1
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Leckie J, Zia A, Yokota T. An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Genes (Basel) 2024; 15:1489. [PMID: 39596689 PMCID: PMC11593839 DOI: 10.3390/genes15111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population. This review offers an updated analysis of all theoretical exon-skipping strategies and their applicability across the patient population, with a specific focus on DMD-associated mutations documented in the UMD-DMD database. Unlike previous studies, this approach leverages the inclusion of phenotypic data for each mutation, providing a more comprehensive and clinically relevant perspective. METHODS The theoretical applicability of all single and double exon-skipping strategies, along with multi exon-skipping strategies targeting exons 3-9 and 45-55, was evaluated for all DMD mutations reported in the UMD-DMD database. RESULTS Single and double exon-skipping approaches were applicable for 92.8% of large deletions, 93.7% of small lesions, 72.4% of duplications, and 90.3% of all mutations analyzed. Exon 51 was the most relevant target and was applicable for 10.6% of all mutations and 17.2% of large deletions. Additionally, two multi-exon-skipping approaches, targeting exons 45-55 and 3-9, were relevant for 70.6% of large deletions and 19.2% of small lesions. CONCLUSIONS Current FDA-approved ASOs were applicable to 27% of the UMD-DMD population analyzed, leaving a significant portion of patients without access to exon-skipping therapies. The clinical translation of alternative approaches is critical to expanding the accessibility of these therapies for the DMD population.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Abdullah Zia
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Pardon G, Vander Roest AS, Chirikian O, Birnbaum F, Lewis H, Castillo EA, Wilson R, Denisin AK, Blair CA, Holbrook C, Koleckar K, Chang ACY, Blau HM, Pruitt BL. Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement. Nat Commun 2024; 15:5427. [PMID: 38926342 PMCID: PMC11208611 DOI: 10.1038/s41467-024-49755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are powerful in vitro models to study the mechanisms underlying cardiomyopathies and cardiotoxicity. Quantification of the contractile function in single hiPSC-CMs at high-throughput and over time is essential to disentangle how cellular mechanisms affect heart function. Here, we present CONTRAX, an open-access, versatile, and streamlined pipeline for quantitative tracking of the contractile dynamics of single hiPSC-CMs over time. Three software modules enable: parameter-based identification of single hiPSC-CMs; automated video acquisition of >200 cells/hour; and contractility measurements via traction force microscopy. We analyze >4,500 hiPSC-CMs over time in the same cells under orthogonal conditions of culture media and substrate stiffnesses; +/- drug treatment; +/- cardiac mutations. Using undirected clustering, we reveal converging maturation patterns, quantifiable drug response to Mavacamten and significant deficiencies in hiPSC-CMs with disease mutations. CONTRAX empowers researchers with a potent quantitative approach to develop cardiac therapies.
Collapse
Grants
- R00 HL153679 NHLBI NIH HHS
- K99 HL153679 NHLBI NIH HHS
- RM1 GM131981 NIGMS NIH HHS
- 20POST35211011 American Heart Association (American Heart Association, Inc.)
- 17CSA33590101 American Heart Association (American Heart Association, Inc.)
- 18CDA34110411 American Heart Association (American Heart Association, Inc.)
- 1R21HL13099301 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 18POST34080160 American Heart Association (American Heart Association, Inc.)
- 1F31HL158227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 HL158227 NHLBI NIH HHS
- 201411MFE-338745-169197 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P2SKP2_164954 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 13POST14480004 American Heart Association (American Heart Association, Inc.)
- RM1GM131981 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 82070248 National Natural Science Foundation of China (National Science Foundation of China)
- P400PM_180825 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Shanghai Pujiang Program 19PJ1407000 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning 0900000024 to A.C.Y.C. Innovative Research Team of High-Level Local Universities in Shanghai (A.C.Y.C.)
