1
|
Li W, Jiang Z, Yan Z, Chen Z, Li L, Wang D, Wang J, Li L, Yang H, Deng J, Lin J. Hydrogel based on M1 macrophage lysate and alginate loading with oxaliplatin for effective immunomodulation to inhibit melanoma progression, recurrence and metastasis. Int J Biol Macromol 2024; 280:135542. [PMID: 39276890 DOI: 10.1016/j.ijbiomac.2024.135542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Despite the monumental success of immunotherapy in treating melanoma clinically, it still confronts significant challenges, chiefly that singular immunomodulatory tactics are insufficient to suppress the recurrence and metastasis of melanoma. Herein, these challenges are addressed by a hydrogel based on M1 macrophage lysate and alginate (M1LMHA) loaded with oxaliplatin (OXA), named M1LMHA@OXA.The results obtained from scanning electron microscopy and confocal microscopy indicate that the structure and morphology of M1LMHA@OXA remain unchanged. Flow cytometry results reveal that M1LMHA@OXA significantly promotes the maturation of dendritic cells (DCs) and enhances the proliferation of T lymphocytes. In a subcutaneous melanoma transplant model, M1LMHA@OXA effectively suppressed tumor growth in comparison to OXA alone and M1LMHA alone. Flow cytometry demonstrated that M1LMHA@OXA markedly increased the number of mature DCs and CD8+ T cells at the tumor site, while significantly reducing the quantity of M2-like tumor-associated macrophages (TAM) and enhancing the presence of M1 macrophages. Enzyme-linked immunosorbent assay (ELISA) results indicated that following treatment with M1LMHA@OXA, the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the bloodstream of mice were significantly elevated, whereas interleukin-10 (IL-10) exhibited no significant difference. This outcome further corroborates the ability of M1LMHA@OXA to substantially bolster the immune capability of mice. Similar results have also been observed in a melanoma subcutaneous transplantation recurrence model, and optical imaging of the lungs of mice revealed that M1LMHA@OXA inhibited tumor metastasis to the lungs. Notably, M1LMHA@OXA exhibits an exceptional therapeutic effect on the growth, post-surgical recurrence, and metastasis of the B16F10 melanoma. Therefore, this study provides a straightforward strategy that leverages the cooperative regulation of multiple immune cells to thwart the proliferation, recurrence, and spread of melanoma.
Collapse
Affiliation(s)
- Wanyu Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhonghao Jiang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhuo Yan
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Lianhai Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dan Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Huiling Yang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Levitte S, Nilkant R, Jensen AR, Zhang KY. Unlocking the promise of mesenchymal stem cells and extracorporeal photopheresis to address rejection and graft failure in intestinal transplant recipients. Hum Immunol 2024; 85:111160. [PMID: 39471538 DOI: 10.1016/j.humimm.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION In patients with irreversible intestinal failure, intestinal transplant has become a standard treatment option. Graft failure secondary to acute or chronic cellular rejection continues to be a significant challenge following transplant. Even with optimal immune suppression, some patients continue to struggle with refractory rejection. Both extracorporeal photopheresis (ECP) and extracellular vesicles derived from mesenchymal stem cells (EVs) have been used to treat refractory rejection following intestinal transplantation, although their use remains limited and consistent treatment protocols are lacking. METHODS Intestinal transplant recipients who received ECP only or ECP and EVs as rescue therapy for acute cellular rejection or chronic inflammation between 2016 and 2022 were included in this single-center retrospective analysis. Baseline demographics, pre- and post-treatment histopathology, endoscopic and biochemical findings, and long-term transplant outcomes were analyzed. RESULTS Three patients (two pediatric and one adult) with acute steroid- and biologic-refractory rejection were treated with ECP and/or EVs, as was one patient (pediatric) with chronic graft rejection and inflammation. Patients received twice weekly ECP for 4 weeks and once weekly thereafter. EVs were administered in three doses each separated by 72 h. Immunosuppression at the time of treatment initiation included high-dose tacrolimus and sirolimus. Histologic resolution of rejection was achieved in all patients over 12-16 weeks. Steroids were weaned to low-dose or withdrawn in every patient within 4 weeks of ECP/EV treatment. C-reactive protein decreased from an average of 14.75 to 1.6 mg/dL post-treatment and fecal calprotectin decreased from average 800 mg/g to 31 mg/g. Donor-induced cytotoxic T cell populations were quantified for two of the patients with acute rejection, and in both cases decreased dramatically following treatment. There were no complications associated with either treatment. CONCLUSION Both ECP and EVs present novel opportunities to address graft rejection and inflammation in bowel transplant recipients. More work will be needed to define the optimal therapeutic parameters for each treatment modality.
Collapse
Affiliation(s)
- Steven Levitte
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Riya Nilkant
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Amanda R Jensen
- Department of Transplantation Surgery, Stanford University, Palo Alto, CA, USA
| | - Ke-You Zhang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Yin Y, Chen C, Zhang D, Han Q, Wang Z, Huang Z, Chen H, Sun L, Fei S, Tao J, Han Z, Tan R, Gu M, Ju X. Construction of predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation with machine learning algorithms. Front Genet 2023; 14:1276963. [PMID: 38028591 PMCID: PMC10646529 DOI: 10.3389/fgene.2023.1276963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Interstitial fibrosis and tubular atrophy (IFTA) are the histopathological manifestations of chronic kidney disease (CKD) and one of the causes of long-term renal loss in transplanted kidneys. Necroptosis as a type of programmed death plays an important role in the development of IFTA, and in the late functional decline and even loss of grafts. In this study, 13 machine learning algorithms were used to construct IFTA diagnostic models based on necroptosis-related genes. Methods: We screened all 162 "kidney transplant"-related cohorts in the GEO database and obtained five data sets (training sets: GSE98320 and GSE76882, validation sets: GSE22459 and GSE53605, and survival set: GSE21374). The training set was constructed after removing batch effects of GSE98320 and GSE76882 by using the SVA package. The differentially expressed gene (DEG) analysis was used to identify necroptosis-related DEGs. A total of 13 machine learning algorithms-LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA, plsRglm, random forest, GBM, XGBoost, Naive Bayes, and ANNs-were used to construct 114 IFTA diagnostic models, and the optimal models were screened by the AUC values. Post-transplantation patients were then grouped using consensus clustering, and the different subgroups were further explored using PCA, Kaplan-Meier (KM) survival analysis, functional enrichment analysis, CIBERSOFT, and single-sample Gene Set Enrichment Analysis. Results: A total of 55 necroptosis-related DEGs were identified by taking the intersection of the DEGs and necroptosis-related gene sets. Stepglm[both]+RF is the optimal model with an average AUC of 0.822. A total of four molecular subgroups of renal transplantation patients were obtained by clustering, and significant upregulation of fibrosis-related pathways and upregulation of immune response-related pathways were found in the C4 group, which had poor prognosis. Conclusion: Based on the combination of the 13 machine learning algorithms, we developed 114 IFTA classification models. Furthermore, we tested the top model using two independent data sets from GEO.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianguang Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
6
|
Tanoue Y, Tsuchiya T, Miyazaki T, Iwatake M, Watanabe H, Yukawa H, Sato K, Hatachi G, Shimoyama K, Matsumoto K, Doi R, Tomoshige K, Nagayasu T. Timing of Mesenchymal Stromal Cell Therapy Defines its Immunosuppressive Effects in a Rat Lung Transplantation Model. Cell Transplant 2023; 32:9636897231207177. [PMID: 37950374 PMCID: PMC10686017 DOI: 10.1177/09636897231207177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Cell therapy using mesenchymal stromal cells (MSCs) is being studied for its immunosuppressive effects. In organ transplantation, the amount of MSCs that accumulate in transplanted organs and other organs may differ depending on administration timing, which may impact their immunosuppressive effects. In vitro, adipose-derived mesenchymal stem cells (ADMSCs) suppress lymphocyte activation under cell-to-cell contact conditions. However, in vivo, it is controversial whether ADMSCs are more effective in accumulating in transplanted organs or in secondary lymphoid organs. Herein, we aimed to investigate whether the timing of ADMSC administration affects its immunosuppression ability in a rat lung transplantation model. In the transplantation study, rats were intramuscularly administered half the usual dose of tacrolimus (0.5 mg/kg) every 24 h after lung transplantation. ADMSCs (1 × 106) were administered via the jugular vein before (PreTx) or after (PostTx) transplantation. Cell tracking using quantum dots was performed. ADMSCs accumulated predominantly in the lung and liver; fewer ADMSCs were distributed in the grafted lung in the PreTx group than in the PostTx group. The rejection rate was remarkably low in the ADMSC-administered groups, particularly in the PostTx group. Serum tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 levels showed a greater tendency to decrease in the PreTx group than in the PostTx group. The proportion of regulatory T cells in the grafted lung 10 days after transplantation was higher in the PostTx group than in the PreTx group. PostTx administration suppresses rejection better than PreTx administration, possibly due to regulatory T cell induction by ADMSCs accumulated in the transplanted lungs, suggesting a mechanism different from that in heart or kidney transplantation that PreTx administration is more effective than PostTx administration. These results could help establish cell therapy using MSCs in lung transplantation.
