1
|
Peng X, Feng G, Zhang Y, Sun Y. PRC1 Stabilizes Cardiac Contraction by Regulating Cardiac Sarcomere Assembly and Cardiac Conduction System Construction. Int J Mol Sci 2021; 22:11368. [PMID: 34768802 PMCID: PMC8583368 DOI: 10.3390/ijms222111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiac development is a complex process that is strictly controlled by various factors, including PcG protein complexes. Several studies have reported the critical role of PRC2 in cardiogenesis. However, little is known about the regulation mechanism of PRC1 in embryonic heart development. To gain more insight into the mechanistic role of PRC1 in cardiogenesis, we generated a PRC1 loss-of-function zebrafish line by using the CRISPR/Cas9 system targeting rnf2, a gene encoding the core subunit shared by all PRC1 subfamilies. Our results revealed that Rnf2 is not involved in cardiomyocyte differentiation and heart tube formation, but that it is crucial to maintaining regular cardiac contraction. Further analysis suggested that Rnf2 loss-of-function disrupted cardiac sarcomere assembly through the ectopic activation of non-cardiac sarcomere genes in the developing heart. Meanwhile, Rnf2 deficiency disrupts the construction of the atrioventricular canal and the sinoatrial node by modulating the expression of bmp4 and other atrioventricular canal marker genes, leading to an impaired cardiac conduction system. The disorganized cardiac sarcomere and defective cardiac conduction system together contribute to defective cardiac contraction. Our results emphasize the critical role of PRC1 in the cardiac development.
Collapse
Affiliation(s)
- Xixia Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
3
|
Increased predominance of the matured ventricular subtype in embryonic stem cell-derived cardiomyocytes in vivo. Sci Rep 2020; 10:11883. [PMID: 32681032 PMCID: PMC7368005 DOI: 10.1038/s41598-020-68373-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that human pluripotent stem cell-derived cardiomyocytes can affect “heart regeneration”, replacing injured cardiac scar tissue with concomitant electrical integration. However, electrically coupled graft cardiomyocytes were found to innately induce transient post-transplant ventricular tachycardia in recent large animal model transplantation studies. We hypothesised that these phenomena were derived from alterations in the grafted cardiomyocyte characteristics. In vitro experiments showed that human embryonic stem cell-derived cardiomyocytes (hESC-CMs) contain nodal-like cardiomyocytes that spontaneously contract faster than working-type cardiomyocytes. When transplanted into athymic rat hearts, proliferative capacity was lower for nodal-like than working-type cardiomyocytes with grafted cardiomyocytes eventually comprising only relatively matured ventricular cardiomyocytes. RNA-sequencing of engrafted hESC-CMs confirmed the increased expression of matured ventricular cardiomyocyte-related genes, and simultaneous decreased expression of nodal cardiomyocyte-related genes. Temporal engraftment of electrical excitable nodal-like cardiomyocytes may thus explain the transient incidence of post-transplant ventricular tachycardia, although further large animal model studies will be required to control post-transplant arrhythmia.
Collapse
|
4
|
van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019; 146:dev.173161. [PMID: 30936179 DOI: 10.1242/dev.173161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3 +/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3 +/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.