- the Baxter Foundation, Li Ka Shing Foundation and The Stanford Cardiovascular Institute
Collapse
Affiliation(s)
- Gaspard Pardon
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- School of Life Sciences, EPFL École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alison S Vander Roest
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Engineering, Michigan Engineering, University of Michigan Ann Arbor, MI, USA
| | - Orlando Chirikian
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry Lewis
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Erica A Castillo
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Robin Wilson
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Aleksandra K Denisin
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Cheavar A Blair
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Shanghai Institute of Precision Medicine and Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
4
|
Fullenkamp DE, Willis AB, Curtin JL, Amaral AP, Dittloff KT, Harris SI, Chychula IA, Holgren CW, Burridge PW, Russell B, Demonbreun AR, McNally EM. Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050487. [PMID: 38050701 PMCID: PMC10820750 DOI: 10.1242/dmm.050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jodi L. Curtin
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ansel P. Amaral
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle T. Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sloane I. Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivana A. Chychula
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cory W. Holgren
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul W. Burridge
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Kyriakopoulou E, Monnikhof T, van Rooij E. Gene editing innovations and their applications in cardiomyopathy research. Dis Model Mech 2023; 16:dmm050088. [PMID: 37222281 PMCID: PMC10233723 DOI: 10.1242/dmm.050088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Cardiomyopathies are among the major triggers of heart failure, but their clinical and genetic complexity have hampered our understanding of these disorders and delayed the development of effective treatments. Alongside the recent identification of multiple cardiomyopathy-associated genetic variants, advances in genome editing are providing new opportunities for cardiac disease modeling and therapeutic intervention, both in vitro and in vivo. Two recent innovations in this field, prime and base editors, have improved editing precision and efficiency, and are opening up new possibilities for gene editing of postmitotic tissues, such as the heart. Here, we review recent advances in prime and base editors, the methods to optimize their delivery and targeting efficiency, their strengths and limitations, and the challenges that remain to be addressed to improve the application of these tools to the heart and their translation to the clinic.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Thomas Monnikhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Eguchi A, Gonzalez AFGS, Torres-Bigio SI, Koleckar K, Birnbaum F, Zhang JZ, Wang VY, Wu JC, Artandi SE, Blau HM. TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs. Proc Natl Acad Sci U S A 2023; 120:e2209967120. [PMID: 36719921 PMCID: PMC9963063 DOI: 10.1073/pnas.2209967120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.
Collapse
Affiliation(s)
- Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Adriana Fernanda G S Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Sofía I Torres-Bigio
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Joe Z Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Vicky Y Wang
- Stanford Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94035
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
8
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
9
|
Birnbaum F, Eguchi A, Pardon G, Chang ACY, Blau HM. Tamoxifen treatment ameliorates contractile dysfunction of Duchenne muscular dystrophy stem cell-derived cardiomyocytes on bioengineered substrates. NPJ Regen Med 2022; 7:19. [PMID: 35304486 PMCID: PMC8933505 DOI: 10.1038/s41536-022-00214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic myopathy that leads to heart failure from dilated cardiomyopathy by early adulthood. Recent evidence suggests that tamoxifen, a selective estrogen receptor modulator widely used to treat breast cancer, ameliorates DMD cardiomyopathy. However, the mechanism of action of 4-hydroxytamoxifen, the active metabolite of tamoxifen, on cardiomyocyte function remains unclear. To examine the effects of chronic 4-hydroxytamoxifen treatment, we used state-of-the-art human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and a bioengineered platform to model DMD. We assessed the beating rate and beating velocity of iPSC-CMs in monolayers and as single cells on micropatterns that promote a physiological cardiomyocyte morphology. We found that 4-hydroxytamoxifen treatment of DMD iPSC-CMs decreased beating rate, increased beating velocity, and ameliorated calcium-handling deficits, leading to prolonged viability. Our study highlights the utility of a bioengineered iPSC-CM platform for drug testing and underscores the potential of repurposing tamoxifen as a therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaspard Pardon
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Bremner SB, Mandrycky CJ, Leonard A, Padgett RM, Levinson AR, Rehn ES, Pioner JM, Sniadecki NJ, Mack DL. Full-length dystrophin deficiency leads to contractile and calcium transient defects in human engineered heart tissues. J Tissue Eng 2022; 13:20417314221119628. [PMID: 36003954 PMCID: PMC9393922 DOI: 10.1177/20417314221119628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiomyopathy is currently the leading cause of death for patients with Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys. Animal models have provided insight into the mechanisms by which dystrophin protein deficiency causes cardiomyopathy, but there remains a need to develop human models of DMD to validate pathogenic mechanisms and identify therapeutic targets. Here, we have developed human engineered heart tissues (EHTs) from CRISPR-edited, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a truncated dystrophin protein lacking part of the actin-binding domain. The 3D EHT platform enables direct measurement of contractile force, simultaneous monitoring of Ca2+ transients, and assessment of myofibril structure. Dystrophin-mutant EHTs produced less contractile force as well as delayed kinetics of force generation and relaxation, as compared to isogenic controls. Contractile dysfunction was accompanied by reduced sarcomere length, increased resting cytosolic Ca2+ levels, delayed Ca2+ release and reuptake, and increased beat rate irregularity. Transcriptomic analysis revealed clear differences between dystrophin-deficient and control EHTs, including downregulation of genes related to Ca2+ homeostasis and extracellular matrix organization, and upregulation of genes related to regulation of membrane potential, cardiac muscle development, and heart contraction. These findings indicate that the EHT platform provides the cues necessary to expose the clinically-relevant, functional phenotype of force production as well as mechanistic insights into the role of Ca2+ handling and transcriptomic dysregulation in dystrophic cardiac function, ultimately providing a powerful platform for further studies in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Samantha B Bremner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Christian J Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrea Leonard
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Ruby M Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Alan R Levinson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ethan S Rehn
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - J Manuel Pioner
- Department of Biology, University of Florence, Florence, Italy
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David L Mack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Abstract
It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
Collapse
|
12
|
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22179630. [PMID: 34502539 PMCID: PMC8431796 DOI: 10.3390/ijms22179630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.