Collapse
Affiliation(s)
- Yukinori Tanoue
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Takuro Miyazaki
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayumi Iwatake
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironosuke Watanabe
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Yukawa
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Kazuhide Sato
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Go Hatachi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichiro Shimoyama
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Li Y, Ricardo SD, Samuel CS. Enhancing the Therapeutic Potential of Mesenchymal Stromal Cell-Based Therapies with an Anti-Fibrotic Agent for the Treatment of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23116035. [PMID: 35682717 PMCID: PMC9181689 DOI: 10.3390/ijms23116035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic kidney disease (CKD) affects 1 in 10 members of the general population, placing these patients at an increasingly high risk of kidney failure. Despite the significant burden of CKD on various healthcare systems, there are no effective cures that reverse or even halt its progression. In recent years, human bone-marrow-derived mesenchymal stromal cells (BM-MSCs) have been recognised as a novel therapy for CKDs, owing to their well-established immunomodulatory and tissue-reparative properties in preclinical settings, and their promising safety profile that has been demonstrated in patients with CKDs from several clinical trials. However, renal fibrosis (scarring), a hallmark of CKD, has been shown to impair the viability and functionality of BM-MSCs post-transplantation. This has suggested that BM-MSCs might require a pre-treatment or adjunct therapy that can enhance the viability and therapeutic efficacy of these stromal cells in chronic disease settings. To address this, recent studies that have combined BM-MSCs with the anti-fibrotic drug serelaxin (RLX), have demonstrated the enhanced therapeutic potential of this combination therapy in normotensive and hypertensive preclinical models of CKD. In this review, a critical appraisal of the preclinical data available on the anti-fibrotic and renoprotective actions of BM-MSCs or RLX alone and when combined, as a treatment option for normotensive vs. hypertensive CKD, is discussed.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
| | - Sharon D. Ricardo
- Development and Stem Cells Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: (S.D.R.); (C.S.S.)
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: (S.D.R.); (C.S.S.)
| |
Collapse
|
8
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Zheng CM, Chiu IJ, Chen YW, Hsu YH, Hung LY, Wu MY, Lin YF, Liao CT, Hung YP, Tsai CC, Cherng YG, Wu MS. Allogeneic adipose tissue-derived stem cells ELIXCYTE ® in chronic kidney disease: A phase I study assessing safety and clinical feasibility. J Cell Mol Med 2022; 26:2972-2980. [PMID: 35415928 PMCID: PMC9097837 DOI: 10.1111/jcmm.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
The purpose of this phase I clinical trial is to assess the safety and tolerability of allogeneic adipose tissue‐derived stem cells (ADSCs) among chronic kidney disease (CKD) patients. 12 eligible CKD patients with an estimated glomerular filtration rate (eGFR) of 15–44 ml/min/1.73 m2 received one dose of intravenous allogeneic ADSCs (ELIXCYTE®), as 3 groups: 3 low dose (6.4 × 107 cells in total of 8 ml), 3 middle dose (19.2 × 107 cells in total of 24 ml) and 6 high dose (32.0 × 107 cells in total of 40 ml) of ELIXCYTE® and evaluated after 48 weeks. Primary endpoint was the safety profiles in terms of incidence of adverse events (AEs) and serious adverse event (SAE). Two subjects in high dose group experienced a total of 2 treatment‐related AEs which are Grade 1 slow speech and Grade 1 bradyphrenia after the infusion. One subject in middle dose group experienced an SAE unlikely related to treatment, grade 2 proteinuria. No fatal AE was reported in this study. An increase in eGFR was observed in 7 out of 12 subjects (58%) at Week 24 and in 6 of 12 subjects (50%) by Week 48. By Week 24, an increase in eGFR by more than 20% among all CKD patients with baseline eGFR ≧ 30 ml/min/1.73 m2 as compared to only 2 subjects in baseline eGFR < 30 ml/min/1.73 m2 group. No significant reduction in proteinuria was noted among all subjects. This phase I trial demonstrated single‐dose intravenous ELIXCYTE was well tolerated in moderate‐to‐severe CKD patients and its preliminary efficacy warrants future studies.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Chen
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Lie-Yee Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Zhang L, Lai X, Guo Y, Ma J, Fang J, Li G, Xu L, Yin W, Chen Z. Autologous bone marrow-derived mesenchymal stem cells for interstitial fibrosis and tubular atrophy: a pilot study. Ren Fail 2021; 43:1266-1275. [PMID: 34493167 PMCID: PMC8425735 DOI: 10.1080/0886022x.2021.1968432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs)-based therapy has shown promising results for renal injury. In this study, the efficacy and safety of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in treating nonspecific interstitial fibrosis and tubular atrophy (IFTA) were evaluated. Methods From March 2011 to January 2013, 11 renal transplanted patients with IFTA were recruited. At baseline, patients were given one intra-arterial infusion of BM-MSCs; 7 days and 1 month later, another two intravenous infusions of cells were followed. Serum creatinine, creatinine clearance rate, and serum cystatin-C at baseline and 7 days, 1 month, 3 months, 6 months, and 12 months after the intra-arterial infusion of BM-MSCs were used to assess renal function. At baseline and 6 months, histological examination based on hematoxylin-eosin, Masson’s trichrome and periodic acid-Schiff staining and immunohistochemistry for transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) was performed. Adverse events were recorded to evaluate the safety of BM-MSCs treatment. Results At 12 months, the renal function of 6 patients (54.5%) was improved, 3 (27.3%) were stable and 2 (18.2%) were worsened. At 6 months, the mean IFTA scores of all participators were similar with the baseline (1.73 ± 0.41 vs.1.50 ± 0.0.77, p = 0.242); however, it was significantly decreased when only 6 patients with improved renal function were analyzed (1.67 ± 0.41 vs. 1.08 ± 0.20, p = 0.013). Besides, decreased expression of TGF-β1 and CTGF were also observed at 6 months. During 1 year follow-up period, only two minor complications including infection and allergy were observed. Conclusion Our results demonstrated that autologous BM-MSCs are safe and beneficial for IFTA patients. Abbreviations: MSCs: mesenchymal stem cells; BM-MSCs: marrow-derived mesenchymal stem cells; IFTA: interstitial fibrosis and tubular atrophy; CAN: chronic allograft nephropathy; CNIs: calcineurin inhibitors; Scr: serum creatinine; CCr: creatinine clearance rate; Cys-C: cystatin-C; TGF-β1: transforming growth factor β1; CTGF: connective tissue growth factor
Collapse
Affiliation(s)
- Lei Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xingqiang Lai
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yuhe Guo
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Junjie Ma
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Jiali Fang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Guanghui Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Lu Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wei Yin
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Zheng Chen
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Zhu XY, Klomjit N, Conley SM, Ostlie MM, Jordan KL, Lerman A, Lerman LO. Impaired immunomodulatory capacity in adipose tissue-derived mesenchymal stem/stromal cells isolated from obese patients. J Cell Mol Med 2021; 25:9051-9059. [PMID: 34418300 PMCID: PMC8435432 DOI: 10.1111/jcmm.16869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Immune‐modulatory properties of adipose tissue‐derived mesenchymal stem/stromal cells (MSCs) might be susceptible to metabolic disturbances. We hypothesized that the immune‐modulatory function of MSCs might be blunted in obese human subjects. MSCs were collected from abdominal subcutaneous fat of obese and lean subjects during bariatric or kidney donation surgeries, respectively. MSCs were co‐cultured in vitro for 24 h with M1 macrophages, which were determined as M1or M2 phenotypes by flow cytometry, and cytokines measured in conditioned media. In vivo, lean or obese MSCs (5 × 105), or PBS, were injected into mice two weeks after unilateral renal artery stenosis (RAS) or sham surgeries (n = 6 each). Fourteen days later, kidneys were harvested and stained with M1 or M2 markers. Lean MSCs decreased macrophages M1 marker intensity, which remained elevated in macrophages co‐cultured with obese MSCs. TNF‐α levels were four‐fold higher in conditioned media collected from obese than from lean MSCs. RAS mouse kidneys were shrunk and showed increased M1 macrophage numbers and inflammatory cytokine expression compared with normal kidneys. Lean MSCs decreased M1 macrophages, M1/M2 ratio and inflammation in RAS kidneys, whereas obese MSCs did not. MSCs isolated from lean human subjects decrease inflammatory M1 macrophages both in vivo and in vitro, an immune‐modulatory function which is blunted in MSCs isolated from obese subjects.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Nattawat Klomjit
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Megan M Ostlie
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13:914-933. [PMID: 34367484 PMCID: PMC8316868 DOI: 10.4252/wjsc.v13.i7.914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Research Department, Cytopeutics, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
14
|
Ma C, Feng Y, Yang L, Wang S, Sun X, Tai S, Guan X, Wang D, Yu Y. In vitro Immunomodulatory Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Peripheral Blood Cells from Warm Autoimmune Hemolytic Anemia Patients. Acta Haematol 2021; 145:63-71. [PMID: 34284381 DOI: 10.1159/000506759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Autoimmune hemolytic anemia is a potentially lethal disease characterized by autoimmune hemolysis. Although human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been reported as a promising therapy, there is limited evidence regarding warm autoimmune hemolytic anemia (wAIHA) patients. This study aimed to investigate the potential therapeutic effects of hUC-MSCs via immune regulation in wAIHA patients. METHODS Peripheral blood mononuclear cells (PBMCs) from 10 wAIHA patients and 8 healthy controls were isolated from peripheral blood and cultured for 3 days with or without the presence of hUC-MSCs; PBMCs were co-cultured with hUC-MSCs using Transwell assays. The supernatant cytokine levels were measured after culture through AimPlex Multiple Immunoassays for Flow, including IL-2, IL-4, IL-10, IFN-γ, TNF-α, and IL-17A. The percentages of regulatory T cells, regulatory B cells, and Th1/Th2 in PBMCs were also assessed before and after culturing. RESULTS In the wAIHA group, hUC-MSCs could upregulate the Treg and Breg proportions after culturing for 3 days, and the Treg and Breg percentages increased after co-culturing with hUC-MSCs in the wAIHA group compared with PBMC cultured alone for 3 days (8.29 ± 8.59 vs. 6.82 ± 1.32, 3.82 ± 1.87 vs. 1.75 ± 1.20, respectively). Compared with the PBMC wAIHA group, the levels of TNF-α (2.13 ± 2.07 vs. 16.20 ± 21.13 pg/mL, p = 0.019) and IL-10 (10.51 ± 18.42 vs. 37.78 ± 44.20 pg/mL, p = 0.012) were significantly elevated in the PBMC + hUC-MSCs wAIHA group. CONCLUSION The hUC-MSCs contributed to the increasing proportion of regulatory cell populations in PBMCs of wAIHA patients, thereby potentially regulating autoimmune response; thus, hUC-MSCs may be a promising approach for wAIHA treatment.
