1
|
Wu M, Xu Y, Ji X, Zhou Y, Li Y, Feng B, Cheng Q, He H, Peng X, Zhou W, Chen Y, Xiong M. Transplanted deep-layer cortical neuroblasts integrate into host neural circuits and alleviate motor defects in hypoxic-ischemic encephalopathy injured mice. Stem Cell Res Ther 2024; 15:422. [PMID: 39533375 PMCID: PMC11558921 DOI: 10.1186/s13287-024-04049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although intensive studies and therapeutic approaches, there are limited restorative treatments till now. Human embryonic stem cell (hESCs)-derived cortical neural progenitors have shown great potentials in ischemic stroke in adult brain. However, it is unclear whether they are feasible for cortical reconstruction in immature brain with hypoxic-ischemic encephalopathy. METHODS By using embryonic body (EB) neural differentiation method combined with DAPT pre-treatment and quantitative cell transplantation, human cortical neuroblasts were obtained and transplanted into the cortex of hypoxic-ischemic injured brain with different dosages 2 weeks after surgery. Then, immunostaining, whole-cell patch clamp recordings and behavioral testing were applied to explore the graft survival and proliferation, fate commitment of cortical neuroblasts in vitro, neural circuit reconstruction and the therapeutic effects of cortical neuroblasts in HIE brain. RESULTS Transplantation of human cortical neural progenitor cells (hCNPs) in HIE-injured cortex exhibited long-term graft overgrowth. DAPT pre-treatment successfully synchronized hCNPs from different developmental stages (day 17, day 21, day 28) to deep layer cortical neuroblasts which survived well in HIE injured brain and greatly prevented graft overgrowth after transplantation. Importantly, the cortical neuroblasts primarily differentiated into deep-layer cortical neurons and extended long axons to their projection targets, such as the cortex, striatum, thalamus, and internal capsule in both ipsilateral and contralateral HIE-injured brain. The transplanted cortical neurons established synapses with host cortical neurons and exhibited spontaneous excitatory or inhibitory post-synaptic currents (sEPSCs or sIPSCs) five months post-transplantation. Rotarod and open field tests showed greatly improved animal behavior by intra-cortex transplantation of deep layer cortical neuroblasts in HIE injured brain. CONCLUSIONS Transplanted hESCs derived cortical neuroblasts survive, project to endogenous targets, and integrate into host cortical neural circuits to rescue animal behavior in the HIE-injured brain without graft overgrowth, providing a novel and safe cell replacement strategy for the future treatment of HIE.
Collapse
Affiliation(s)
- Mengnan Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuan Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoli Ji
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yingying Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ban Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hui He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingsheng Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenhao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuejun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Kamei T, Tamada A, Kimura T, Kakizuka A, Asai A, Muguruma K. Survival and process outgrowth of human iPSC-derived cells expressing Purkinje cell markers in a mouse model for spinocerebellar degenerative disease. Exp Neurol 2023; 369:114511. [PMID: 37634697 DOI: 10.1016/j.expneurol.2023.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Purkinje cells are the sole output neurons of the cerebellar cortex and play central roles in the integration of cerebellum-related motor coordination and memory. The loss or dysfunction of Purkinje cells due to cerebellar atrophy leads to severe ataxia. Here we used in vivo transplantation to examine the function of human iPS cell-derived cerebellar progenitors in adult transgenic mice in which Purkinje-specific cell death occurs due to cytotoxicity of polyglutamines. Transplantation using cerebellar organoids (42-48 days in culture), which are rich in neural progenitors, showed a viability of >50% 4 weeks after transplantation. STEM121+ grafted cells extended their processes toward the deep cerebellar nuclei, superior cerebellar peduncle, and vestibulocerebellar nuclei. The transplanted cells were mostly located in the white matter, and they were not found in the Purkinje cell layer. MAP2-positive fibers seen in the molecular layer of cerebellar cortex received VGluT2 inputs from climbing fibers. Transplanted neural progenitors overgrew in the host cerebellum but were suppressed by pretreatment with the γ-secretase inhibitor DAPT. Hyperproliferation was also suppressed by transplantation with more differentiated organoids (86 days in culture) or KIRREL2-positive cells purified by FACS sorting. Transplanted cells expressed Purkinje cell markers, GABA, CALB1 and L7, though they did not show fan-shaped morphology. We attempted to improve neuronal integration of stem cell-derived cerebellar progenitors by transplantation into the adult mouse, but this was not successfully achieved. Our findings in the present study contribute to regenerative medical application for cerebellar degeneration and provide new insights into cerebellar development in future.
