1
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
2
|
Rallapalli S, Guhathakurta S, Bishi DK, Subbarayan R, Mathapati S, Korrapati PS. A critical appraisal of humanized alternatives to fetal bovine serum for clinical applications of umbilical cord derived mesenchymal stromal cells. Biotechnol Lett 2021; 43:2067-2083. [PMID: 34499291 DOI: 10.1007/s10529-021-03180-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study is aimed to verify the possibility of using humanized alternatives to fetal bovine serum (FBS) such as umbilical cord blood plasma (CBP) and AB+ plasma to support the long-term growth of mesenchymal stromal cells (MSCs) derived from the umbilical cord. We hypothesized that umbilical CBP would be a potential substitute to FBS, especially for small scale autologous clinical transplantations. METHODS The MSCs were cultured for six consecutive passages to evaluate xeno-free media's ability to support long-term growth. Cell proliferation rates, colony-forming-unit (CFU) efficiency and population doublings of expanded MSCs, were investigated. Ex vivo expanded MSCs were further characterized using flow cytometry and quantitative PCR. The impact of cryopreservation and composition of cryomedium on phenotype, viability of MSC was also assessed. RESULTS Our results on cell proliferation, colony-forming unit efficiency suggested that the expansion of the cells was successfully carried out in media supplemented with humanized alternatives. MSCs showed lower CFU counts in FBS (~ 25) than humanized alternatives (~ 35). The gene expression analysis revealed that transcripts showed significant differential expression by two to three folds in the FBS group compared with MSCs grown in medium with humanized alternatives (p < 0.05). In addition, MSCs grown in a medium with FBS had more osteogenic activity, a signature of unwanted differentiation. The majority of ex vivo expanded MSCs at early and late passages expressed CD44+, CD73+, CD105+, CD90+, and CD166+ in all the experimental groups tested (~ 90%). In contrast to the other MSC surface markers, expression levels of STRO-1+ (~ 21-10%) and TNAP+ (~ 29-11%) decreased with the increase in passage number for MSCs cultured in a FBS-supplemented medium (p < 0.05). CONCLUSION Our results established that CBP supported culture of umbilical cord tissue-derived MSCs and is a safer Xeno free replacement to FBS. The use of CBP also enables the storage of umbilical cord tissue derived MSCs in patient-specific conditions to minimize adverse events if cells are delivered directly to the patient.
Collapse
Affiliation(s)
- Suneel Rallapalli
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | | | - Santosh Mathapati
- Translational Health Science and Technology Institute, Faridabad, India
| | - Purna Sai Korrapati
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
3
|
Parchehbaf-Kashani M, Ansari H, Mahmoudi E, Barekat M, Sepantafar M, Rajabi S, Pahlavan S. Heart Repair Induced by Cardiac Progenitor Cell Delivery within Polypyrrole-Loaded Cardiogel Post-ischemia. ACS APPLIED BIO MATERIALS 2021; 4:4849-4861. [PMID: 35007034 DOI: 10.1021/acsabm.1c00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myocardial infarction (MI) irreversibly injures the heart tissue. Cardiovascular tissue engineering has been developed as a promising therapeutic approach for post-MI repair. Previously, we discovered the ability of a polypyrrole (PPy)-incorporated cardiogel (CG) for improvement of maturity and functional synchrony of rat neonatal cardiomyocytes. Here, we used the cross-linked form of PPy-incorporated CG (CG-PPy), in order to improve electromechanical properties of scaffold, for application in cardiac progenitor cell (CPC) transplantation on post-MI rat hearts. Improved mechanical property and electrical conductivity (sixfold) were evident in the cross-linked CG-PPy (P1) compared to cross-linked CG (C1) scaffolds. Transplantation of CPC-loaded P1 (P1-CPC) resulted in substantial improvement of cardiac functional properties. Furthermore, lower fibrotic tissue and higher CPC retention were observed. The grafted cells showed cardiomyocyte characteristics when stained with human cardiac troponin T and connexin43 antibodies, while neovessel formation was similarly prominent. These findings highlight the therapeutic promise of the P1 scaffold as a CPC carrier for functional restoration of the heart post-MI.