Collapse
Affiliation(s)
- Chunya Ma
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yannan Feng
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Yang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shufang Wang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengfei Tai
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaozhen Guan
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Wei Y, Chen X, Zhang H, Su Q, Peng Y, Fu Q, Li J, Gao Y, Li X, Yang S, Ye Q, Huang H, Deng R, Li G, Xu B, Wu C, Wang J, Zhang X, Su X, Liu L, Xiang AP, Wang C. Efficacy and Safety of Bone Marrow-Derived Mesenchymal Stem Cells for Chronic Antibody-Mediated Rejection After Kidney Transplantation- A Single-Arm, Two-Dosing-Regimen, Phase I/II Study. Front Immunol 2021; 12:662441. [PMID: 34248942 PMCID: PMC8267917 DOI: 10.3389/fimmu.2021.662441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the efficacy and safety of bone marrow-derived mesenchymal stem cells (BM-MSCs) on chronic active antibody-mediated rejection (cABMR) in the kidney allograft. Methods Kidney recipients with biopsy-proven cABMR were treated with allogeneic third-party BM-MSCs in this open-label, single-arm, single-center, two-dosing-regimen phase I/II clinical trial. In Regimen 1 (n=8), BM-MSCs were administered intravenously at a dose of 1.0×106 cells/kg monthly for four consecutive months, while in Regimen 2 (n=15), the BM-MSCs dose was 1.0×106 cells/kg weekly during four consecutive weeks. The primary endpoints were the absolute change of estimated glomerular filtration rate (eGFR) from baseline (delta eGFR) and the incidence of adverse events associated with BM-MSCs administration 24 months after the treatment. Contemporaneous cABMR patients who did not receive BM-MSCs were retrospectively analyzed as the control group (n =30). Results Twenty-three recipients with cABMR received BM-MSCs. The median delta eGFR of the total BM-MSCs treated patients was -4.3 ml/min per 1.73m2 (interquartile range, IQR -11.2 to 1.2) 2 years after BM-MSCs treatment (P=0.0233). The median delta maximum donor-specific antibody (maxDSA) was -4310 (IQR -9187 to 1129) at 2 years (P=0.0040). The median delta eGFR of the control group was -12.7 ml/min per 1.73 m2 (IQR -22.2 to -3.5) 2 years after the diagnosis, which was greater than that of the BM-MSCs treated group (P=0.0342). The incidence of hepatic enzyme elevation, BK polyomaviruses (BKV) infection, cytomegalovirus (CMV) infection was 17.4%, 17.4%, 8.7%, respectively. There was no fever, anaphylaxis, phlebitis or venous thrombosis, cardiovascular complications, or malignancy after BM-MSCs administration. Flow cytometry analysis showed a significant decreasing trend of CD27-IgD- double negative B cells subsets and trend towards the increase of CD3+CD4+PD-1+/lymphocyte population after MSCs therapy. Multiplex analysis found TNF-α, CXCL10, CCL4, CCL11 and RANTES decreased after MSCs treatment. Conclusion Kidney allograft recipients with cABMR are tolerable to BM-MSCs. Immunosuppressive drugs combined with intravenous BM-MSCs can delay the deterioration of allograft function, probably by decreasing DSA level and reducing DSA-induced injury. The underlying mechanism may involve immunomodulatory effect of MSCs on peripheral B and T cells subsets.
Collapse
Affiliation(s)
- Yongcheng Wei
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Su
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianyu Ye
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Bowen Xu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Su
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
17
|
Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, Leuvenink H, Ploeg RJ, Clahsen-van Groningen MC, Hoogduijn M, Baan CC, Keller AK, Jespersen B. Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant. Transplantation 2021; 105:517-528. [PMID: 32956281 DOI: 10.1097/tp.0000000000003429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy may improve renal function after ischemia-reperfusion injury in transplantation. Ex vivo renal intraarterial administration is a targeted delivery method, avoiding the lung vasculature, a known barrier for cellular therapies. In a randomized and blinded study, we tested the feasibility and effectiveness of MSC therapy in a donation after circulatory death autotransplantation model to improve posttransplant kidney function, using an ex vivo MSC delivery method similar to the clinical standard procedure of pretransplant cold graft flush. METHODS Kidneys exposed to 75 minutes of warm ischemia and 16 hours of static cold storage were intraarterially infused ex vivo with 10 million male porcine MSCs (Tx-MSC, n = 8) or vehicle (Tx-control, n = 8). Afterwards, the kidneys were autotransplanted after contralateral nephrectomy. Biopsies an hour after reperfusion confirmed the presence of MSCs in the renal cortex. Animals were observed for 14 days. RESULTS Postoperatively, peak plasma creatinine was 1230 and 1274 µmol/L (Tx-controls versus Tx-MSC, P = 0.69). During follow-up, no significant differences over time were detected between groups regarding plasma creatinine, plasma neutrophil gelatinase-associated lipocalin, or urine neutrophil gelatinase-associated lipocalin/creatinine ratio. At day 14, measured glomerular filtration rates were 40 and 44 mL/min, P = 0.66. Renal collagen content and fibrosis-related mRNA expression were increased in both groups but without significant differences between the groups. CONCLUSIONS We demonstrated intraarterial MSC infusion to transplant kidneys as a safe and effective method to deliver MSCs to the graft. However, we could not detect any positive effects of this cell treatment within 14 days of observation.
Collapse
Affiliation(s)
- Stine Lohmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - James Hunter
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Martin Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Johnstone BH, Messner F, Brandacher G, Woods EJ. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance. Front Immunol 2021; 12:622604. [PMID: 33732244 PMCID: PMC7959805 DOI: 10.3389/fimmu.2021.622604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed "hematopoietic progenitor cell (HPC), Marrow," recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to "delayed tolerance." Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.
Collapse
Affiliation(s)
- Brian H. Johnstone
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erik J. Woods
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Clinical Trial of Allogeneic Mesenchymal Stem Cell Therapy for Chronic Active Antibody-Mediated Rejection in Kidney Transplant Recipients Unresponsive to Rituximab and Intravenous Immunoglobulin. Stem Cells Int 2021; 2021:6672644. [PMID: 33628269 PMCID: PMC7892211 DOI: 10.1155/2021/6672644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical trials of biologic agents for chronic active antibody-mediated rejection (CAMR) in kidney transplant recipients (KTRs) have been disappointing. We performed a clinical trial of mesenchymal stem cell (MSC) treatment in KTRs with CAMR unresponsive to rituximab and intravenous immunoglobulin. This study was a phase 1 clinical trial to confirm patient safety. Two patients with CAMR unresponsive to rituximab and intravenous immunoglobulin were included. Each patient received allogeneic MSCs for 4 cycles (1 × 106 cells/kg every other week) via the peripheral vein in the distal arm. We observed adverse events and renal function for 6 months after the final MSC infusion and analyzed changes in immunomodulatory parameters in the peripheral blood between the start of treatment and 3 months after the final MSC infusion. There were no serious adverse events during the study period. Renal function was stable during MSC treatment but gradually decreased between the final MSC infusion and the study endpoint (patient 1: creatinine levels ranged from 3.01 mg/dL to 7.81 mg/dL, patient 2: 2.87 mg/dL to 3.91 mg/dL). In peripheral blood sample analysis between the start of treatment and 3 months after the final MSC infusion, there were similar trends for immunomodulatory markers. Our study showed that there were no serious adverse events for six months after allogeneic MSC treatment in KTRs with CAMR refractory to rituximab and intravenous immunoglobulin, but further studies need to define the efficacy of MSC treatment in CAMR.