Collapse
|
13
|
Ghori FF, Wahid M. Induced pluripotent stem cells derived cardiomyocytes from Duchenne Muscular Dystrophy patients in vitro. Pak J Med Sci 2021; 37:1376-1381. [PMID: 34475915 PMCID: PMC8377888 DOI: 10.12669/pjms.37.5.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 04/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study aimed at the in vitro generation of DMD-cardiomyocytes from patient-specific induced pluripotent stem cells derived from a Pakistani patient for future work on DMD in vitro disease modeling and drug testing for efficacy and toxicity. METHODS This in vitro experimental study was carried out from December 2018 to January 2019 at Stem Cells and Regenerative Medicine Lab (SCRML) at Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS) Urine derived DMD-iPSCs were used which had been generated previously from a Pakistani DMD patient who had been selected through non-random purposive sampling. These were differentiated towards cardiomyocytes using Cardiomyocytes Differentiation media having specified growth factors and then the molecular characterization of the differentiated cells was done using immunofluorescence. RESULTS Pakistani patient's DMD-Cardiomyocytes were generated and their identity was confirmed by positive immunofluorescence for the expression of cardiac markers NKX2-5 and TNNT-2. CONCLUSION This study aimed for in vitro generation of DMD cardiomyocytes for future application in disease modeling, new drug testing for efficacy and toxicity, as well as for drug-testing for tailored personalized therapy. To the best of our knowledge, this was the first time DMD-Cardiomyocytes were generated from Pakistani DMD patients using their own induced pluripotent stem cells.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Fareeha Faizan Ghori, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Mohsin Wahid, Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan. Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
14
|
Ghori FF, Wahid M. Induced pluripotent stem cells from urine of Duchenne muscular dystrophy patients. Pediatr Int 2021; 63:1038-1047. [PMID: 33599058 DOI: 10.1111/ped.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The most common muscular dystrophy, Duchenne muscular dystrophy (DMD), is a lethal, X-linked disorder with no widespread cure. Worldwide, in vitro studies involving new, mutation-specific cures and regenerative therapies are employing disease-specific patient-specific cells. However, these may not be completely relevant for Pakistani children because of the human genome diversities and geographic variation in mutation type and frequency. Therefore, this study aimed to generate DMD induced pluripotent stem cells (iPSCs) from the urine of Pakistani children with DMD, to serve as a precious source of differentiated cells, such as Pakistani DMD-cardiomyocytes, for future disease-modelling, drug testing, and gene therapy. METHODS Urine-derived cells (UDCs) isolated from mid-stream urine underwent molecular characterization and cellular reprogramming towards iPSCs using the episomal vector system followed by molecular profiling of the iPSCs. RESULTS Colonies of elongated and spindle-shaped or rounded rice-grain like UDCs were spotted 4-7 days after plating and expanded rapidly with a second passage at 2-3 weeks. Multicolor flow cytometry confirmed the expression of mesenchymal stem-cell markers. The reprogramed iPSCs consisted of colonies of round, tightly-packed cells with large nuclei that were positively fluorescent for the pluripotency markers octamer binding transcription factor-4 (OCT-4), tumour resistance antigen 1-60 (TRA-1-60), and stage specific embryonic 4 antigen (SSEA-4), but not for the negative pluripotency marker SSEA-1. To the best of our knowledge, this was the first time DMD-iPSCs have been generated for Pakistani children. CONCLUSION This integration-free, feeder-free, efficient, and reproducible reprogramming method employed UDCs. Urine is a low-cost, non-invasive, painless, and repeatable source of rapidly expandable cells from children and morbid individuals for obtaining autologous cells for drug-assays and disease-modelling, suitable for DMD and other debilitating diseases.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan.,Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
15
|
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473:1061-1085. [PMID: 33629131 PMCID: PMC8245367 DOI: 10.1007/s00424-021-02536-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
16
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
17
|
Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as “disease-in-a-dish” models for inherited cardiomyopathies and channelopathies – 15 years of research. World J Stem Cells 2021; 13:281-303. [PMID: 33959219 PMCID: PMC8080539 DOI: 10.4252/wjsc.v13.i4.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Among inherited cardiac conditions, a special place is kept by cardiomyopathies (CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality. Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant, challenging our understanding of the underlying pathogenic mechanisms. Until recently, the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms. The advent of induced pluripotent stem cell (iPSC) technology, along with advances in gene editing, offered unprecedented opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers, genetic identity with the subject from whom they were derived, and ease of gene editing, all of which were used to generate “disease-in-a-dish” models of monogenic cardiac conditions. Functionally, iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype, allowed the study of disease mechanisms in an individual-/allele-specific manner, as well as the customization of therapeutic regimen. This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms, personalized therapy and deoxyribonucleic acid variant functional annotation.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014452, Romania