Collapse
Affiliation(s)
- Takamasa Kamei
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Toshiya Kimura
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
3
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kawai M, Nagoshi N, Okano H, Nakamura M. A review of regenerative therapy for spinal cord injury using human iPS cells. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100184. [PMID: 36479183 PMCID: PMC9720571 DOI: 10.1016/j.xnsj.2022.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Spinal cord injury (SCI) has been considered to cause sudden, irreversible loss of function in patients. However, developments in stem cell biology and regenerative medicine are changing this conventional notion. Here we reviewed the overview of regenerative medicine of SCI. As a consequence of the establishment of human induced pluripotent stem cells (hiPSCs), hiPSC-based therapies for SCI, such as neural stem/progenitor cell (NS/PC) transplantation, have emerged as promising therapeutic modalities. Using several animal models, hiPSC-NS/PC transplantation into subacute injured spinal cords has been repeatedly demonstrated to improve locomotor function. Some biological mechanisms underlying this improvement have been proposed. In particular, combined with advanced neuroscience techniques such as designer receptors exclusively activated by designer drugs (DREADDs), neuronal relay theory, in which the transplanted cell-derived neurons reconstruct disrupted neuronal circuits, was proven to be involved histologically, pharmaceutically, electrophysiologically, and via in vivo bioimaging. Based on these findings, hiPSC-NS/PC transplantation for subacute SCI was moved ahead to a clinical study on human patients. At the same time, the search for effective treatments for chronic SCI is proceeding gradually, combining hiPSC-NS/PC transplantation with other treatment modalities such as rehabilitation, pharmaceutical interventions, or optimal scaffolds. In addition to NS/PCs, oligodendrocyte precursor cells (OPCs) are also a promising cell source for transplantation, as demyelinated axons affected by SCI can be repaired by OPCs. Therapies with OPCs derived from hiPSCs are still in preclinical studies but have shown favorable outcomes in animal models. In the future, several therapeutic options may be available according to the pathological conditions and the time period of SCI. Moreover, the application of regenerative therapy for the spinal cord could be broadened to degenerative disorders, such as spinal canal stenosis. Summary sentence: A historical review of human induced pluripotent stem cell (hiPSC) based cell transplantation therapy for spinal cord injury (SCI), in particular about footsteps of hiPSC-derived neural stem/progenitor cell transplantation, recent clinical study, and its future perspective.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Xue J, Wu Y, Bao Y, Zhao M, Li F, Sun J, Sun Y, Wang J, Chen L, Mao Y, Schweitzer JS, Song B. Clinical considerations in Parkinson's disease cell therapy. Ageing Res Rev 2023; 83:101792. [PMID: 36402405 DOI: 10.1016/j.arr.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cell replacement therapy is an area of increasing interest for treating Parkinson's disease (PD). However, to become a clinically practical option for PD patients, it must first overcome significant barriers, including establishment of safe and standardized surgical procedures, determination of appropriate perioperative medication regimens, demonstration of long-term graft survival and incorporation, and standardized, clinically meaningful follow-up measures. In this review, we will describe the current status of cell therapy for PD with special attention to these critical requirements, to define guideposts on the road to bring the benefit of this therapy to the Parkinson's clinic.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yifan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Minglai Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Fangzhou Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jing Sun