Collapse
|
20
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
21
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
22
|
Andres AM, Stringa P, Talayero P, Santamaria M, García-Arranz M, García Gómez-Heras S, Largo-Aramburu C, Aras-Lopez RM, Vallejo-Cremades MT, Guerra Pastrián L, Vega L, Encinas JL, Lopez-Santamaria M, Hernández-Oliveros F. Graft infusion of adipose-derived mesenchymal stromal cells to prevent rejection in experimental intestinal transplantation: A feasibility study. Clin Transplant 2021; 35:e14226. [PMID: 33465824 DOI: 10.1111/ctr.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have been proposed as a promising complement to standard immunosuppression in solid organ transplantation because of their immunomodulatory properties. The present work addresses the role of adipose-derived MSC (Ad-MSC) in an experimental model of acute rejection in small bowel transplantation (SBT). MATERIAL/METHODS Heterotopic allogeneic SBT was performed. A single dose of 1.5x106 Ad-MSC was intra-arterially delivered just before graft reperfusion. Animals were divided into CONTROL (CTRL), CONTROL+Ad-MSC (CTRL_MSC), tacrolimus (TAC), and TAC+Ad-MSC (TAC_MSC) groups. Each Ad-MSC groups was subdivided in autologous and allogeneic third-party groups. RESULTS Rejection rate and severity were similar in MSC-treated and untreated animals. CTRL_MSC animals showed a decrease in macrophages, T-cell (CD4, CD8, and Foxp3 subsets) and B-cell counts in the graft compared with CTRL, this decrease was attenuated in TAC_MSC animals. Pro- and anti-inflammatory cytokines and some chemokines and growth factors increased in CTRL_MSC animals, especially in the allogeneic group, whereas milder changes were seen in the TAC groups. CONCLUSION Ad-MSC did not prevent rejection when administered just before reperfusion. However, they showed immunomodulatory effects that could be relevant for a longer-term outcome. Interference between tacrolimus and the MSC effects should be addressed in further studies.
Collapse
Affiliation(s)
- Ane M Andres
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain.,Idipaz Institute, La Paz University Hospital, Madrid, Spain.,TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | - Pablo Stringa
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, Buenos Aires, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain.,imas12 Research Institute, 12 de Octubre University Hospital, Madrid, Spain
| | - Monica Santamaria
- Experimental Transplant Department, Alfonso X University, Madrid, Spain
| | | | | | | | - Rosa M Aras-Lopez
- Research Institute, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | | | | | - Luz Vega
- Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain
| | - Jose Luis Encinas
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Francisco Hernández-Oliveros
- TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain.,Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain.,Pediatric Surgery Department EOC TransplantChild ERN, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
23
|
Pool MBF, Vos J, Eijken M, van Pel M, Reinders MEJ, Ploeg RJ, Hoogduijn MJ, Jespersen B, Leuvenink HGD, Moers C. Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion. Stem Cells Dev 2020; 29:1320-1330. [PMID: 32772797 DOI: 10.1089/scd.2020.0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pretransplant normothermic machine perfusion (NMP) of donor kidneys offers the unique opportunity to perform active interventions to an isolated renal graft before transplantation. There is increasing evidence that mesenchymal stromal cells (MSCs) could have a paracrine/endocrine regenerative effect on ischemia-reperfusion injury. The purpose of this study was to determine which cytokines are secreted by MSCs during NMP of a porcine kidney. Viable porcine kidneys and autologous whole blood were obtained from a slaughterhouse. Warm ischemia time was standardized at 20 min and subsequent hypothermic machine perfusion was performed during 2-3 h. Thereafter, kidneys were machine perfused at 37°C during 7 h. After 1 h of NMP, 0, 107 cultured human adipose tissue-derived MSCs, or 107 cultured bone marrow-derived MSCs were added (n = 5 per group). In a fourth experimental group, 7-h NMP was performed with 107 adipose tissue-derived MSCs, without a kidney in the circuit. Kidneys perfused with MSCs showed lower lactate dehydrogenase and neutrophil gelatinase-associated lipocalin levels in comparison with the control group. Also, elevated levels of human hepatocyte growth factor, interleukin (IL)-6, and IL-8 were found in the perfusate of the groups perfused with MSCs compared to the control groups. This study suggests that MSCs, in contact with an injured kidney during NMP, could lead to lower levels of injury markers and induce the release of immunomodulatory cytokines.
Collapse
Affiliation(s)
- Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jaël Vos
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Eijken
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Melissa van Pel
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Rutger J Ploeg
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Oxford Transplant Centre, University of Oxford, Oxford, United Kingdom
| | - Martin J Hoogduijn
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Bi Y, Ding Y, Wu J, Miao Z, Wang J, Wang F. Staphylococcus aureus induces mammary gland fibrosis through activating the TLR/NF-κB and TLR/AP-1 signaling pathways in mice. Microb Pathog 2020; 148:104427. [PMID: 32783982 DOI: 10.1016/j.micpath.2020.104427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
To investigate the TLR-NF-κB/AP-1 pathways in S. aureus infection-induced mammary gland fibrosis, mice were infected with S. aureus isolated from the mammary glands of cows with mastitis. Lactating mice were divided into three groups: control group (CON); PBS control group (PBS) and the S. aureus-treated group (S. aureus). Pathological observations revealed that neutrophil infiltration into mammary gland tissue was obviously induced by S. aureus at the early stage of infection (1-7 d). With persistent S. aureus infection, mammary gland fibrosis developed and was characterized by infiltration and proliferation of macrophage, lymphocyte and fibroblast and ECM hyperplasia (7-21 d). Immunohistochemistry staining showed upregulation of fibrosis associated cytokines viz bFGF and PDGF-BB. Real-time qPCR and Western blot analysis revealed that transcription and translation of TLR2, TLR4, bFGF, PDGF-BB, α-SMA and COL Ⅰ α1 was significantly upregulated by S. aureus. NF-κB p65 and AP-I c-jun were translocated into the nucleus after S. aureus infection. There was no remarkable difference between the CON and PBS groups. The datas indicate that mammary gland fibrosis in mice is induced by S. aureus, which promotes cytokine release and the expression of ECM though activating the TLR/NF-κB p65 and TLR/AP-1 c-jun signaling pathways.
Collapse
Affiliation(s)
- Yannan Bi
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China; School of Basic Medical Science and Forensic Medicine, Baotou Medical College, Jianshe Road 31, 014040, Baotou, Inner Mongolia, People's Republic of China
| | - Yulin Ding
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jianmei Wu
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Erdos Street 50, 010031, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zengqiang Miao
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jinling Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Fenglong Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
25
|
Sergeant E, Buysse M, Devos T, Sprangers B. Multipotent mesenchymal stromal cells in kidney transplant recipients: The next big thing? Blood Rev 2020; 45:100718. [PMID: 32507576 DOI: 10.1016/j.blre.2020.100718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived multipotent mesenchymal stromal cells (BM-MSCs) are non-haematopoietic cells present in the bone marrow stroma. They have the potential to modulate immune responses and exhibit a capacity to promote immune tolerance. Although the efficacy of immunosuppressive drugs has improved significantly, thereby ameliorating renal graft outcome, the use of these drugs still carries an increased risk of malignancies and opportunistic infections, and sometimes fail to prevent chronic allograft rejection or recurrence of the original kidney disease. As such, there is strong interest in ways to induce immune tolerance and thereby tempering or avoiding conventional immunosuppressive drugs. Cellular immunomodulation by MSCs can create a new way to induce transplant tolerance. This review will give a critical overview of the use of BM-MSCs as a cell-based immunosuppressive therapy in kidney transplant recipients. In vitro studies revealed several mechanisms that can clarify the immunomodulatory potential of BM-MSCs. Several clinical studies showed that BM-MSCs can modulate T-cell proliferation and can alter the ratio of T-cell subsets, favoring immune tolerance. However, this immunomodulation was often not associated with better clinical outcome during follow-up when compared to control groups. Some clinical studies found that BM-MSCs allow a reduction in dose of conventional immunosuppressive drugs and prevent acute graft dysfunction. Most clinical studies emphasized that BM-MSC infusion was safe. This review suggests that the use of BM-MSCs as cell-based immunosuppression therapy in kidney transplant recipients has potential, however some caution regarding their clinical use is appropriate. Mechanisms by which BM-MSCs induce transplant tolerance and factors that can alter their functionality need to be analyzed in more detail before clinical use.