| | - Ana-Maria Rosca
- Cell and Tissue Engineering Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
18
|
Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021; 9:662837. [PMID: 33937264 PMCID: PMC8080375 DOI: 10.3389/fcell.2021.662837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Sahar Elouej
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Maria Grazia Biferi
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
19
|
Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, Mireault AA, Liu N, Bassel-Duby R, Olson EN. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. SCIENCE ADVANCES 2021; 7:eabg4910. [PMID: 33931459 PMCID: PMC8087404 DOI: 10.1126/sciadv.abg4910] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 05/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by the lack of dystrophin, which maintains muscle membrane integrity. We used an adenine base editor (ABE) to modify splice donor sites of the dystrophin gene, causing skipping of a common DMD deletion mutation of exon 51 (∆Ex51) in cardiomyocytes derived from human induced pluripotent stem cells, restoring dystrophin expression. Prime editing was also capable of reframing the dystrophin open reading frame in these cardiomyocytes. Intramuscular injection of ∆Ex51 mice with adeno-associated virus serotype-9 encoding ABE components as a split-intein trans-splicing system allowed gene editing and disease correction in vivo. Our findings demonstrate the effectiveness of nucleotide editing for the correction of diverse DMD mutations with minimal modification of the genome, although improved delivery methods will be required before these strategies can be used to sufficiently edit the genome in patients with DMD.
Collapse
Affiliation(s)
- F Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A C Chai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - H Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - C Rodriguez-Caycedo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - E Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A Atmanli
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A A Mireault
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - N Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - E N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Gartz M, Lin CW, Sussman MA, Lawlor MW, Strande JL. Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy. Dis Model Mech 2020; 13:13/11/dmm045559. [PMID: 33188007 PMCID: PMC7673361 DOI: 10.1242/dmm.045559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiomyopathy is a leading cause of early mortality in Duchenne muscular dystrophy (DMD). There is a need to gain a better understanding of the molecular pathogenesis for the development effective therapies. Exosomes (exo) are secreted vesicles and exert effects via their RNA, lipid and protein cargo. The role of exosomes in disease pathology is unknown. Exosomes derived from stem cells have demonstrated cardioprotection in the murine DMD heart. However, it is unknown how the disease status of the donor cell type influences exosome function. Here, we sought to determine the phenotypic responses of DMD cardiomyocytes (DMD-iCMs) after long-term exposure to DMD cardiac exosomes (DMD-exo). DMD-iCMs were vulnerable to stress, evidenced by production of reactive oxygen species, the mitochondrial membrane potential and cell death levels. Long-term exposure to non-affected exosomes (N-exo) was protective. By contrast, long-term exposure to DMD-exo was not protective, and the response to stress improved with inhibition of DMD-exo secretion in vitro and in vivo The microRNA (miR) cargo, but not exosome surface peptides, was implicated in the pathological effects of DMD-exo. Exosomal surface profiling revealed N-exo peptides associated with PI3K-Akt signaling. Transcriptomic profiling identified unique changes with exposure to either N- or DMD-exo. Furthermore, DMD-exo miR cargo regulated injurious pathways, including p53 and TGF-beta. The findings reveal changes in exosomal cargo between healthy and diseased states, resulting in adverse outcomes. Here, DMD-exo contained miR changes, which promoted the vulnerability of DMD-iCMs to stress. Identification of these molecular changes in exosome cargo and effectual phenotypes might shed new light on processes underlying DMD cardiomyopathy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melanie Gartz
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A Sussman
- San Diego Heart Institute and Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer L Strande
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
22
|
Reza N, Musunuru K, Owens AT. From Hypertrophy to Heart Failure: What Is New in Genetic Cardiomyopathies. Curr Heart Fail Rep 2020; 16:157-167. [PMID: 31243690 DOI: 10.1007/s11897-019-00435-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this review is to provide an update on the recent advances in the research and clinical care of patients with the major phenotypes of inherited cardiomyopathies-hypertrophic, dilated, and arrhythmogenic. Developments in genetics, risk stratification, therapies, and disease modeling will be discussed. RECENT Diagnostic, prognostic, and therapeutic tools which incorporate genetic and genomic data are being steadily incorporated into the routine clinical care of patients with genetic cardiomyopathies. Human pluripotent stem cells are a breakthrough model system for the study of genetic variation associated with inherited cardiovascular disease. Next-generation sequencing technology and molecular-based diagnostics and therapeutics have emerged as valuable tools to improve the recognition and care of patients with hypertrophic, dilated, and arrhythmogenic cardiomyopathies. Improved adjudication of variant pathogenicity and management of genotype-positive/phenotype-negative individuals are imminent challenges in this realm of precision medicine.