Collapse
Affiliation(s)
- Melika Parchehbaf-Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Elena Mahmoudi
- Massachusetts General Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mohammadmajid Sepantafar
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
4
|
Montazeri L, Kowsari-Esfahan R, Pahlavan S, Sobat M, Rabbani S, Ansari H, Varzideh F, Barekat M, Rajabi S, Navaee F, Bonakdar S, Renaud P, Braun T, Baharvand H. Oxygen-rich Environment Ameliorates Cell Therapy Outcomes of Cardiac Progenitor Cells for Myocardial Infarction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111836. [PMID: 33579474 DOI: 10.1016/j.msec.2020.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
To some extent, cell therapy for myocardial infarction (MI) has supported the idea of cardiac repair; however, further optimizations are inevitable. Combined approaches that comprise suitable cell sources and supporting molecules considerably improved its effect. Here, we devised a strategy of simultaneous transplantation of human cardiac progenitor cells (CPCs) and an optimized oxygen generating microparticles (MPs) embedded in fibrin hydrogel, which was injected into a left anterior descending artery (LAD) ligating-based rat model of acute myocardial infarction (AMI). Functional parameters of the heart, particularly left ventricular systolic function, markedly improved and reached pre-AMI levels. This functional restoration was well correlated with substantially lower fibrotic tissue formation and greater vascular density in the infarct area. Our novel approach promoted CPCs retention and differentiation into cardiovascular lineages. We propose this novel co-transplantation strategy for more efficient cell therapy of AMI which may function by providing an oxygen-rich microenvironment, and thus regulate cell survival and differentiation.
Collapse
Affiliation(s)
- Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahareh Sobat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Medical Sciences University of Tehran, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Navaee
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | | | - Philippe Renaud
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
5
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
6
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
7
|
Rallapalli S, Guhathakurta S, Korrapati PS. Isolation, growth kinetics, and immunophenotypic characterization of adult human cardiac progenitor cells. J Cell Physiol 2020; 236:1840-1853. [PMID: 33242343 DOI: 10.1002/jcp.29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022]
Abstract
The discovery of cardiac progenitor cells (CPCs) has raised expectations for the development of cell-based therapy of the heart. Although cell therapy is emerging as a novel treatment for heart failure, several issues still exist concerning an unambiguous definition of the phenotype of CPC types. There is a need to define and validate the methods for the generation of quality CPC populations used in cell therapy applications. Considering the critical roles of cardiac cell progenitors in cellular therapy, we speculate that long term culture might modulate the immunophenotypes of CPCs. Hence, a strategy to validate the isolation and cell culture expansion of cardiac cell populations was devised. Isolation of three subpopulations of human CPCs was done from a single tissue sample using explant, enzymatic isolation, and c-kit+ immunomagnetic sorting methods. The study assessed the effects of ex vivo expansion on proliferation, immunophenotypes, and differentiation of CPCs. Additionally, we report that an explant culture can take over 2 months to achieve similar cell yields, and cell sorting requires a much larger starting population to match this expansion time frame. In comparison, an enzymatic method is expected to yield equivalent quantities of CPCs in 2-3 weeks, notably at a significantly lower cost, which may intensify their use in therapeutic approaches. We determined that ex vivo expansion caused changes in cellular characteristics, and hence propose validated molecular signatures should be established to evaluate the impact of ex vivo expansion for a safe cell therapy product.
Collapse
Affiliation(s)
- Suneel Rallapalli
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | | | - Purna S Korrapati
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, India
| |
Collapse
|
8
|
Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a SDKP-conjugated self-assembling peptide improve a rat model of myocardial infarction. Biochem Biophys Res Commun 2020; 524:903-909. [PMID: 32057366 DOI: 10.1016/j.bbrc.2020.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE The aim of this study was to investigate the cardiac repair effect of human bone marrow mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) after intramyocardial injection in free form or encapsulated within a self-assembling peptide hydrogel modified with SDKP motif, in a rat model of myocardial infarction (MI). METHODS MSC-EVs were isolated by ultracentrifuge and characterized for physical parameters and surface proteins. Furthermore, cellular uptake and cardioprotective effects of MSC-EVs were evaluated in vitro using neonatal mouse cardiomyocytes (NMCMs). In vivo effects of MSC-EVs on cardiac repair were studied in rat MI model by comparing the vehicle group (injected with PBS), EV group (injected with MSC-EVs) and Gel + EV group (injected with MSC-EVs encapsulated in (RADA)4-SDKP hydrogel) with respect to cardiac function and fibrotic area using echocardiography and Masson's trichrome staining, respectively. Histological sections were assessed by α-SMA and CD68 immunostaining to investigate the angiogenic and anti-inflammatory effects of the MSC-EVs. RESULTS We observed the uptake of MSC-EVs into NMCMs which led to NMCMs protection against H2O2-induced oxidative stress by substantial reduction of apoptosis. In myocardial infarcted rats, cardiac function was improved after myocardial injection of MSC-EVs alone or in conjunction with (RADA)4-SDKP hydrogel. This functional restoration coincided with promotion of angiogenesis and decrement of fibrosis and inflammation. CONCLUSION These data demonstrated that MSC-EVs can be used alone as a potent therapeutic agent for improvement of myocardial infarction.