Collapse
Affiliation(s)
- Elien Sergeant
- Division of Internal Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Malicorne Buysse
- Division of Hematology, University Hospitals Ghent, Ghent, Belgium.
| | - Timothy Devos
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Hematology, University Hospitals Leuven, Leuven, Belgium.
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Zhao L, Hu C, Han F, Cai F, Wang J, Chen J. Preconditioning is an effective strategy for improving the efficiency of mesenchymal stem cells in kidney transplantation. Stem Cell Res Ther 2020; 11:197. [PMID: 32448356 PMCID: PMC7245776 DOI: 10.1186/s13287-020-01721-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The inevitable side effects caused by lifelong immunosuppressive agents in kidney transplantation patients spurred the exploration of novel immunosuppressive strategies with definite curative effects and minimal adverse effects. Mesenchymal stem cells (MSCs) have become a promising candidate due to their role in modulating the immune system. Encouraging results obtained from experimental models have promoted the translation of this strategy into clinical settings. However, the demonstration of only marginal or transient benefits by several recent clinical controlled studies has made physicians hesitant to adopt the routine utilization of this procedure in clinical settings. Impaired MSC function after infusion in vivo was thought to be the main reason for their limited effects. For this reason, some preconditioning methods were developed. In this review, we aim to outline the current understanding of the preconditioning methods being explored as a strategy to improve the therapeutic effects of MSCs in kidney transplantation and promote its clinical translation.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Ramirez-Bajo MJ, Rovira J, Lazo-Rodriguez M, Banon-Maneus E, Tubita V, Moya-Rull D, Hierro-Garcia N, Ventura-Aguiar P, Oppenheimer F, Campistol JM, Diekmann F. Impact of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Rat Model of Kidney Rejection. Front Cell Dev Biol 2020; 8:10. [PMID: 32064259 PMCID: PMC7000363 DOI: 10.3389/fcell.2020.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) from different sources possess great therapeutic potential due to their immunomodulatory properties associated with allograft tolerance. However, a crucial role in this activity resides in extracellular vesicles (EVs) and signaling molecules secreted by cells. This study aimed to evaluate the immunomodulatory properties of donor and recipient MSCs isolated from adipose tissue (AD) or bone marrow (BM) and their EVs on kidney outcome in a rat kidney transplant model. Methods The heterotopic-kidney-transplant Fisher-to-Lewis rat model (F-L) was performed to study mixed cellular and humoral rejection. After kidney transplantation, Lewis recipients were assigned to 10 groups; two control groups; four groups received autologous MSCs (either AD- or BM- MSC) or EVs (derived from both cell types); and four groups received donor-derived MSCs or EVs. AD and BM-EVs were purified by ultracentrifugation. Autologous cell therapies were administered three times intravenously; immediately after kidney transplantation, 4 and 8 weeks, whereas donor-derived cell therapies were administered once intravenously immediately after transplantation. Survival and renal function were monitored. Twelve weeks after kidney transplantation grafts were harvested, infiltrating lymphocytes were analyzed by flow cytometry and histological lesions were characterized. Results Autologous AD- and BM-MSCs, but not their EVs, prolonged graft and recipient survival in a rat model of kidney rejection. Autologous AD- and BM-MSCs significantly improved renal function during the first 4 weeks after transplantation. The amelioration of graft function could be associated with an improvement in tubular damage, as well as in T, and NK cell infiltration. On the other side, the application of donor-derived AD-MSC was harmful, and all rats died before the end of the protocol. AD-EVs did not accelerate the rejection. Contrary to autologous MSCs results, the single dose of donor-derived BM-MSCs is not enough to ameliorate kidney graft damage. Conclusion EVs treatments did not exert any benefit in our experimental settings. In the autologous setting, BM-MSCs prompted as a potentially promising therapy to improve kidney graft outcomes in rats with chronic mixed rejection. In the donor-derived setting, AD-MSC accelerated progression to end-stage kidney disease. Further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- Maria Jose Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Valeria Tubita
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Moya-Rull
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Natalia Hierro-Garcia
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federico Oppenheimer
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Reparative and Regenerative Effects of Mesenchymal Stromal Cells-Promising Potential for Kidney Transplantation? Int J Mol Sci 2019; 20:ijms20184614. [PMID: 31540361 PMCID: PMC6770554 DOI: 10.3390/ijms20184614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) possess reparative, regenerative and immunomodulatory properties. The current literature suggests that MSCs could improve kidney transplant outcome via immunomodulation. In many clinical domains, research has also focussed on the regenerative and reparative effects of therapies with MSCs. However, in the field of transplantation, data on this subject remain scarce. This review provides an overview of what is known about the regenerative and reparative effects of MSCs in various fields ranging from wound care to fracture healing and also examines the potential of these promising MSC properties to improve the outcome of kidney transplantations.
Collapse
|
29
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2019; 14:493-507. [PMID: 29895977 DOI: 10.1038/s41581-018-0023-5] [Citation(s) in RCA: 791] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs; also referred to as mesenchymal stromal cells) have attracted much attention for their ability to regulate inflammatory processes. Their therapeutic potential is currently being investigated in various degenerative and inflammatory disorders such as Crohn's disease, graft-versus-host disease, diabetic nephropathy and organ fibrosis. The mechanisms by which MSCs exert their therapeutic effects are multifaceted, but in general, these cells are thought to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment in the presence of vigorous inflammation. Studies over the past few years have demonstrated that when exposed to an inflammatory environment, MSCs can orchestrate local and systemic innate and adaptive immune responses through the release of various mediators, including immunosuppressive molecules, growth factors, exosomes, chemokines, complement components and various metabolites. Interestingly, even nonviable MSCs can exert beneficial effects, with apoptotic MSCs showing immunosuppressive functions in vivo. Because the immunomodulatory capabilities of MSCs are not constitutive but rather are licensed by inflammatory cytokines, the net outcomes of MSC activation might vary depending on the levels and the types of inflammation within the residing tissues. Here, we review current understanding of the immunomodulatory mechanisms of MSCs and the issues related to their therapeutic applications.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianquan Hou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Villanueva S, González F, Lorca E, Tapia A, Valentina López G, Strodthoff R, Fajre F, Carreño JE, Valjalo R, Vergara C, Lecanda M, Bartolucci J, Figueroa FE, Khoury M. Adipose tissue-derived mesenchymal stromal cells for treating chronic kidney disease: A pilot study assessing safety and clinical feasibility. Kidney Res Clin Pract 2019; 38:176-185. [PMID: 31189223 PMCID: PMC6577210 DOI: 10.23876/j.krcp.18.0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a growing public health concern, and available treatments are insufficient in limiting disease progression. New strategies, including regenerative cell-based therapies, have emerged as therapeutic alternatives. Results from several groups, including our own, have reported evidence of a supportive role for mesenchymal stromal cells (MSCs) in functional recovery and prevention of tissue damage in murine models of CKD. Prompted by these data, an open pilot study was conducted to assess the safety and efficacy of a single injection of autologous adipose tissue-derived MSCs (AT-MSCs) for treatment of CKD. METHODS AT-MSCs were infused intravenously into six CKD patients at a dose of 1 million cells/kg. Patients were stabilized and followed for one year prior to MSC infusion and one year following infusion. RESULTS No patients presented with adverse effects. Statistically significant improvement in urinary protein excretion was observed in AT-MSCs transplanted patients, from a median of 0.75 g/day (range, 0.15-9.57) at baseline to 0.54 g/day (range, 0.01-2.66) at month 12 (P = 0.046). The glomerular filtration rate was not significantly decreased post-infusion of AT-MSCs. CONCLUSION Findings from this pilot study demonstrate that intravenous infusion of autologous expanded AT-MSCs into CKD patients was not associated with adverse effects and could benefit patients already undergoing standard medical treatment.