Collapse
Affiliation(s)
- Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Cardiovascular Institute, Philadelphia, PA, 19104, USA.
| | - Kiran Musunuru
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 11 South Pavilion, Room 11-134, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Anjali Tiku Owens
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Cardiovascular Institute, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
24
|
Can Patient Pluripotent Stem Cell–Derived Cardiomyocytes Provide Useful Modeling on Arrhythmias of DMD Cardiomyopathy? J Am Coll Cardiol 2020; 75:1175-1177. [DOI: 10.1016/j.jacc.2020.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
|
25
|
Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol 2019; 323:113086. [PMID: 31639376 DOI: 10.1016/j.expneurol.2019.113086] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Muscular dystrophies are a group of genetic muscle disorders that cause progressive muscle weakness and degeneration. Within this group, Duchenne muscular dystrophy (DMD) is the most common and one of the most severe. DMD is an X chromosome linked disease that occurs to 1 in 3500 to 1 in 5000 boys. The cause of DMD is a mutation in the dystrophin gene, whose encoded protein provides both structural support and cell signaling capabilities. So far, there are very limited therapeutic options available and there is no cure for this disease. In this review, we discuss the existing cell therapy research, especially stem cell-based, which utilize myoblasts, satellite cells, bone marrow cells, mesoangioblasts and CD133+ cells. Finally, we focus on human pluripotent stem cells (hPSCs) which hold great potential in treating DMD. hPSCs can be used for autologous transplantation after being specified to a myogenic lineage. Over the last few years, there has been a rapid development of isolation, as well as differentiation, techniques in order to achieve effective transplantation results of myogenic cells specified from hPSCs. In this review, we summarize the current methods of hPSCs myogenic commitment/differentiation, and describe the current status of hPSC-derived myogenic cell transplantation.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Carlo Serra
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn R Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
27
|
Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 2019; 12:1756286419833478. [PMID: 31105767 PMCID: PMC6501480 DOI: 10.1177/1756286419833478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are the most common muscle diseases and are both currently incurable. They are caused by mutations in the dystrophin gene, which lead to the absence or reduction/truncation of the encoded protein, with progressive muscle degeneration that clinically manifests in muscle weakness, cardiac and respiratory involvement and early death. The limits of animal models to exactly reproduce human muscle disease and to predict clinically relevant treatment effects has prompted the development of more accurate in vitro skeletal muscle models. However, the challenge of effectively obtaining mature skeletal muscle cells or satellite stem cells as primary cultures has hampered the development of in vitro models. Here, we discuss the recently developed technologies that enable the differentiation of skeletal muscle from human induced pluripotent stem cells (iPSCs) of Duchenne and Becker patients. These systems recapitulate key disease features including inflammation and scarce regenerative myogenic capacity that are partially rescued by genetic and pharmacological therapies and can provide a useful platform to study and realize future therapeutic treatments. Implementation of this model also takes advantage of the developing genome editing field, which is a promising approach not only for correcting dystrophin, but also for modulating the underlying mechanisms of skeletal muscle development, regeneration and disease. These data prove the possibility of creating an accurate Duchenne and Becker in vitro model starting from iPSCs, to be used for pathogenetic studies and for drug screening to identify strategies capable of stopping or reversing muscular dystrophinopathies and other muscle diseases.