Collapse
|
9
|
Firoozi S, Pahlavan S, Ghanian MH, Rabbani S, Tavakol S, Barekat M, Yakhkeshi S, Mahmoudi E, Soleymani M, Baharvand H. A Cell-Free SDKP-Conjugated Self-Assembling Peptide Hydrogel Sufficient for Improvement of Myocardial Infarction. Biomolecules 2020; 10:E205. [PMID: 32019267 PMCID: PMC7072713 DOI: 10.3390/biom10020205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/25/2020] [Indexed: 01/01/2023] Open
Abstract
Biomaterials in conjunction with stem cell therapy have recently attracted attention as a new therapeutic approach for myocardial infarction (MI), with the aim to solve the delivery challenges that exist with transplanted cells. Self-assembling peptide (SAP) hydrogels comprise a promising class of synthetic biomaterials with cardiac-compatible properties such as mild gelation, injectability, rehealing ability, and potential for sequence modification. Herein, we developed an SAP hydrogel composed of a self-assembling gel-forming core sequence (RADA) modified with SDKP motif with pro-angiogenic and anti-fibrotic activity to be used as a cardioprotective scaffold. The RADA-SDKP hydrogel was intramyocardially injected into the infarct border zone of a rat model of MI induced by left anterior descending artery (LAD) ligation as a cell-free or a cell-delivering scaffold for bone marrow mesenchymal stem cells (BM-MSCs). The left ventricular ejection fraction (LVEF) was markedly improved after transplantation of either free hydrogel or cell-laden hydrogel. This cardiac functional repair coincided very well with substantially lower fibrotic tissue formation, expanded microvasculature, and lower inflammatory response in the infarct area. Interestingly, BM-MSCs alone or in combination with hydrogel could not surpass the cardiac repair effects of the SDKP-modified SAP hydrogel. Taken together, we suggest that the RADA-SDKP hydrogel can be a promising cell-free construct that has the capability for functional restoration in the instances of acute myocardial infarction (AMI) that might minimize the safety concerns of cardiac cell therapy and facilitate clinical extrapolation.
Collapse
Affiliation(s)
- Saman Firoozi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
| | - Mohammad-Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
| | - Elena Mahmoudi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Mansoureh Soleymani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1461968151, Iran
| |
Collapse
|
10
|
Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H. Expansion of Human Pluripotent Stem Cell-derived Early Cardiovascular Progenitor Cells by a Cocktail of Signaling Factors. Sci Rep 2019; 9:16006. [PMID: 31690816 PMCID: PMC6831601 DOI: 10.1038/s41598-019-52516-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
11
|
Vahdat S, Bakhshandeh B. Prediction of putative small molecules for manipulation of enriched signalling pathways in hESC-derived early cardiovascular progenitors by bioinformatics analysis. IET Syst Biol 2019; 13:77-83. [PMID: 33444476 DOI: 10.1049/iet-syb.2018.5037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/25/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (CPCs) are considered as powerful tools for cardiac regenerative medicine and developmental study. Mesoderm posterior1+ (MESP1+ ) cells are identified as the earliest CPCs from which almost all cardiac cell types are generated. Molecular insights to the transcriptional regulatory factors of early CPCs are required to control cell fate decisions. Herein, the microarray data set of human embryonic stem cells (hESCs)-derived MESP1+ cells was analysed and differentially expressed genes (DEGs) were identified in comparison to undifferentiated hESCs and MESP1-negative cells. Then, gene ontology and pathway enrichment analysis of DEGs were carried out with the subsequent prediction of putative regulatory small molecules for modulation of CPC fate. Some key signalling cascades of cardiogenesis including Hippo, Wnt, transforming growth factor-β, and PI3K/Akt were highlighted in MESP1+ cells. The transcriptional regulatory network of MESP1+ cells were visualised through interaction networks of DEGs. Additionally, 35 promising chemicals were predicted based on correlations with gene expression signature of MESP1+ cells for effective in vitro CPC manipulation. Studying the transcriptional profile of MESP1+ cells resulted into the identification of important signalling pathways and chemicals which could be introduced as powerful tools to manage proliferation and differentiation of hESC-derived CPCs more efficiently.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Vahdat S, Pahlavan S, Aghdami N, Bakhshandeh B, Baharvand H. Establishment of A Protocol for In Vitro Culture of Cardiogenic Mesodermal Cells Derived from Human Embryonic Stem Cells. CELL JOURNAL 2018; 20:496-504. [PMID: 30123995 PMCID: PMC6099148 DOI: 10.22074/cellj.2019.5661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2017] [Indexed: 11/11/2022]
Abstract
Objective Cardiovascular progenitor cells (CPCs) are introduced as one of the promising cell sources for preclinical studies
and regenerative medicine. One of the earliest type of CPCs is cardiogenic mesoderm cells (CMCs), which have the capability
to generate all types of cardiac lineage derivatives. In order to benefit from CMCs, development of an efficient culture strategy
is required. We aim to explore an optimized culture condition that uses human embryonic stem cell (hESC)-derived CMCs.