Collapse
Affiliation(s)
- Sandra Villanueva
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | | | - Eduardo Lorca
- Department of Nephrology, Hospital Salvador, Santiago,
Chile
| | - Andrés Tapia
- Laboratory of Nano-regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - G Valentina López
- Cells for Cells, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Rocío Strodthoff
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Francisca Fajre
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Juan E. Carreño
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Ricardo Valjalo
- Department of Nephrology, Hospital Salvador, Santiago,
Chile
| | - César Vergara
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Manuel Lecanda
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Jorge Bartolucci
- Cells for Cells, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Fernando E. Figueroa
- Laboratory of Nano-regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
- Program for Translational Research in Cell Therapy, Universidad de Los Andes, Santiago,
Chile
- Consorcio Regenero, the Chilean Consortium for Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
| | - Maroun Khoury
- Laboratory of Nano-regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
- Cells for Cells, Faculty of Medicine, Universidad de Los Andes, Santiago,
Chile
- Program for Translational Research in Cell Therapy, Universidad de Los Andes, Santiago,
Chile
| |
Collapse
|
32
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
33
|
Li X, Chen S, Yan L, Wang J, Pei M. Prospective application of stem cells to prevent post-operative skeletal fibrosis. J Orthop Res 2019; 37:1236-1245. [PMID: 30835890 PMCID: PMC9202416 DOI: 10.1002/jor.24266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Post-operative skeletal fibrosis is considered one of the major complications causing dysfunction of the skeletal system and compromising the outcomes of clinical treatment. Limited success has been achieved using current therapies; more effective therapies to reduce post-operative skeletal fibrosis are needed. Stem cells possess the ability to repair and regenerate damaged tissue. Numerous studies show that stem cells serve as a promising therapeutic approach for fibrotic diseases in tissues other than the skeletal system by inhibiting the inflammatory response and secreting favorable cytokines through activating specific signaling pathways, acting as so-called medicinal signaling cells. In this review, current therapies are summarized for post-operative skeletal fibrosis. Given that stem cells are used as a promising therapeutic approach for fibrotic diseases, little effort has been undertaken to use stem cells to prevent post-operative skeletal fibrosis. This review aims at providing useful information for the potential application of stem cells in preventing post-operative skeletal fibrosis in the near future. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1236-1245, 2019.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, 610083, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Jingcheng Wang
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Co-Corresponding author: Jingcheng Wang, MD, Department of Orthopaedics, Subei People’s Hospital, 98 West Nantong Road, Yangzhou 225001, China;
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Exercise Physiology, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
34
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
35
|
Mesenchymal Stem Cells-Potential Applications in Kidney Diseases. Int J Mol Sci 2019; 20:ijms20102462. [PMID: 31109047 PMCID: PMC6566143 DOI: 10.3390/ijms20102462] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells constitute a pool of cells present throughout the lifetime in numerous niches, characteristic of unlimited replication potential and the ability to differentiate into mature cells of mesodermal tissues in vitro. The therapeutic potential of these cells is, however, primarily associated with their capabilities of inhibiting inflammation and initiating tissue regeneration. Owing to these properties, mesenchymal stem cells (derived from the bone marrow, subcutaneous adipose tissue, and increasingly urine) are the subject of research in the settings of kidney diseases in which inflammation plays the key role. The most advanced studies, with the first clinical trials, apply to ischemic acute kidney injury, renal transplantation, lupus and diabetic nephropathies, in which beneficial clinical effects of cells themselves, as well as their culture medium, were observed. The study findings imply that mesenchymal stem cells act predominantly through secreted factors, including, above all, microRNAs contained within extracellular vesicles. Research over the coming years will focus on this secretome as a possible therapeutic agent void of the potential carcinogenicity of the cells.
Collapse
|
36
|
Castiglione F, Hedlund P, Weyne E, Hakim L, Montorsi F, Bivalacqua TJ, De Ridder D, Milenkovic U, Ralph D, Garaffa G, Muneer A, Joniau S, Albersen M. Intratunical Injection of Human Adipose Tissue-Derived Stem Cells Restores Collagen III/I Ratio in a Rat Model of Chronic Peyronie's Disease. Sex Med 2019; 7:94-103. [PMID: 30503767 PMCID: PMC6377372 DOI: 10.1016/j.esxm.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Previous studies have shown that the injection of adipose tissue-derived stem cells (ADSCs) into the tunica albuginea (TA) during the active phase of Peyronie's disease (PD) prevents the development of fibrosis. AIM To investigate, using an animal model, whether local injection of human ADSCs (hADSCs) can alter the degree of fibrosis in the chronic phase of PD. METHODS 27 male, 12-week-old rats were divided into 3 equal groups: sham, PD without treatment, and PD treated with hADSCs 1 month after disease induction. Sham rats underwent 2 injections of vehicle into the TA 1 month apart. PD rats underwent transforming growth factor β1 (TGFβ1) injection and injection of vehicle 1 month later. PD-hADSC rats underwent TGFβ1 injection followed by 1 million hADSCs 1 month later. 1 week after treatment, n = 3 animals/group were euthanized, and the penises were harvested for quantitative polymerase chain reaction. 1 month after treatment, the other animals, n = 6 per group, underwent measurement of intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrostimulation of the cavernous nerve. After euthanasia, penises were again harvested for histology and Western blot. MAIN OUTCOME MEASURE The primary outcome measures included (a) gene expression at one week post-injection; (b) measurement of ICP/MAP upon cavernous nerve stimulation as a measure of erectile function; (c) elastin, collagen I and III protein expression; and (d) Histomorphometric analysis of the penis. Means where compared by analysis of variance (ANOVA) followed by a Student-Newman-Keuls test for post hoc comparisons or Mann-Whitney test when applicable. RESULTS No significant difference was noted in ICP or ICP/MAP in response to cavernous nerve electrostimulation between the 3 groups at 2.5, 5, and 7.5 V (P > .05 for all voltages). PD animals developed tunical and subtunical areas of fibrosis with a significant upregulation of collagen III protein. The collagen III/I ratio was higher in the PD (4.6 ± 0.92) group compared with sham (0.66 ± 0.18) and PD-hADSC (0.86 ± 0.06) groups (P < .05) These fibrotic changes were prevented when treated with hADSCs. Compared with PD rats, PD-hADSC rats demonstrated a decreased expression of several fibrosis-related genes. CONCLUSION Injection of hADSCs reduces collagen III expression in a rat model of chronic PD. Castiglione F, Hedlund P, Weyne E, et al. Intratunical Injection of Human Adipose Tissue-Derived Stem Cells Restores Collagen III/I Ratio in a Rat Model of Chronic Peyronie's Disease. Sex Med 2019;7:94-103.
Collapse
Affiliation(s)
- Fabio Castiglione
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; The Institute of Urology, University College of London Hospital, London, UK; Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University, Sweden; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Sweden.
| | - Emanuel Weyne
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lukman Hakim
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; Department of Urology, Airlangga University/Dr Soetomo General Hospital, Surabaya, Indonesia
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Dirk De Ridder
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Uros Milenkovic
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - David Ralph
- The Institute of Urology, University College of London Hospital, London, UK
| | - Giulio Garaffa
- The Institute of Urology, University College of London Hospital, London, UK
| | - Asif Muneer
- The Institute of Urology, University College of London Hospital, London, UK; Division of Surgery and Interventional Science, National Institute for Health Research Biomedical Research Centre, University College London Hospital, London, UK
| | - Steven Joniau
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Maarten Albersen
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Danjuma L, Mok PL, Higuchi A, Hamat RA, Teh SW, Koh AEH, Munusamy MA, Arulselvan P, Rajan M, Nambi A, Swamy K, Vijayaraman K, Murugan K, Natarajaseenivasan K, Subbiah SK. Modulatory and regenerative potential of transplanted bone marrow-derived mesenchymal stem cells on rifampicin-induced kidney toxicity. Regen Ther 2018; 9:100-110. [PMID: 30525080 PMCID: PMC6223029 DOI: 10.1016/j.reth.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.
Collapse
Affiliation(s)
- Lawal Danjuma
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology and Biotechnology, Faculty of Science, Federal University Duste, P.M.B 7156, Duste, Jigawa, Nigeria
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Aljouf Province, Saudi Arabia
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001, Taiwan
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Seoh Wei Teh
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Arivudai Nambi
- Faculty of Medicine, Lincoln University College, Malaysia
| | - K.B. Swamy
- Faculty of Medicine, Lincoln University College, Malaysia
| | - Kiruthiga Vijayaraman
- Department of Medical Biotechnology, Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Malaysia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India
| |
Collapse
|
38
|
Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis 2018; 9:1126. [PMID: 30425237 PMCID: PMC6233178 DOI: 10.1038/s41419-018-1157-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Renal fibrosis, especially tubulointerstitial fibrosis, is the inevitable outcome of all progressive chronic kidney diseases (CKDs) and exerts a great health burden worldwide. For a long time, interests in renal fibrosis have been concentrated on fibroblasts and myofibroblasts. However, in recent years, growing numbers of studies have focused on the role of tubular epithelial cells (TECs). TECs, rather than a victim or bystander, are probably a neglected mediator in renal fibrosis, responding to a variety of injuries. The maladaptive repair mechanisms of TECs may be the key point in this process. In this review, we will focus on the role of TECs in tubulointerstitial fibrosis. We will follow the fate of a tubular cell and depict the intracellular changes after injury. We will then discuss how the repair mechanism of tubular cells becomes maladaptive, and we will finally discuss the intercellular crosstalk in the interstitium that ultimately proceeds tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China
- Shanghai Medical College, Fudan University, 200032, Shanghai, P.R. China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China.