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yimin Sun
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
7
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Sotthibundhu A, Muangchan P, Phonchai R, Promjantuek W, Chaicharoenaudomrung N, Kunhorm P, Noisa P. Autophagy Promoted Neural Differentiation of Human Placenta-derived Mesenchymal Stem Cells. In Vivo 2021; 35:2609-2620. [PMID: 34410948 DOI: 10.21873/invivo.12543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM Human placenta-derived mesenchymal stem cells (hPMSCs) are multipotent and possess neurogenicity. Numerous studies have shown that Notch inhibition and DNA demethylation promote neural differentiation. Here, we investigated the modulation of autophagy during neural differentiation of hPMSCs, induced by DAPT and 5-Azacytidine. MATERIALS AND METHODS hPMSCs were treated with DAPT to induce neural differentiation, and the autophagy regulating molecules were used to assess the impact of autophagy on neural differentiation. RESULTS The hPMSCs presented with typical mesenchymal stem cell phenotypes, in which the majority of cells expressed CD73, CD90 and CD105. hPMSCs were multipotent, capable of differentiating into mesodermal cells. After treatment with DAPT, hPMSCs upregulated the expression of neuronal genes including SOX2, Nestin, and βIII-tubulin, and the autophagy genes LC3I/II and Beclin. These genes were further increased when 5-Azacytidine was co-supplemented in the culture medium. The inhibition of autophagy by chloroquine impeded the neural differentiation of hPMSCs, marked by the downregulation of βIII-tubulin, while the activation of autophagy by valproic acid (VPA) instigated the emergence of βIII-tubulin-positive cells. CONCLUSION During the differentiation process, autophagy was modulated, implying that autophagy could play a significant role during the differentiation of these cells. The blockage and stimulation of autophagy could either hinder or induce the formation of neural-like cells, respectively. Therefore, the refinement of autophagic activity at an appropriate level might improve the efficiency of stem cell differentiation.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pattamon Muangchan
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
9
|
Suzuki H, Sakai T. Current Concepts of Stem Cell Therapy for Chronic Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22147435. [PMID: 34299053 PMCID: PMC8308009 DOI: 10.3390/ijms22147435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in clinical trials. In addition, several more are coming down the translational pipeline. Among ongoing and completed trials are those reporting the use of mesenchymal stem cells, neural stem/progenitor cells, induced pluripotent stem cells, olfactory ensheathing cells, and Schwann cells. The advancements in stem cell technology, combined with the powerful neuroimaging modalities, can now accelerate the pathway of promising novel therapeutic strategies from bench to bedside. Various combinations of different molecular therapies have been combined with supportive scaffolds to facilitate favorable cell–material interactions. In this review, we summarized some of the most recent insights into the preclinical and clinical studies using stem cells and other supportive drugs to unlock the microenvironment in chronic SCI to treat patients with this condition. Successful future therapies will require these stem cells and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, loss of structural framework, and immunorejection.
Collapse
|
10
|
Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports 2021; 16:1446-1457. [PMID: 33861989 PMCID: PMC8190574 DOI: 10.1016/j.stemcr.2021.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.
