased the proliferation, migration, and adipogenic differentiation of ASCs in a dose-dependent manner. Glucocorticoid receptor (GR) is highly expressed compared with other nuclear receptors in ASCs, and this receptor is phosphorylated after MA treatment. MA also upregulated genes downstream of GR in ASCs, including ANGPTL4, DUSP1, ERRF11, FKBP5, GLUL, and TSC22D3. RU486, a pharmacological inhibitor of GR, and transfection of siGR significantly attenuated MA-induced proliferation, migration, and adipogenic differentiation of ASCs. Although the adipogenic differentiation potential of MA was inferior to that of dexamethasone, MA had mitogenic effects in ASCs. Collectively, these results indicate that MA increases the proliferation, migration, and adipogenic differentiation of ASCs via GR phosphorylation. SIGNIFICANCE Magestrol acetate (MA) increases the proliferation, migration, and adipogenic differentiation of adipose-derived stem cells (ASCs) via glucocorticoid receptor phosphorylation. Therefore, MA can be applied to increase the production yield during expansion and can be used to facilitate adipogenic differentiation of ASCs.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Sun An
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Jeong
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soyoung Shin
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Yong Song
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
El Alami M, Viña-Almunia J, Gambini J, Mas-Bargues C, Siow RCM, Peñarrocha M, Mann GE, Borrás C, Viña J. Activation of p38, p21, and NRF-2 mediates decreased proliferation of human dental pulp stem cells cultured under 21% O2. Stem Cell Reports 2014; 3:566-73. [PMID: 25358785 PMCID: PMC4223702 DOI: 10.1016/j.stemcr.2014.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023] Open
Abstract
High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2) are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs) cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses. hDPSC proliferation rate is significantly lower at 21% O2 than at 3% O2 This is due to increased levels oxidative stress at 21% O2 Oxidative stress activates the cell signaling pathway p38 →p21 → NRF-2
Collapse
Affiliation(s)
- Marya El Alami
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jose Viña-Almunia
- Department of Odontology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Miguel Peñarrocha
- Department of Odontology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Consuelo Borrás
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
38
|
Scioli MG, Cervelli V, Arcuri G, Gentile P, Doldo E, Bielli A, Bonanno E, Orlandi A. High Insulin-Induced Down-Regulation of Erk-1/IGF-1R/FGFR-1 Signaling Is Required for Oxidative Stress-Mediated Apoptosis of Adipose-Derived Stem Cells. J Cell Physiol 2014; 229:2077-87. [DOI: 10.1002/jcp.24667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/18/2014] [Accepted: 05/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Valerio Cervelli
- Plastic Surgery; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Gaetano Arcuri
- Experimental Medicine and Biochemical Sciences; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Pietro Gentile
- Plastic Surgery; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Elena Doldo
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Alessandra Bielli
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Elena Bonanno
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Augusto Orlandi
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| |
Collapse
|
39
|
Jiang Y, Chang P, Pei Y, Li B, Liu Y, Zhang Z, Yu J, Zhu D, Liu X. Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine. Cell Tissue Res 2014; 358:417-32. [PMID: 25135062 DOI: 10.1007/s00441-014-1975-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Hypoxic preconditioning is a promising method for improving the anti-apoptotic and paracrine signaling capabilities of adipose-derived stromal cells (ADSCs). The purpose of this study was to analyze the influence of different hypoxic conditions on ADSCs and the therapeutic effects of hypoxia-preconditioned ADSCs (HPADSCs) on an animal model of myocardial infarction (MI). For the in vitro studies, ADSCs were divided into five groups and cultured in different oxygen concentrations (1, 3, 5, 10, and 21 %). After 24 h, RT-PCR and western blots showed that 3 % oxygen preconditioning could improve the viability and cytokine secretion of the ADSCs. A Matrigel assay indicated that the HPADSC-conditioned medium could stimulate endothelial cells to form capillary-like tubes. For the in vivo studies, MI was induced by coronary occlusion in 24 mature Chinese minipigs. The animals were divided into three groups and treated by intramyocardial injection with vehicle alone (saline group), with 1 × 10(8) ADSCs cultured in normoxic conditions (ADSCs group) or with 1 × 10(8) ADSCs precultured in 3 % oxygen (HPADSCs group). SPECT and echocardiography demonstrated that cardiac function was improved significantly in the HPADSC transplant group compared with the vehicle control group (P < 0.05). Immunofluorescence showed fewer apoptotic cells and more small- to medium-sized vessels in the HPADSC transplantation group (P < 0.05). Three percent oxygen is the optimum preconditioning treatment for ADSCs. HPADSC transplantation can prevent ventricular remodeling and reduce the infarct size.