Collapse
Affiliation(s)
- Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
28
|
Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 2019; 8:cells8010053. [PMID: 30650618 PMCID: PMC6356905 DOI: 10.3390/cells8010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Aneta Kohutova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lenka Marková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
- 1st department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic.
| | - Tereza Jurakova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miriama Kruta
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Vrbsky
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Renata Gaillyova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Iveta Valášková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Ivan Frák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Giancarlo Forte
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O. Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 2019; 23:2125-2135. [PMID: 30618214 PMCID: PMC6378185 DOI: 10.1111/jcmm.14124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X‐linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in death because of respiratory or cardiac failure. To investigate the cardiac cellular manifestation of DMD, we generated induced pluripotent stem cells (iPSCs) and iPSC‐derived cardiomyocytes (iPSC‐CMs) from two DMD patients: a male and female manifesting heterozygous carrier. Dystrophin mRNA and protein expression were analysed by qRT‐PCR, RNAseq, Western blot and immunofluorescence staining. For comprehensive electrophysiological analysis, current and voltage clamp were used to record transmembrane action potentials and ion currents, respectively. Microelectrode array was used to record extracellular electrograms. X‐inactive specific transcript (XIST) and dystrophin expression analyses revealed that female iPSCs underwent X chromosome reactivation (XCR) or erosion of X chromosome inactivation, which was maintained in female iPSC‐CMs displaying mixed X chromosome expression of wild type (WT) and mutated alleles. Both DMD female and male iPSC‐CMs presented low spontaneous firing rate, arrhythmias and prolonged action potential duration. DMD female iPSC‐CMs displayed increased beat rate variability (BRV). DMD male iPSC‐CMs manifested decreased If density, and DMD female and male iPSC‐CMs showed increased ICa,L density. Our findings demonstrate cellular mechanisms underlying electrophysiological abnormalities and cardiac arrhythmias in DMD.
Collapse
Affiliation(s)
- Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lucy N Mekies
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dov Freimark
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
30
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
31
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
32
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
33
|
Reza M, Cox D, Phillips L, Johnson D, Manoharan V, Grieves M, Davis B, Roos A, Morgan J, Hanna MG, Muntoni F, Lochmüller H. MRC Centre Neuromuscular Biobank (Newcastle and London): Supporting and facilitating rare and neuromuscular disease research worldwide. Neuromuscul Disord 2017; 27:1054-1064. [PMID: 28864117 PMCID: PMC5678293 DOI: 10.1016/j.nmd.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Neuromuscular diseases are both genetic and acquired conditions resulting in progressive muscle weakness and wasting which lead to disability and reduced survival. The availability of high-quality human biomaterial is crucial to support biomedical research with potential applications at all stages of development, from molecular pathophysiology to drug discovery, clinical trials and evaluation of biomarkers. Although significant progress has been made over the last few years in the diagnosis of these rare conditions, the genetic defect and underlying pathological abnormality remain unknown in approximately 1/3 of cases. Moreover, to date no definitive cure is available for most neuromuscular disorders, nor are there sufficiently reliable and specific biomarkers to monitor disease progression and response to treatment. This is in part due to the rarity and genetic heterogeneity of neuromuscular diseases and the lack of access to patient samples. The availability of the national MRC Centre Biobank for Neuromuscular Diseases in Newcastle and London has addressed this bottleneck and supported neuromuscular research. Nine years after the establishment of the MRC Centre Biobank, many high profile research publications have highlighted the positive impact of neuromuscular biobanking for translational research and proven this facility to be a unique repository source for diagnostics, basic science research, industry, drug development, and therapy.
Collapse
Affiliation(s)
- Mojgan Reza
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lauren Phillips
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Diana Johnson
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Vaishnavi Manoharan
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Michael Grieves
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Becky Davis
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Michael G Hanna
- National Hospital for Neurology & Neurosurgery, UCL, Queen Square, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Stem Cells Int 2017; 2017:8765154. [PMID: 28607562 PMCID: PMC5451761 DOI: 10.1155/2017/8765154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.