Collapse
Affiliation(s)
- Nickesha C Anderson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Fang Chen
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wardiya Afshar Saber
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zhang T, Tao R, Yue C, Jing N. Protocol for generating human induced neural progenitor cells from immobilized adult peripheral blood. STAR Protoc 2021; 2:100346. [PMID: 33665626 PMCID: PMC7902545 DOI: 10.1016/j.xpro.2021.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Generating induced neural stem/progenitor cells (iNPCs) from somatic cells for medical applications has remained challenging. Here, we describe a reliable protocol to make human iNPCs from a small volume of immobilized adult peripheral blood by direct reprogramming. We have verified that the integration-free human iNPCs can efficiently differentiate into mature neurons in mouse brain upon transplantation and display capacities to functionally replace the damaged neurons, suggesting their potential as donor cells in developing replacement medicine for neurodegenerative diseases. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2019). A reliable protocol to generate human iNPCs from adult peripheral blood Detailed procedures for establishment of human iNPC lines Approach to systematically characterize human iNPCs and iNPC lines Method for efficiently directing the neuronal differentiation of human iNPCs
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Ran Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Silencing Trisomy 21 with XIST in Neural Stem Cells Promotes Neuronal Differentiation. Dev Cell 2020; 52:294-308.e3. [PMID: 31978324 DOI: 10.1016/j.devcel.2019.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The ability of XIST to dosage compensate a trisomic autosome presents unique experimental opportunities and potentially transformative therapeutic prospects. However, it is currently thought that XIST requires the natural context surrounding pluripotency to initiate chromosome silencing. Here, we demonstrate that XIST RNA induced in differentiated neural cells can trigger chromosome-wide silencing of chromosome 21 in Down syndrome patient-derived cells. Use of this tightly controlled system revealed a deficiency in differentiation of trisomic neural stem cells to neurons, correctible by inducing XIST at different stages of neurogenesis. Single-cell transcriptomics and other analyses strongly implicate elevated Notch signaling due to trisomy 21, thereby promoting neural stem cell cycling that delays terminal differentiation. These findings have significance for illuminating the epigenetic plasticity of cells during development, the understanding of how human trisomy 21 effects Down syndrome neurobiology, and the translational potential of XIST, a unique non-coding RNA.
Collapse
|
13
|
Rhee YH, Puspita L, Sulistio YA, Kim SW, Vidyawan V, Elvira R, Chang MY, Shim JW, Lee SH. Efficient Neural Differentiation of hPSCs by Extrinsic Signals Derived from Co-cultured Neural Stem or Precursor Cells. Mol Ther 2019; 27:1299-1312. [PMID: 31043343 DOI: 10.1016/j.ymthe.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, we found that undifferentiated human pluripotent stem cells (hPSCs; up to 30% of total cells) present in the cultures of neural stem or precursor cells (NPCs) completely disappeared within several days when cultured under neural differentiation culture conditions. Intriguingly, the disappearance of undifferentiated cells was not due to cell death but was instead mediated by neural conversion of hPSCs. Based on these findings, we propose pre-conditioning of donor NPC cultures under terminal differentiation culture conditions as a simple but efficient method of eliminating undifferentiated cells to treat neurologic disorders. In addition, we could establish a new neural differentiation protocol, in which undifferentiated hPSCs co-cultured with NPCs become differentiated neurons or NPCs in an extremely efficient, fast, and reproducible manner across the hESC and human-induced pluripotent stem cell (hiPSC) lines.
Collapse
Affiliation(s)
- Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Yanuar Alan Sulistio
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Won Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Vincencius Vidyawan
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
14
|
Tsuji O, Sugai K, Yamaguchi R, Tashiro S, Nagoshi N, Kohyama J, Iida T, Ohkubo T, Itakura G, Isoda M, Shinozaki M, Fujiyoshi K, Kanemura Y, Yamanaka S, Nakamura M, Okano H. Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells 2018; 37:6-13. [PMID: 30371964 PMCID: PMC7379555 DOI: 10.1002/stem.2926] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/16/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022]
Abstract
There have been numerous attempts to develop stem cell transplantation approaches to promote the regeneration of spinal cord injury (SCI). Our multicenter team is currently planning to launch a first-in-human clinical study of an induced pluripotent stem cell (iPSC)-based cell transplant intervention for subacute SCI. This trial was conducted as class I regenerative medicine protocol as provided for under Japan's Act on the Safety of Regenerative Medicine, using neural stem/progenitor cells derived from a clinical-grade, integration-free human "iPSC stock" generated by the Kyoto University Center for iPS Cell Research and Application. In the present article, we describe how we are preparing to initiate this clinical study, including addressing the issues of safety and tumorigenesis as well as practical problems that must be overcome to enable the development of therapeutic interventions for patients with chronic SCI. Stem Cells 2019;37:6-13.