Materials and Methods In this experimental study, hESCs were expanded and induced toward cardiac lineage in a
suspension culture. Mesoderm posterior 1-positive (MESP1+) CMCs were subjected to four different culture conditions: i.
Suspension culture of CMC spheroids, ii. Adherent culture of CMC spheroids, iii. Adherent culture of single CMCs using
gelatin, and iv. Adherent culture of single CMCs using Matrigel.
Results Although, we observed no substantial changes in the percentage of MESP1+ cells in different culture
conditions, there were significantly higher viability and total cell numbers in CMCs cultured on Matrigel (condition iv)
compared to the other groups. CMCs cultivated on Matrigel maintained their progenitor cell signature, which included
the tendency for cardiogenic differentiation.
Conclusion These results showed the efficacy of an adherent culture on Matrigel for hESC-derived CMCs, which would
facilitate their use for future applications.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
13
|
Ghazizadeh Z, Rassouli H, Fonoudi H, Alikhani M, Talkhabi M, Darbandi-Azar A, Chen S, Baharvand H, Aghdami N, Salekdeh GH. Transient Activation of Reprogramming Transcription Factors Using Protein Transduction Facilitates Conversion of Human Fibroblasts Toward Cardiomyocyte-Like Cells. Mol Biotechnol 2018; 59:207-220. [PMID: 28509990 DOI: 10.1007/s12033-017-0007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Derivation of cardiomyocytes directly from patients' own fibroblasts could offer a new therapeutic approach for those with ischemic heart disease. An essential step toward clinical application is to establish safe conversion of human fibroblasts into a cardiac fate. Here we aimed to efficiently and safely generate cardiomyocytes from human fibroblasts by direct delivery of reprogramming recombinant cell permeant form of reprogramming proteins followed by cardio-inductive signals. Human fetal and adult fibroblasts were transiently exposed to transactivator of transcription-fused recombinant OCT4, SOX2, KLF4 and c-MYC for 2 weeks and then were directly differentiated toward protein-induced cardiomyocyte-like cells (p-iCLCs) in a cardiac fate niche, carried out by treatment with a set of cardiogenic small molecules (sequential treatment of Chir, and IWP-2, SB431542 and purmorphamine). The cells showed cardiac phenotype over a period of 3 weeks without first undergoing reprogramming into or through a pluripotent intermediate, shown by lack of expression of key pluripotency markers. p-iCLCs exhibited cardiac features at both the gene and protein levels. Our study provides an alternative method for the generation of p-iCLCs which shortcut reprogramming toward allogeneic cardiomyocytes in a safe and efficient manner and could facilitate generation of genetic material-free cardiomyocytes.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Rassouli
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hananeh Fonoudi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Darbandi-Azar
- Rajaie Cardiovascular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran.