- Shanghai Key Laboratory of Organ Transplantation, 200032, Shanghai, P. R. China.
| |
Collapse
|
39
|
Zhang Z, Wilson NA, Chinnadurai R, Panzer SE, Redfield RR, Reese SR, Galipeau J, Djamali A. Autologous Mesenchymal Stromal Cells Prevent Transfusion-elicited Sensitization and Upregulate Transitional and Regulatory B Cells. Transplant Direct 2018; 4:e387. [PMID: 30234156 PMCID: PMC6133404 DOI: 10.1097/txd.0000000000000827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We hypothesized that immunomodulatory properties of mesenchymal stromal cells (MSC) may be considered for desensitization. METHODS Autologous or allogeneic bone marrow derived MSC were infused via tail vein at 0.5 M (0.5 × 106), 1 M, or 2 M cells/dose on days -2, 3, 6, 9, 12 (prevention) or 14, 17, 20, 23, 26 (treatment) relative to transfusion in a Brown Norway to Lewis rat model (10 groups total, n = 6 per group). RESULTS At 4 weeks, pooled analyses demonstrated that autologous and allogeneic MSC were equally effective in reducing IgG1 and IgG2a de novo donor-specific antibody (dnDSA, P < 0.001). Dose-response studies indicated that moderate-dose MSC (5 M total) was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). Time course studies determined that preventive and treatment strategies were equally effective in reducing IgG1 and IgG2a dnDSA (P ≤ 0.01). However, individual group analyses determined that moderate-dose (5 M) treatment with autologous MSC was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). In this group, dnDSA decreased after 1 week of treatment; regulatory B cells increased in the spleen and peripheral blood mononuclear cells; and transitional B cells increased in the spleen, peripheral blood mononuclear cells, and bone marrow (P < 0.05 for all). CONCLUSIONS Our findings indicate that autologous MSC prevent transfusion-elicited sensitization and upregulate transitional, and regulatory B cells. Additional studies are needed to determine the biological relevance of these changes after kidney transplantation.
Collapse
Affiliation(s)
- Zijian Zhang
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Department of Urology, Beijing Chao-Yang Hospital, China Capital Medical University, Beijing, China
| | - Nancy A. Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Raghavan Chinnadurai
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Sarah E. Panzer
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Robert R. Redfield
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| | - Shannon R. Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Jacques Galipeau
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| |
Collapse
|
40
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
41
|
Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V, Mister M, Gaspari F, Villa A, Fiori S, Introna M, Longhi E, Remuzzi G. Long-Term Clinical and Immunological Profile of Kidney Transplant Patients Given Mesenchymal Stromal Cell Immunotherapy. Front Immunol 2018; 9:1359. [PMID: 29963053 PMCID: PMC6014158 DOI: 10.3389/fimmu.2018.01359] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
We report here the long-term clinical and immunological results of four living-donor kidney transplant patients given autologous bone marrow-derived mesenchymal stromal cells (MSCs) as part of a phase 1 study focused on the safety and feasibility of this cell therapy. According to study protocols implemented over time, based on initial early safety findings, the patients were given MSC at day 7 posttransplant (n = 2) or at day −1 pretransplant (n = 2) and received induction therapy with basiliximab and low-dose rabbit anti-thymocyte globulin (RATG) or RATG alone, and were maintained on low-dose ciclosporin (CsA)/mycophenolate mofetil (MMF). All MSC-treated patients had stable graft function during the 5- to 7-year follow-up, without increased susceptibility to infections or neoplasm. In three MSC recipients, but not historical control patients, circulating memory CD8+ T cell percentages remained lower than basal, coupled with persistent reduction of ex vivo donor-specific cytotoxicity. Two patients showed a long-lasting increase in the regulatory T cell/memory CD8+ T cell ratio, paralleled by high circulating levels of naïve and transitional B cells. In one of these two patients, CsA was successfully discontinued, and currently the low-dose MMF monotherapy is on the tapering phase. The study shows that MSC therapy is safe in the long term and could promote a pro-tolerogenic environment in selected patients. Extensive immunomonitoring of MSC-treated kidney transplant recipients could help selection of patients for safe withdrawal of maintenance immunosuppressive drugs (NCT00752479 and NCT02012153).
Collapse
Affiliation(s)
- Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | | | - Marta Todeschini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Monica Cortinovis
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Eliana Gotti
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marilena Mister
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Flavio Gaspari
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Alessandro Villa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sonia Fiori
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology, UOC Coordinamento Trapianti IRCCS Fondazione Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Marrow Mesenchymal Stem Cells Effectively Reduce Histologic Changes in a Rat Model of Chronic Renal Allograft Rejection. Transplant Proc 2018; 49:2194-2203. [PMID: 29149982 DOI: 10.1016/j.transproceed.2017.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic allograft rejection remains as the leading cause of the chronic renal grafts loss post-transplantation. No therapy has been found really effective to prevent and treat chronic allograft rejection. Mesenchymal stem cells (MSCs) have characteristics of immunomodulation and are expected to be used for inducing graft immune tolerance in organ transplantation. We investigated the efficacy and safety of early infusion of donor-derived marrow MSCs in a rat model of chronic renal allograft rejection. METHODS Orthotopic kidney transplantations were performed in a rat strain combination of Sprague-Dawley (SD) → Wistar. The native right kidneys of recipient rats were kept intact as internal control of each graft. Twenty-three successfully transplanted recipient rats were divided into 3 groups: group 1 (the MSCs therapy group) (n = 8) and group 2 (the control group) (n = 8) both received a 10-day course of cyclosporine (CsA) (2 mg/kg intraperitoneally) to prevent initial acute rejection. MSCs (1 × 107) of first dosage and an additional dosage were injected into group 1 postoperative days (PODs) 0, 3, and 7. Group 2 received 0.9% saline solution in addition to CsA as the control group. Group 3 consisted of recipients (n = 7) receiving neither immunosuppression nor MSCs. Renal histopathology and immunohistochemistry of transforming growth factor β1 (TGF-β1) was examined at week 12. Safety of MSC infusion was determined by observing symptoms and signs after infusion and performing gross anatomy at week 12. RESULTS All the grafts of group 3 developed acute rejection and were rejected within 4 weeks. Bone marrow MSCs significantly decreased the severity of mononuclear cell interstitial inflammation, tubular atrophy, interstitial fibrosis, and vascular fibrous intimal thickening in renal grafts (P < .001). MSCs also greatly reduced the glomerulosclerosis rate of the transplanted kidneys of group 1 (P < .001). The TGF-ß1 expression of group 1 was weaker than that of group 2 (P = .043). There were no symptoms or signs of severe adverse side effects observed. CONCLUSIONS Early bone marrow MSCs infusion on PODs 0, 3, and 7 are effective and safe for chronic renal allograft rejection in rats. MSCs hold significant promise for clinical transplantation to treat chronic renal allograft rejection and prolong the renal graft survival.
Collapse
|
43
|
Sun Q, Huang Z, Han F, Zhao M, Cao R, Zhao D, Hong L, Na N, Li H, Miao B, Hu J, Meng F, Peng Y, Sun Q. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: pilot results of a multicenter randomized controlled trial. J Transl Med 2018. [PMID: 29514693 PMCID: PMC5842532 DOI: 10.1186/s12967-018-1422-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kidneys from deceased donors are being used to meet the growing need for grafts. However, delayed graft function (DGF) and acute rejection incidences are high, leading to adverse effects on graft outcomes. Optimal induction intervention should include both renal structure injury repair and immune response suppression. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative, and immune-modulatory properties are considered a candidate to prevent DGF and acute rejection in renal transplantation. Thus, this prospective multicenter paired study aimed to assess the clinical value of allogeneic MSCs as induction therapy to prevent both DGF and acute rejection in deceased donor renal transplantation. METHODS Forty-two renal allograft recipients were recruited and divided into trial and control groups. The trial group (21 cases) received 2 × 106/kg human umbilical-cord-derived MSCs (UC-MSCs) via the peripheral vein before renal transplantation, and 5 × 106 cells via the renal artery during the surgical procedure. All recipients received standard induction therapy. Incidences of DGF and biopsy-proven acute rejection were recorded postoperatively and severe postoperative complications were assessed. Graft and recipient survivals were also evaluated. RESULTS Treatment with UC-MSCs achieved comparable graft and recipient survivals with non-MSC treatment (P = 0.97 and 0.15, respectively). No increase in postoperative complications, including DGF and acute rejection, were observed (incidence of DGF: 9.5% in the MSC group versus 33.3% in the non-MSC group, P = 0.13; Incidence of acute rejection: 14.3% versus 4.8%, P = 0.61). Equal postoperative estimated glomerular filtration rates were found between the two groups (P = 0.88). All patients tolerated the MSCs infusion without adverse clinical effects. Additionally, a multiprobe fluorescence in situ hybridization assay revealed that UC-MSCs administered via the renal artery were absent from the recipient's biopsy sample. CONCLUSIONS Umbilical-cord-derived MSCs can be used as clinically feasible and safe induction therapy. Adequate timing and frequency of UC-MSCs administration may have a significant effect on graft and recipient outcomes. Trial registration NCT02490020 . Registered on June 29 2015.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Zhengyu Huang
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Fei Han
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ming Zhao
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Ronghua Cao
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Daqiang Zhao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Liangqing Hong
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ning Na
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Heng Li
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Bin Miao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Jianmin Hu
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Fanhang Meng
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Yanwen Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, People's Republic of China
| | - Qiquan Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China.