Collapse
Affiliation(s)
- Yiyao Jiang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital Cardiovascular Clinical Hospital of Tianjin Medical University, 61# Third Avenue Tianjin Economic Development Area, Tianjin, 300457, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yi T, Kim WK, Choi JS, Song SY, Han J, Kim JH, Kim WS, Park SG, Lee HJ, Cho YK, Hwang SJ, Song SU, Sung JH. Isolation of adipose-derived stem cells by using a subfractionation culturing method. Expert Opin Biol Ther 2014; 14:1551-60. [DOI: 10.1517/14712598.2014.943661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal 2014; 20:2854-72. [PMID: 24040957 PMCID: PMC4026397 DOI: 10.1089/ars.2013.5619] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. RECENT ADVANCES In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. CRITICAL ISSUES Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. FUTURE DIRECTIONS A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antio
Collapse
Affiliation(s)
- Yong-Han Paik
- 1 Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol 2014; 23:252-61. [PMID: 24012339 DOI: 10.1016/j.semradonc.2013.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor hypoxia (low oxygenation) causes treatment resistance and poor patient outcome. A substantial fraction of tumor cells experience cycling hypoxia, characterized by transient episodes of hypoxia and reoxygenation. These cells are under a unique burden of stress, mediated by excessive production of reactive oxygen species (ROS). Cellular components damaged by ROS can be cleared by autophagy, rendering cycling hypoxic tumor cells particularly vulnerable to inhibition of autophagy and its upstream regulatory pathways. Activation of the PERK-mediated signaling arm of the unfolded protein response during hypoxia plays a critical role in the defense against ROS, both by stimulating glutathione synthesis pathways and through promoting autophagy.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| | | |
Collapse
|
43
|
Kim WS, Han J, Hwang SJ, Sung JH. An update on niche composition, signaling and functional regulation of the adipose-derived stem cells. Expert Opin Biol Ther 2014; 14:1091-102. [DOI: 10.1517/14712598.2014.907785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Kim JH, Kim WK, Sung YK, Kwack MH, Song SY, Choi JS, Park SG, Yi T, Lee HJ, Kim DD, Seo HM, Song SU, Sung JH. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells. Stem Cells Dev 2014; 23:1364-76. [PMID: 24524758 DOI: 10.1089/scd.2013.0460] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.
Collapse
Affiliation(s)
- Ji Hye Kim
- 1 Department of Applied Bioscience, CHA University , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kang S, Kim SM, Sung JH. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int 2014; 38:553-62. [DOI: 10.1002/cbin.10246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Sangjin Kang
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Soo-Min Kim
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
- Department of Pharmacy; Yonsei University; Incheon Republic of Korea
| |
Collapse
|
46
|
Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 2014; 20:308-24. [PMID: 22657349 PMCID: PMC3887453 DOI: 10.1089/ars.2012.4609] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Oxidative stress is a well established hallmark of cardiovascular disease and there is strong evidence for a causal role of reactive oxygen and nitrogen species (RONS) therein. RECENT ADVANCES Improvement of cardiovascular complications by genetic deletion of RONS producing enzymes and overexpression of RONS degrading enzymes proved the involvement of these species in cardiovascular disease at a molecular level. Vice versa, overexpression of RONS producing enzymes as well as deletion of antioxidant enzymes was demonstrated to aggravate cardiovascular complications. CRITICAL ISSUES With the present overview we present and discuss different pathways how mitochondrial RONS interact (crosstalk) with other sources of oxidative stress, namely NADPH oxidases, xanthine oxidase and an uncoupled nitric oxide synthase. The potential mechanisms of how this crosstalk proceeds are discussed in detail. Several examples from the literature are summarized (including hypoxia, angiotensin II mediated vascular dysfunction, cellular starvation, nitrate tolerance, aging, hyperglycemia, β-amyloid stress and others) and the underlying mechanisms are put together to a more general concept of redox-based activation of different sources of RONS via enzyme-specific "redox switches". Mitochondria play a key role in this concept providing redox triggers for oxidative damage in the cardiovascular system but also act as amplifiers to increase the burden of oxidative stress. FUTURE DIRECTIONS Based on these considerations, the characterization of the role of mitochondrial RONS formation in cardiac disease as well as inflammatory processes but also the role of mitochondria as potential therapeutic targets in these pathophysiological states should be addressed in more detail in the future.