Collapse
Affiliation(s)
- Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Yamaguchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Japan
| | - Syoichi Tashiro
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Iida
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Ohkubo
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Go Itakura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research and Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Hu Y, Fang KH, Shen LP, Cao SY, Yuan F, Su Y, Xu M, Pan Y, Chen Y, Liu Y. The telomerase inhibitor AZT enhances differentiation and prevents overgrowth of human pluripotent stem cell-derived neural progenitors. J Biol Chem 2018; 293:8722-8733. [PMID: 29628445 DOI: 10.1074/jbc.m117.809889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-based cell-replacement therapy has emerged as a promising approach for addressing numerous neurological diseases. However, hPSC transplantation has the potential to cause human cell overgrowth and cancer, which represents a major obstacle to implementing hPSC-based therapies. Inhibition of the overgrowth of transplanted cells could help reduce the risk for hPSC transplantation-induced tumorigenesis. In this study, we report that the telomerase inhibitor azidothymidine (3'-azido-3'-deoxythymidine; AZT) enhances the differentiation of cortical neurons and significantly suppresses the proliferation of hPSC-derived cortical progenitors. Using human embryonic stem cells and induced pluripotent stem cells in culture, we found that AZT effectively reduces the number of dividing progenitors without inducing cell death. Furthermore, AZT promoted differentiation of cortical progenitors and maturation of cortical neurons. Of note, AZT-pretreated, hPSC-derived neural progenitors exhibited decreased proliferation and increased differentiation into cortical neurons when transplanted into the mouse brain. In summary, our findings indicate that AZT prevents the overgrowth of hPSC-derived neural precursors and enhances the differentiation of cortical neurons in both cell cultures and hPSC-transplanted mouse brain. We propose that our work could inform clinical applications of hPSC-based cell therapy.
Collapse
Affiliation(s)
- Yao Hu
- From the State Key Laboratory of Reproductive Medicine.,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and.,Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Lu-Ping Shen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Shi-Ying Cao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Yuwen Su
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Yaoyu Chen
- Division of Hematology, Jiangsu Provincial Traditional Chinese Medical Hospital, Nanjing, Jiangsu Province 210029, China
| | - Yan Liu
- From the State Key Laboratory of Reproductive Medicine, .,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and.,Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Miyagoe-Suzuki Y, Takeda S. Skeletal muscle generated from induced pluripotent stem cells - induction and application. World J Stem Cells 2017; 9:89-97. [PMID: 28717411 PMCID: PMC5491631 DOI: 10.4252/wjsc.v9.i6.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patient-iPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle disease-iPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage: (1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease; (2) setting up a high-throughput drug screening system; and (3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.
Collapse
|
18
|
An update on stem cell biology and engineering for brain development. Mol Psychiatry 2017; 22:808-819. [PMID: 28373686 DOI: 10.1038/mp.2017.66] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Two recent technologies, induced-pluripotent stem cells (iPSCs) and direct somatic reprogramming, have shown enormous potential for cell-based therapies against intractable diseases such as those that affect the central nervous system. Already, methods that generate most major cell types of the human brain exist. Whether the cell types are directly reprogrammed from human somatic cells or differentiated from an iPSC intermediate, the overview presented here demonstrates how these protocols vary greatly in their efficiencies, purity and maturation of the resulting cells. Possible solutions including micro-RNA switch technologies that purify target cell types are also outlined. Further, an update on the transition from 2D to 3D cultures and current organoid (mini-brain) cultures are reviewed to give the stem cell and developmental engineering communities an up-to-date account of the progress and future perspectives for modeling of central nervous system disease and brain development in vitro.
Collapse
|
19
|
Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports 2017; 8:673-684. [PMID: 28262544 PMCID: PMC5355810 DOI: 10.1016/j.stemcr.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies.