Collapse
|
35
|
|
36
|
Kim EY, Page P, Dellefave-Castillo LM, McNally EM, Wyatt EJ. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle 2016; 6:32. [PMID: 27651888 PMCID: PMC5025576 DOI: 10.1186/s13395-016-0103-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cellular models of muscle disease are taking on increasing importance with the large number of genes and mutations implicated in causing myopathies and the concomitant need to test personalized therapies. Developing cell models relies on having an easily obtained source of cells, and if the cells are not derived from muscle itself, a robust reprogramming process is needed. Fibroblasts are a human cell source that works well for the generation of induced pluripotent stem cells, which can then be differentiated into cardiomyocyte lineages, and with less efficiency, skeletal muscle-like lineages. Alternatively, direct reprogramming with the transcription factor MyoD has been used to generate myotubes from cultured human fibroblasts. Although useful, fibroblasts require a skin biopsy to obtain and this can limit their access, especially from pediatric populations. RESULTS We now demonstrate that direct reprogramming of urine-derived cells is a highly efficient and reproducible process that can be used to establish human myogenic cells. We show that this method can be applied to urine cells derived from normal individuals as well as those with muscle diseases. Furthermore, we show that urine-derived cells can be edited using CRISPR/Cas9 technology. CONCLUSIONS With progress in understanding the molecular etiology of human muscle diseases, having a readily available, noninvasive source of cells from which to generate muscle-like cells is highly useful.
Collapse
Affiliation(s)
- Ellis Y Kim
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, USA
| | - Patrick Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| |
Collapse
|
37
|
Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 2016; 13:333-49. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
38
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
39
|
Afzal MZ, Reiter M, Gastonguay C, McGivern JV, Guan X, Ge ZD, Mack DL, Childers MK, Ebert AD, Strande JL. Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy. J Cardiovasc Pharmacol Ther 2016; 21:549-562. [PMID: 26940570 DOI: 10.1177/1074248416636477] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. METHODS AND RESULTS Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide-cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. CONCLUSION Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.
Collapse
Affiliation(s)
- Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Reiter
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Courtney Gastonguay
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jered V McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xuan Guan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Martin K Childers
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
Hashimoto A, Naito AT, Lee JK, Kitazume-Taneike R, Ito M, Yamaguchi T, Nakata R, Sumida T, Okada K, Nakagawa A, Higo T, Kuramoto Y, Sakai T, Tominaga K, Okinaga T, Kogaki S, Ozono K, Miyagawa S, Sawa Y, Sakata Y, Morita H, Umezawa A, Komuro I. Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes. Int Heart J 2015; 57:112-7. [PMID: 26673445 DOI: 10.1536/ihj.15-376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene which encodes dystrophin protein. Dystrophin defect affects cardiac muscle as well as skeletal muscle. Cardiac dysfunction is observed in all patients with DMD over 18 years of age, but there is no curative treatment for DMD cardiomyopathy. To establish novel experimental platforms which reproduce the cardiac phenotype of DMD patients, here we established iPS cell lines from T lymphocytes donated from two DMD patients, with a protocol using Sendai virus vectors. We successfully conducted the differentiation of the DMD patient-specific iPS cells into beating cardiomyocytes. DMD patient-specific iPS cells and iPS cell-derived cardiomyocytes would be a useful in vitro experimental system with which to investigate DMD cardiomyopathy.
Collapse
Affiliation(s)
- Akihito Hashimoto
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
42
|
Gene therapy in monogenic congenital myopathies. Methods 2015; 99:91-8. [PMID: 26454198 DOI: 10.1016/j.ymeth.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review.
Collapse
|
43
|
Enhanced Reprogramming Efficiency and Kinetics of Induced Pluripotent Stem Cells Derived from Human Duchenne Muscular Dystrophy. PLOS CURRENTS 2015; 7. [PMID: 26579330 PMCID: PMC4638229 DOI: 10.1371/currents.md.a77c2f0516a8cb4809ffad5963342905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The generation of disease-specific induced pluripotent stem cells (iPSCs) holds a great promise for understanding disease mechanisms and for drug screening. Recently, patient-derived iPSCs, containing identical genetic anomalies of the patient, have offered a breakthrough approach to studying Duchenne muscular dystrophy (DMD), a fatal disease caused by the mutation in the dystrophin gene. However, development of scalable and high fidelity DMD-iPSCs is hampered by low reprogramming efficiency, the addition of expensive growth factors and slow kinetics of disease-specific fibroblasts. Here, we show an efficient generation of DMD-iPSCs on bFGF secreting human foreskin fibroblast feeders (I-HFF) by employing single polycistronic lentiviral vector for delivering of transcription factors to DMD patient-specific fibroblast cells. Using this method, DMD-iPSCs generated on I-HFF feeders displayed pluripotent characteristics and disease genotype with improved reprogramming efficiency and kinetics over to mouse feeders. Moreover, we were able to maintain disease-specific iPSCs without additional supplementation of bFGF on I-HFF feeders. Our findings offer improvements in the generation of DMD-iPSCs and will facilitate in understanding of pathological mechanisms and screening of safer drugs for clinical intervention. Key Words: Duchenne Muscular Dystrophy, Reprogramming, Induced pluripotent Stem Cells, Immortalized Human Feeder, Basic Fibroblast Growth Factor, Stem Cell Cassette
Collapse
|
44
|
Qin Y, Gao WQ. Concise Review: Patient-Derived Stem Cell Research for Monogenic Disorders. Stem Cells 2015; 34:44-54. [DOI: 10.1002/stem.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Yiren Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Collaborative Innovation Center of Systems Biomedicine; Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
45
|
Velho RV, Sperb-Ludwig F, Schwartz IVD. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals. AN ACAD BRAS CIENC 2015; 87:1375-88. [PMID: 26247150 DOI: 10.1590/0001-3765201520140711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.