Collapse
Affiliation(s)
- Eberhard Schulz
- 1 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | | | | | | |
Collapse
|
47
|
Dehne N, Brüne B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story. Antioxid Redox Signal 2014; 20:339-52. [PMID: 22794181 DOI: 10.1089/ars.2012.4776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. RECENT ADVANCES Mitochondria are at the center of a hypoxia sensing and responding relay system. CRITICAL ISSUES Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. FUTURE DIRECTIONS Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
Collapse
Affiliation(s)
- Nathalie Dehne
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt , Frankfurt, Germany
| | | |
Collapse
|
48
|
Hsiao ST, Dilley RJ, Dusting GJ, Lim SY. Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 2013; 142:141-53. [PMID: 24321597 DOI: 10.1016/j.pharmthera.2013.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
Cell- and tissue-based therapies are innovative strategies to repair and regenerate injured hearts. Despite major advances achieved in optimizing these strategies in terms of cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. The non-genetic approach of ischemic/hypoxic preconditioning to enhance cell- and tissue-based therapies has received much attention in recent years due to its non-invasive drug-free application. Here we discuss the current development of hypoxic/ischemic preconditioning to enhance stem cell-based cardiac repair and regeneration.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Cardiovascular Science, University of Sheffield, United Kingdom
| | - Rodney J Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia.
| |
Collapse
|
49
|
Wagner B, Gorin Y. Src tyrosine kinase mediates platelet-derived growth factor BB-induced and redox-dependent migration in metanephric mesenchymal cells. Am J Physiol Renal Physiol 2013; 306:F85-97. [PMID: 24197068 DOI: 10.1152/ajprenal.00371.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adult kidney is derived from the interaction between the metanephric blastema and the ureteric bud. Platelet-derived growth factor (PDGF) receptor β is essential for the development of the mature glomerular tuft, as mice deficient for this receptor lack mesangial cells. This study investigated the role of Src tyrosine kinase in PDGF-mediated reactive oxygen species (ROS) generation and migration of metanephric mesenchymal cells (MMCs). Cultured embryonic MMCs from wild-type and PDGF receptor-deficient embryos were established. Migration was determined via wound-healing assay. Unlike PDGF AA, PDGF BB-induced greater migration in MMCs with respect to control. This was abrogated by neutralizing an antibody to PDGF BB. Phosphatidylinositol 3-kinase (PI3K) inhibitors suppressed PDGF BB-induced migration. Conversely, mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitors had no effect. Src inhibitors inhibited PDGF-induced cell migration, PI3K activity, and Akt phosphorylation. Adenoviral dominant negative Src (AD DN Src) abrogated PDGF BB-induced Akt phosphorylation. Hydrogen peroxide stimulated cell migration. PDGF BB-induced wound closure was inhibited by the antioxidants N-acetyl-l-cysteine, tiron, and the flavoprotein inhibitor diphenyleneiodonium. These cells express the NADPH oxidase homolog Nox4. Inhibiting Nox4 with antisense oligonucleotides or small interfering RNA (siRNA) suppressed PDGF-induced wound closure. Inhibition of Src with siRNA reduced PDGF BB-induced ROS generation as assessed by 2',7'-dichlorodihydrofluorescein diacetate fluorescence. Furthermore, PDGF BB-stimulated ROS generation and migration were similarly suppressed by Ad DN Src. In MMCs, PDGF BB-induced migration is mediated by PI3K and Src in a redox-dependent manner involving Nox4. Src may be upstream to PI3K and Nox4.
Collapse
Affiliation(s)
- Brent Wagner
- South Texas Veterans Health Care System, Div. of Nephrology MC 7882, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900.
| | | |
Collapse
|
50
|
Kim JH, Kim SH, Song SY, Kim WS, Song SU, Yi T, Jeon MS, Chung HM, Xia Y, Sung JH. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation. Cell Biol Int 2013; 38:32-40. [DOI: 10.1002/cbin.10170] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Seok-Ho Kim
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| | - Seung Yong Song
- Department of Plastic and Reconstructive Surgery; CHA Bundang Medical Center; CHA University; Seongnam-si, Gyeonggi-do Korea
| | - Won-Serk Kim
- Department of Dermatology; Kangbuk Samsung Hospital; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sun U. Song
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - TacGhee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Myung-Shin Jeon
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Hyung-Min Chung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Ying Xia
- Department of Neurosurgery; The University of Texas Medical School at Houston; Houston Texas 77030 USA
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| |
Collapse
|