Collapse
|
20
|
Kuijlaars J, Oyelami T, Diels A, Rohrbacher J, Versweyveld S, Meneghello G, Tuefferd M, Verstraelen P, Detrez JR, Verschuuren M, De Vos WH, Meert T, Peeters PJ, Cik M, Nuydens R, Brône B, Verheyen A. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci Rep 2016; 6:36529. [PMID: 27819315 PMCID: PMC5098163 DOI: 10.1038/srep36529] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023] Open
Abstract
Impaired neuronal network function is a hallmark of neurodevelopmental and neurodegenerative disorders such as autism, schizophrenia, and Alzheimer's disease and is typically studied using genetically modified cellular and animal models. Weak predictive capacity and poor translational value of these models urge for better human derived in vitro models. The implementation of human induced pluripotent stem cells (hiPSCs) allows studying pathologies in differentiated disease-relevant and patient-derived neuronal cells. However, the differentiation process and growth conditions of hiPSC-derived neurons are non-trivial. In order to study neuronal network formation and (mal)function in a fully humanized system, we have established an in vitro co-culture model of hiPSC-derived cortical neurons and human primary astrocytes that recapitulates neuronal network synchronization and connectivity within three to four weeks after final plating. Live cell calcium imaging, electrophysiology and high content image analyses revealed an increased maturation of network functionality and synchronicity over time for co-cultures compared to neuronal monocultures. The cells express GABAergic and glutamatergic markers and respond to inhibitors of both neurotransmitter pathways in a functional assay. The combination of this co-culture model with quantitative imaging of network morphofunction is amenable to high throughput screening for lead discovery and drug optimization for neurological diseases.
Collapse
Affiliation(s)
- Jacobine Kuijlaars
- Hasselt University, Biomedical Research Institute, Diepenbeek, B-3590, Belgium
| | - Tutu Oyelami
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Annick Diels
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Jutta Rohrbacher
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Sofie Versweyveld
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Giulia Meneghello
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Marianne Tuefferd
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Peter Verstraelen
- Antwerp University, Department of Veterinary Science, Antwerp, B-2020, Belgium
| | - Jan R. Detrez
- Antwerp University, Department of Veterinary Science, Antwerp, B-2020, Belgium
| | - Marlies Verschuuren
- Antwerp University, Department of Veterinary Science, Antwerp, B-2020, Belgium
| | - Winnok H. De Vos
- Antwerp University, Department of Veterinary Science, Antwerp, B-2020, Belgium
- Ghent University, Department of Molecular Biotechnology, Ghent, B-9000, Belgium
| | - Theo Meert
- Hasselt University, Biomedical Research Institute, Diepenbeek, B-3590, Belgium
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Pieter J. Peeters
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Miroslav Cik
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Rony Nuydens
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Bert Brône
- Hasselt University, Biomedical Research Institute, Diepenbeek, B-3590, Belgium
| | - An Verheyen
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| |
Collapse
|
21
|
Okubo T, Iwanami A, Kohyama J, Itakura G, Kawabata S, Nishiyama Y, Sugai K, Ozaki M, Iida T, Matsubayashi K, Matsumoto M, Nakamura M, Okano H. Pretreatment with a γ-Secretase Inhibitor Prevents Tumor-like Overgrowth in Human iPSC-Derived Transplants for Spinal Cord Injury. Stem Cell Reports 2016; 7:649-663. [PMID: 27666789 PMCID: PMC5063571 DOI: 10.1016/j.stemcr.2016.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) are considered to be a promising cell source for cell-based interventions that target CNS disorders. We previously reported that transplanting certain hiPSC-NS/PCs in the spinal cord results in tumor-like overgrowth of hiPSC-NS/PCs and subsequent deterioration of motor function. Remnant immature cells should be removed or induced into more mature cell types to avoid adverse effects of hiPSC-NS/PC transplantation. Because Notch signaling plays a role in maintaining NS/PCs, we evaluated the effects of γ-secretase inhibitor (GSI) and found that pretreating hiPSC-NS/PCs with GSI promoted neuronal differentiation and maturation in vitro, and GSI pretreatment also reduced the overgrowth of transplanted hiPSC-NS/PCs and inhibited the deterioration of motor function in vivo. These results indicate that pretreatment with hiPSC-NS/PCs decreases the proliferative capacity of transplanted hiPSC-NS/PCs, triggers neuronal commitment, and improves the safety of hiPSC-based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Toshiki Okubo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Go Itakura