Collapse
Affiliation(s)
- Vincent W W van Eif
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Sonia Stefanovic
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Karel van Duijvenboden
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Bakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Stéphane Zaffran
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Arie O Verkerk
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
5
|
Wu L, Du J, Jing X, Yan Y, Deng S, Hao Z, She Q. Bone morphogenetic protein 4 promotes the differentiation of Tbx18-positive epicardial progenitor cells to pacemaker-like cells. Exp Ther Med 2019; 17:2648-2656. [PMID: 30906456 PMCID: PMC6425233 DOI: 10.3892/etm.2019.7243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Clarifying the mechanisms via which pacemaker- like cells are generated is critical for identifying novel targets for arrhythmia-associated disorders and constructing pacemakers with the ability to adapt to physiological requirements. T-box 18 (Tbx18)+ epicardial progenitor cells (EPCs) have the potential to differentiate into pacemaker cells. Although bone morphogenetic protein 4 (Bmp4) is likely to contribute, its role and regulatory mechanisms in the differentiation of Tbx18+ EPCs into pacemaker-like cells have remained to be fully elucidated. In the present study, the association between Bmp4, GATA binding protein 4 (Gata4) and hyperpolarization- activated cyclic nucleotide gated potassium channel 4 (Hcn4) to regulate NK2 homeobox 5 (Nkx2.5), which is known to be required for the differentiation of Tbx18+ EPCs into pacemaker-like cells, was assessed. Tbx18+ EPCs were isolated from Tbx18:Cre/Rosa26Renhanced yellow fluorescence protein (EYFP) murine embryos at embryonic day 11.5 and divided into the following four treatment groups: Control, Bmp4, Bmp4+LDN193189 (a Bmp inhibitor) and LDN193189. In vitro Bmp4 promoted the expression of Hcn4 in Tbx18+ EPCs via lineage tracing of Tbx18:Cre/Rosa26REYFP mice, which was likely due to upregulation of Gata4 expression. Gata4 knockdown experiments were then performed using the following five treatment groups: Control, control small interfering RNA (siRNA), Bmp4, Bmp4+siRNA targeting Gata4 (siGata4) and siGata4 group. Knockdown of Gata4 caused a downregulation of Hcn4 and an upregulation of Nkx2.5, but had no effect on Bmp4 expression. In conclusion, it was indicated that in Tbx18+ EPCs, the expression of Nkx2.5 was regulated by Bmp4 via Gata4. Taken together, these results provide important information on regulatory networks of pacemaker cell differentiation and may serve as a basis for further studies.
Collapse
Affiliation(s)
- Ling Wu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhengtao Hao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
6
|
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 2019; 48:475-490.e7. [PMID: 30713072 DOI: 10.1016/j.devcel.2019.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
Collapse
|
7
|
Hoffmann S, Schmitteckert S, Griesbeck A, Preiss H, Sumer S, Rolletschek A, Granzow M, Eckstein V, Niesler B, Rappold GA. Comparative expression analysis of Shox2-deficient embryonic stem cell-derived sinoatrial node-like cells. Stem Cell Res 2017; 21:51-57. [PMID: 28390247 DOI: 10.1016/j.scr.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The homeodomain transcription factor Shox2 controls the development and function of the native cardiac pacemaker, the sinoatrial node (SAN). Moreover, SHOX2 mutations have been associated with cardiac arrhythmias in humans. For detailed examination of Shox2-dependent developmental mechanisms in SAN cells, we established a murine embryonic stem cell (ESC)-based model using Shox2 as a molecular tool. Shox2+/+ and Shox2-/- ESC clones were isolated and differentiated according to five different protocols in order to evaluate the most efficient enrichment of SAN-like cells. Expression analysis of cell subtype-specific marker genes revealed most efficient enrichment after CD166-based cell sorting. Comparative cardiac expression profiles of Shox2+/+ and Shox2-/- ESCs were examined by nCounter technology. Among other genes, we identified Nppb as a novel putative Shox2 target during differentiation in ESCs. Differential expression of Nppb could be confirmed in heart tissue of Shox2-/- embryos. Taken together, we established an ESC-based cardiac differentiation model and successfully purified Shox2+/+ and Shox2-/- SAN-like cells. This now provides an excellent basis for the investigation of molecular mechanisms under physiological and pathophysiological conditions for evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Anne Griesbeck
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Hannes Preiss
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Simon Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Martin Granzow
- Department of Human Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Volker Eckstein
- FACS Core Facility, Department of Medicine V, University Hospital Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany; nCounter Core Facility, Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
8
|
Ma T, Xu L, Wang H, Guo X, Li Z, Wan F, Chen J, Liu L, Liu X, Chang G, Chen G. Identification of the crucial genes in the elimination and survival process of Salmonella enterica ser. Pullorum in the chicken spleen. Anim Genet 2017; 48:303-314. [PMID: 28176342 DOI: 10.1111/age.12533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Salmonella enterica ser. Pullorum is one of the most easily re-infecting pathogens in poultry production because of its mechanism of escaping from immune elimination. We used the transcriptome method to investigate the variation in gene expression in chicken spleen resulting from the interaction between hosts and S. Pullorum in the survival process. The expression of various genes related to the maturation and activation of B cells was activated before S. Pullorum was eliminated, which might help S. Pullorum escape from the elimination process. The suppression of some genes involved in the fusion of autophagosomes and lysosomes, such as MYO6, was identified and may be regulated by the secretion systems of S. Pullorum. In addition, a large proportion of these differentially expressed genes could be localized in the identified quantitative trait loci regions associated with the antibody response to bacteria. Collectively, these identified genes provided an outline for further understanding the interaction between chicken immune cells and S. Pullorum in chicken spleen.