| |
Collapse
|
44
|
Teh SW, Mok PL, Abd Rashid M, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Mariappan R, Subbiah SK. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int J Mol Sci 2018; 19:ijms19020558. [PMID: 29438279 PMCID: PMC5855780 DOI: 10.3390/ijms19020558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, 72442 Sakaka, Aljouf Province, Saudi Arabia.
| | - Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Normala Ibrahim
- Department of Psychiatry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, 32001 Taoyuan, Taiwan.
| | - Kadarkarai Murugan
- Department of Zoology, Thiruvalluvar University, Serkkadu, 632 115 Vellore, India.
| | - Rajan Mariappan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021 Tamil Nadu, India.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
45
|
|
46
|
Ibrahim MET, Bana EE, El-Kerdasy HI. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats. Am J Med Sci 2018; 355:76-83. [DOI: 10.1016/j.amjms.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 01/02/2023]
|
47
|
Sun Q, Hong L, Huang Z, Na N, Hua X, Peng Y, Zhao M, Cao R, Sun Q. Allogeneic mesenchymal stem cell as induction therapy to prevent both delayed graft function and acute rejection in deceased donor renal transplantation: study protocol for a randomized controlled trial. Trials 2017; 18:545. [PMID: 29145879 PMCID: PMC5689202 DOI: 10.1186/s13063-017-2291-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Background Using kidneys from deceased donors is an available strategy to meet the growing need of grafts. However, higher incidences of delayed graft function (DGF) and acute rejection exert adverse effects on graft outcomes. Since ischemia-reperfusion injury (IRI) and ongoing process of immune response to grafts are the major causes of DGF and acute rejection, the optimal induction intervention should possess capacities of both repairing renal structure injury and suppressing immune response simultaneously. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative and immune-modulatory properties are considered as a candidate to prevent both DGF and acute rejection in renal transplantation. Previous studies just focused on the safety of autologous MSCs on living-related donor renal transplants, and lack of concomitant controls and the sufficient sample size and source of MSCs. Here, we propose a prospective multicenter controlled study to assess the clinical value of allogeneic MSCs in preventing both DGF and acute rejection simultaneously as induction therapy in deceased-donor renal transplantation. Methods/design Renal allograft recipients (n = 100) will be recruited and divided into trial and control groups, and 50 patients in the trial group will be administered with a dose of 2 × 106 per kilogram human umbilical-cord-derived MSCs (UC-MSCs) via peripheral vein injection preoperatively, and a dose of 5 × 106 cells via renal arterial injection during surgery, with standard induction therapy. Incidences of postoperative DGF and biopsy-proved acute rejection (BPAR) will be recorded and analyzed. Additionally, other clinical parameters such as baseline demographics, graft and recipient survival and other severe postoperative complications, including complicated urinary tract infection, severe pneumonia, and severe bleeding, will be also assessed. Discussion This study will clarify the clinical value of UC-MSCs in preventing DGF and acute rejection simultaneously in deceased-donor renal transplantation, and provide evidence as to whether allogeneic MSCs can be used as clinically feasible and safe induction therapy. Trial registration ClinicalTrials.gov, NCT02490020. Registered on 29 June 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2291-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Liangqing Hong
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Zhengyu Huang
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ning Na
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Xuefeng Hua
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Yanwen Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, People's Republic of China
| | - Ming Zhao
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Ronghua Cao
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Qiquan Sun
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China.
| |
Collapse
|
48
|
Marquina M, Collado JA, Pérez-Cruz M, Fernández-Pernas P, Fafián-Labora J, Blanco FJ, Máñez R, Arufe MC, Costa C. Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation. Front Immunol 2017; 8:1465. [PMID: 29163532 PMCID: PMC5681521 DOI: 10.3389/fimmu.2017.01465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 02/05/2023] Open
Abstract
Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions.
Collapse
Affiliation(s)
- Maribel Marquina
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier A. Collado
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Magdiel Pérez-Cruz
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Pablo Fernández-Pernas
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Juan Fafián-Labora
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María C. Arufe
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
49
|
Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure S, Chazenbalk G, Dezawa M. Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy. J Am Soc Nephrol 2017; 28:2946-2960. [PMID: 28674043 DOI: 10.1681/asn.2016070775] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/08/2017] [Indexed: 01/24/2023] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be collected from various organs. Intravenously administered Muse cells have been shown to spontaneously migrate to damaged tissue and replenish lost cells, but the effect in FSGS is unknown. We systemically administered human bone marrow-derived Muse cells without concurrent administration of immunosuppressants to severe combined immune-deficient (SCID) and BALB/c mouse models with adriamycin-induced FSGS (FSGS-SCID and FSGS-BALB/c, respectively). In FSGS-SCID mice, human Muse cells preferentially integrated into the damaged glomeruli and spontaneously differentiated into cells expressing markers of podocytes (podocin; 31%), mesangial cells (megsin; 13%), and endothelial cells (CD31; 41%) without fusing to the host cells; attenuated glomerular sclerosis and interstitial fibrosis; and induced the recovery of creatinine clearance at 7 weeks. Human Muse cells induced similar effects in FSGS-BALB/c mice at 5 weeks, despite xenotransplant without concurrent immunosuppressant administration, and led to improvement in urine protein, creatinine clearance, and plasma creatinine levels more impressive than that in the FSGS-SCID mice at 5 weeks. However, functional recovery in FSGS-BALB/c mice was impaired at 7 weeks due to immunorejection, suggesting the importance of Muse cell survival as glomerular cells in the FSGS kidney for tissue repair and functional recovery. In conclusion, Muse cells are unique reparative stem cells that preferentially home to damaged glomeruli and spontaneously differentiate into glomerular cells after systemic administration. Introduction of genes to induce differentiation is not required before Muse cell administration; thus, Muse cells may be a feasible therapeutic strategy in FSGS.
Collapse
Affiliation(s)
- Nao Uchida
- Departments of Stem Cell Biology and Histology and.,Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Shohei Wakao
- Departments of Stem Cell Biology and Histology and
| | - Naonori Kumagai
- Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yoshiaki Kondo
- Department of Healthcare Services Management, Nihon University School of Medicine, Tokyo, Japan
| | - Yukari Hirohara
- Departments of Stem Cell Biology and Histology and.,Regenerative Medicine Division, Life Science Institute, Inc., Tokyo, Japan; and
| | - Shigeo Kure
- Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gregorio Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Mari Dezawa
- Departments of Stem Cell Biology and Histology and
| |
Collapse
|
50
|
Chani B, Puri V, Sobti RC, Jha V, Puri S. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS One 2017; 12:e0173040. [PMID: 28267813 PMCID: PMC5340383 DOI: 10.1371/journal.pone.0173040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
The multi-cellular nature of renal tissue makes it the most challenging organ for regeneration. Therefore, till date whole organ transplantations remain the definitive treatment for the end stage renal disease (ESRD). The shortage of available organs for the transplantation has, thus, remained a major concern as well as an unsolved problem. In this regard generation of whole organ scaffold through decellularization followed by regeneration of the whole organ by recellularization is being viewed as a potential alternative for generating functional tissues. Despite its growing interest, the optimal processing to achieve functional organ still remains unsolved. The biggest challenge remains is the time line for obtaining kidney. Keeping these facts in mind, we have assessed the effects of cryostorage (3 months) on renal tissue architecture and its potential for decellularization and recellularization in comparison to the freshly isolated kidneys. The light microscopy exploiting different microscopic stains as well as immuno-histochemistry and Scanning electron microscopy (SEM) demonstrated that ECM framework is well retained following kidney cryopreservation. The strength of these structures was reinforced by calculating mechanical stress which confirmed the similarity between the freshly isolated and cryopreserved tissue. The recellularization of these bio-scaffolds, with mesenchymal stem cells quickly repopulated the decellularized structures irrespective of the kidneys status, i.e. freshly isolated or the cryopreserved. The growth pattern employing mesenchymal stem cells demonstrated their equivalent recellularization potential. Based on these observations, it may be concluded that cryopreserved kidneys can be exploited as scaffolds for future development of functional organ.
Collapse
Affiliation(s)
- Baldeep Chani
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab Universtiy, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Panjab Universtiy, Chandigarh, India
| | - Ranbir C. Sobti
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vivekanand Jha
- Department of Nephrology, George Institute for Global Health India and University of Oxford, New Delhi, India
| | - Sanjeev Puri
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab Universtiy, Chandigarh, India
- Biotechnology Branch, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|