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsuyoshi Iida
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kohei Matsubayashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
22
|
Sugai K, Fukuzawa R, Shofuda T, Fukusumi H, Kawabata S, Nishiyama Y, Higuchi Y, Kawai K, Isoda M, Kanematsu D, Hashimoto-Tamaoki T, Kohyama J, Iwanami A, Suemizu H, Ikeda E, Matsumoto M, Kanemura Y, Nakamura M, Okano H. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Mol Brain 2016; 9:85. [PMID: 27642008 PMCID: PMC5027634 DOI: 10.1186/s13041-016-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Collapse
Affiliation(s)
- Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, 183-8561, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | | | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
23
|
Katsukawa M, Nakajima Y, Fukumoto A, Doi D, Takahashi J. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells Dev 2016; 25:815-25. [DOI: 10.1089/scd.2015.0394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mitsuko Katsukawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Signal Transductions, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yusuke Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akiko Fukumoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Clinical Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Hu Y, Qu ZY, Cao SY, Li Q, Ma L, Krencik R, Xu M, Liu Y. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. J Neurosci Methods 2016; 266:42-9. [PMID: 27036311 DOI: 10.1016/j.jneumeth.2016.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. NEW METHOD Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. RESULTS At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. COMPARISON WITH EXISTING METHOD(S) In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. CONCLUSION We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies.
Collapse
Affiliation(s)
- Yao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhuang-Yin Qu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Shi-Ying Cao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Qi Li
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lixiang Ma
- Department of Human Anatomy and Histology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Robert Krencik
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. ACS Med Chem Lett 2016; 7:294-9. [PMID: 26985318 DOI: 10.1021/acsmedchemlett.5b00451] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022] Open
Abstract
Cyclophilin D (CypD), a peptidylprolyl isomerase F (PPIase), plays a central role in opening the mitochondrial membrane permeability transition pore leading to cell death. CypD resides in the mitochondrial matrix, associates with the inner mitochondrial membrane, interacts with amyloid beta to exacerbate mitochondrial and neuronal stress and has been linked to Alzheimer's disease (AD). We report the biological activity of a small-molecule CypD inhibitor (C-9), which binds strongly to CypD and attenuates mitochondrial and cellular perturbation insulted by Aβ and calcium stress. Binding affinities for C-9 were determined using in vitro surface plasmon resonance. This compound antagonized calcium-mediated mitochondrial swelling, abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c oxidase activity and adenosine-5'-triphosphate levels, and inhibited CypD PPIase enzymatic activity by real-time fluorescence capture assay using Hamamatsu FDSS 7000. Compound C-9 seems a good candidate for further investigation as an AD drug.
Collapse
|
26
|
D'Avanzo C, Sliwinski C, Wagner SL, Tanzi RE, Kim DY, Kovacs DM. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. FASEB J 2015; 29:3335-41. [PMID: 25903103 DOI: 10.1096/fj.15-271015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/05/2015] [Indexed: 02/02/2023]
Abstract
Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.