Collapse
Affiliation(s)
- T Ma
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - L Xu
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - H Wang
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - X Guo
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Z Li
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - F Wan
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - J Chen
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - L Liu
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - X Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China
| | - G Chang
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - G Chen
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
9
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
10
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
11
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vedantham V. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends Mol Med 2015; 21:749-761. [PMID: 26611337 DOI: 10.1016/j.molmed.2015.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
Irreversible degeneration of the cardiac conduction system is a common disease that can cause activity intolerance, fainting, and death. While electronic pacemakers provide effective treatment, alternative approaches are needed when long-term indwelling hardware is undesirable. Biological pacemakers comprise electrically active cells that functionally integrate with the heart. Recent findings on cardiac pacemaker cells (PCs) within the sinoatrial node (SAN), along with developments in stem cell technology, have opened a new era in biological pacing. Recent experiments that have derived PC-like cells from non-PCs have brought the field closer than ever before to biological pacemakers that can faithfully recapitulate SAN activity. In this review, I discuss these approaches in the context of SAN biology and address the potential for clinical translation.
Collapse
Affiliation(s)
- Vasanth Vedantham
- Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA; Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.
| |
Collapse
|
13
|
Günther A, Baumann A. Distinct expression patterns of HCN channels in HL-1 cardiomyocytes. BMC Cell Biol 2015; 16:18. [PMID: 26141616 PMCID: PMC4490601 DOI: 10.1186/s12860-015-0065-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cardiac rhythmic activity is initiated in functionally specialized areas of the heart. Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are fundamental for these processes of cardiac physiology. Results Here we investigated transcript and protein expression patterns of HCN channels in HL-1 cardiomyocytes using a combination of quantitative PCR analysis and immunocytochemistry. Gene expression profiles of hcn1, hcn2 and hcn4 were acutely affected during HL-1 cell propagation. In addition, distinct expression patterns were uncovered for HCN1, HCN2 and HCN4 proteins. Conclusions Our results suggest that HCN channel isoforms might be involved in the concerted differentiation of HL-1 cells and may indirectly affect the occurrence of contractile HL-1 cell activity. We expect that these findings will promote studies on other molecular markers that contribute to cardiac physiology. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
14
|
SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2014; 4:129-142. [PMID: 25533636 PMCID: PMC4297875 DOI: 10.1016/j.stemcr.2014.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023] Open
Abstract
When pluripotency factors are removed, embryonic stem cells (ESCs) undergo spontaneous differentiation, which, among other lineages, also gives rise to cardiac sublineages, including chamber cardiomyocytes and pacemaker cells. Such heterogeneity complicates the use of ESC-derived heart cells in therapeutic and diagnostic applications. We sought to direct ESCs to differentiate specifically into cardiac pacemaker cells by overexpressing a transcription factor critical for embryonic patterning of the native cardiac pacemaker (the sinoatrial node). Overexpression of SHOX2 during ESC differentiation upregulated the pacemaker gene program, resulting in enhanced automaticity in vitro and induced biological pacing upon transplantation in vivo. The accentuated automaticity is accompanied by temporally evolving changes in the effectors and regulators of Wnt signaling. Our findings provide a strategy for enriching the cardiac pacemaker cell population from ESCs. SHOX2 accentuates the molecular profile of pacemaker cells in differentiating ESCs SHOX2 increases the frequency and rate of spontaneously active cardiac derivatives SHOX2-overexpressing EBs function as biopacemakers when transplanted in vivo Wnt signaling underlies SHOX2-mediated pacemaker cell specification
Collapse
|
15
|
miR-27b and miR-23b Modulate Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. J Cardiovasc Dev Dis 2014. [DOI: 10.3390/jcdd1010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|