Collapse
Affiliation(s)
- Renata V Velho
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, BR
| | | | | |
Collapse
|
46
|
Schwan J, Campbell SG. Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes. Biomark Insights 2015; 10:91-103. [PMID: 26085788 PMCID: PMC4463797 DOI: 10.4137/bmi.s23912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes derived from human stem cells are quickly becoming mainstays of cardiac regenerative medicine, in vitro disease modeling, and drug screening. Their suitability for such roles may seem obvious, but assessments of their contractile behavior suggest that they have not achieved a completely mature cardiac muscle phenotype. This could be explained in part by an incomplete transition from fetal to adult myofilament protein isoform expression. In this commentary, we review evidence that supports this hypothesis and discuss prospects for ultimately generating engineered heart tissue specimens that behave similarly to adult human myocardium. We suggest approaches to better characterize myofilament maturation level in these in vitro systems, and illustrate how new computational models could be used to better understand complex relationships between muscle contraction, myofilament protein isoform expression, and maturation.
Collapse
Affiliation(s)
- Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy. Pharmaceuticals (Basel) 2015; 8:303-20. [PMID: 26066469 PMCID: PMC4491663 DOI: 10.3390/ph8020303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022] Open
Abstract
X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD) and sometimes present with dilated cardiomyopathy. The precise relationship between mutations in the DMD gene and cardiomyopathy remain unclear. However, some hypothetical mechanisms are being considered to be associated with the presence of some several dystrophin isoforms, certain reported mutations, and an unknown dystrophin-related pathophysiological mechanism. Recent therapy for Duchenne muscular dystrophy, the severe dystrophinopathy phenotype, appears promising, but the presence of XLDCM highlights the importance of focusing on cardiomyopathy while elucidating the pathomechanism and developing treatment.
Collapse
|
48
|
Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech 2015; 8:457-66. [PMID: 25791035 PMCID: PMC4415895 DOI: 10.1242/dmm.019505] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/16/2015] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca2+, mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca2+ level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. Highlighted Article: Patient-derived induced pluripotent stem cells are used to establish an in vitro model of DMD-associated cardiomyopathy that could be used for future preclinical testing.
Collapse
Affiliation(s)
- Bo Lin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Yang Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Lu Han
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Aaron D Kaplan
- Center for Cellular and Systems Electrophysiology, Departments of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Ying Ao
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| | - Spandan Kalra
- Department of Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK
| | - Glenna C L Bett
- Departments of Obstetrics and Gynecology, and Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Randall L Rasmusson
- Center for Cellular and Systems Electrophysiology, Departments of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA
| | - Chris Denning
- Department of Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lei Yang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA
| |
Collapse
|
49
|
Afzal MZ, Strande JL. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp 2015:52032. [PMID: 25650629 DOI: 10.3791/52032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dystrophic cardiomyopathy is a poorly understood consequence of muscular dystrophy. Generating induced Pluripotent Stem Cells (iPSCs) from patients with muscular dystrophy is an invaluable cellular source for in vitro disease model systems and can be used for drug screening studies. Patient-derived urine cells have been used in successful reprogramming into induced pluripotent stem cells in order to model dystrophic cardiomyopathy(1). Addressing the safety concerns of integrating vector systems, we present a protocol using a non-integrating Sendai virus vector for transduction of Yamanaka factors into urine cells collected from patients with muscular dystrophy. This protocol generates fully reprogrammed clones within 2-3 weeks. The pluripotent cells are vector-free by passage-13. These dystrophic iPSCs can be differentiated into cardiomyocytes and used either to study disease mechanisms or for drug screening.
Collapse
|
50
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|