Collapse
Affiliation(s)
- Carla D'Avanzo
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Sliwinski
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Steven L Wagner
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Doo Yeon Kim
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Dora M Kovacs
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Tieng V, Stoppini L, Villy S, Fathi M, Dubois-Dauphin M, Krause KH. Engineering of Midbrain Organoids Containing Long-Lived Dopaminergic Neurons. Stem Cells Dev 2014; 23:1535-47. [DOI: 10.1089/scd.2013.0442] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vannary Tieng
- Department of Pathology and Immunology, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Luc Stoppini
- Hepia, University of Applied Sciences Western Switzerland, Geneva, Switzerland
- Swiss Centre for Applied Toxicology (SCAHT), Geneva, Switzerland
| | - Sabrina Villy
- Department of Genetic and Laboratory Medicine, Geneva Hospitals, Geneva, Switzerland
| | - Marc Fathi
- Department of Genetic and Laboratory Medicine, Geneva Hospitals, Geneva, Switzerland
| | - Michel Dubois-Dauphin
- Department of Pathology and Immunology, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University Medical Center, University of Geneva, Geneva, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|
28
|
Valasani K, Vangavaragu JR, Day VW, Yan SS. Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. J Chem Inf Model 2014; 54:902-12. [PMID: 24555519 PMCID: PMC3985759 DOI: 10.1021/ci5000196] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Indexed: 11/29/2022]
Abstract
Cyclophilin D (CypD) is a peptidyl prolyl isomerase F that resides in the mitochondrial matrix and associates with the inner mitochondrial membrane during the mitochondrial membrane permeability transition. CypD plays a central role in opening the mitochondrial membrane permeability transition pore (mPTP) leading to cell death and has been linked to Alzheimer's disease (AD). Because CypD interacts with amyloid beta (Aβ) to exacerbate mitochondrial and neuronal stress, it is a potential target for drugs to treat AD. Since appropriately designed small organic molecules might bind to CypD and block its interaction with Aβ, 20 trial compounds were designed using known procedures that started with fundamental pyrimidine and sulfonamide scaffolds know to have useful therapeutic effects. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) methods were applied to 40 compounds with known IC50 values. These formed a training set and were followed by a trial set of 20 designed compounds. A correlation analysis was carried out comparing the statistics of the measured IC50 with predicted values for both sets. Selectivity-determining descriptors were interpreted graphically in terms of principle component analyses. These descriptors can be very useful for predicting activity enhancement for lead compounds. A 3D pharmacophore model was also created. Molecular dynamics simulations were carried out for the 20 trial compounds with known IC50 values, and molecular descriptors were determined by 2D QSAR studies using the Lipinski rule-of-five. Fifteen of the 20 molecules satisfied all 5 Lipinski rules, and the remaining 5 satisfied 4 of the 5 Lipinski criteria and nearly satisfied the fifth. Our previous use of 2D QSAR, 3D pharmacophore models, and molecular docking experiments to successfully predict activity indicates that this can be a very powerful technique for screening large numbers of new compounds as active drug candidates. These studies will hopefully provide a basis for efficiently designing and screening large numbers of more potent and selective inhibitors for CypD treatment of AD.
Collapse
Affiliation(s)
- Koteswara
Rao Valasani
- Department
of Pharmacology & Toxicology and Higuchi Bioscience Center, School
of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Jhansi Rani Vangavaragu
- Department
of Pharmacology & Toxicology and Higuchi Bioscience Center, School
of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Victor W. Day
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shirley ShiDu Yan
- Department
of Pharmacology & Toxicology and Higuchi Bioscience Center, School
of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
29
|
Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 2013; 8:1670-9. [PMID: 23928500 DOI: 10.1038/nprot.2013.106] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Forebrain γ-aminobutyric acid (GABA) interneurons have crucial roles in high-order brain function via modulating network activities and plasticity, and they are implicated in many psychiatric disorders. Availability of enriched functional human forebrain GABA interneurons, especially those from people affected by GABA interneuron deficit disease, will be instrumental to the investigation of disease pathogenesis and development of therapeutics. We describe a protocol for directed differentiation of forebrain GABA interneurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in a chemically defined system. In this protocol, human PSCs are first induced to primitive neuroepithelial cells over 10 d, and then patterned to NKX2.1-expressing medial ganglionic eminence progenitors by simple treatment with sonic hedgehog or its agonist purmorphamine over the next 2 weeks. These progenitors generate a nearly pure population of forebrain GABA interneurons by the sixth week. This simple and efficient protocol does not require transgenic modification or cell sorting, and it has been replicated with multiple human ESC and iPSC lines.
Collapse
|