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Biomedicine at Cell Science Research, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Platelet-Derived Growth Factor Receptor-Alpha Expressing Cardiac Progenitor Cells Can Be Derived from Previously Cryopreserved Human Heart Samples. Stem Cells Dev 2018; 27:184-198. [DOI: 10.1089/scd.2017.0082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Namazi H, Mohit E, Namazi I, Rajabi S, Samadian A, Hajizadeh-Saffar E, Aghdami N, Baharvand H. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem 2018; 119:4150-4160. [PMID: 29243842 DOI: 10.1002/jcb.26621] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Exosomes are required for the regenerative effects of human cardiosphere-derived cells (CDCs). Studies show that they mimic the cardioprotective benefits of CDCs in rodents and porcine myocardial infarction (MI) models. Hypoxic preconditioning of stem cells increases the cardioprotective effects of exosomes in MI models by enhancing angiogenesis. Several exosomal microRNAs (miRNAs) up-regulate in response to hypoxia and play a role in cardioprotective and pro-angiogenic effects. In this study, we have demonstrated that human CDCs secreted exosomes under hypoxic conditions (1% O2 for 2 days) enhanced tube formation by human umbilical vein endothelial cells (HUVECs) at a concentration of 25 µg/mL. Pro-angiogenic exosomal miRNAs including miR-126, miR-130a, and miR-210 showed a substantial increase (>2-, >2-, and >4-fold, respectively) in the hypoxic exosomes compared to normoxic CDC-derived exosomes. Our study suggested a significant benefit of hypoxic CDC exosomes for the treatment of cardiac diseases by induction of angiogenesis via enrichment of pro-angiogenic exosomal miRNAs.
Collapse
Affiliation(s)
- Helia Namazi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Students Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Namazi
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
16
|
Namazi H, Namazi I, Ghiasi P, Ansari H, Rajabi S, Hajizadeh-Saffar E, Aghdami N, Mohit E. Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:377-385. [PMID: 29755568 PMCID: PMC5937107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic human CDCs-derived exosomes on induced apoptosis in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). In this study, CDCs were cultured under normoxic (18% O2) and hypoxic (1% O2) conditions and CDC-exosomes were isolated from conditioned media by differential ultracentrifugation. Cobalt chloride as hypoxia-mimetic agents at a high concentration was used to induce apoptosis in hESC-CMs. The caspase-3/7 activity was determined in apoptosis-induced hESC-CMs. The results indicated that the caspase-positive hESC-CMs were significantly decreased from 30.63 ± 1.44% (normalized against untreated cardiomyocytes) to 1.65 ± 0.1 and 1.1 ± 1.09 in the presence of normoxic exosomes (N-exo) at concentration of 25 and 50 μg/mL, respectively. Furthermore, hypoxic exosomes (H-exo) at concentration of 25 and 50 μg/mL led to 8.75 and 12.86 % reduction in caspase-positive cells, respectively. The anti-apoptotic activity of N-exo at the concentrations of 25 and 50 μg/mL was significantly higher than H-exo. These results could provide insights into optimal preparation of CDCs which would greatly influence the anti-apoptotic effect of CDC-exosomes. Totally, CDC-secreted exosomes have the potential to increase the survival of cardiomyocytes by inhibiting apoptosis. Therefore, CDC-exosomes can be developed as therapeutic strategy in ischemic cardiac disease.
Collapse
Affiliation(s)
- Helia Namazi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Students’ Research committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Iman Namazi
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | - Parisa Ghiasi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hassan Ansari
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | - Sarah Rajabi
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | | | - Nasser Aghdami
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran. ,Corresponding authors: E-mail: ,
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding authors: E-mail: ,
| |
Collapse
|
17
|
Harvey E, Zhang H, Sepúlveda P, Garcia SP, Sweeney D, Choudry FA, Castellano D, Thomas GN, Kattach H, Petersen R, Blake DJ, Taggart DP, Frontini M, Watt SM, Martin-Rendon E. Potency of Human Cardiosphere-Derived Cells from Patients with Ischemic Heart Disease Is Associated with Robust Vascular Supportive Ability. Stem Cells Transl Med 2017; 6:1399-1411. [PMID: 28205406 PMCID: PMC5442720 DOI: 10.1002/sctm.16-0229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiosphere-derived cell (CDC) infusion into damaged myocardium has shown some reparative effect; this could be improved by better selection of patients and cell subtype. CDCs isolated from patients with ischemic heart disease are able to support vessel formation in vitro but this ability varies between patients. The primary aim of our study was to investigate whether the vascular supportive function of CDCs impacts on their therapeutic potential, with the goal of improving patient stratification. A subgroup of patients produced CDCs which did not efficiently support vessel formation (poor supporter CDCs), had reduced levels of proliferation and increased senescence, despite them being isolated in the same manner and having a similar immunophenotype to CDCs able to support vessel formation. In a rodent model of myocardial infarction, poor supporter CDCs had a limited reparative effect when compared to CDCs which had efficiently supported vessel formation in vitro. This work suggests that not all patients provide cells which are suitable for cell therapy. Assessing the vascular supportive function of cells could be used to stratify which patients will truly benefit from cell therapy and those who would be better suited to an allogeneic transplant or regenerative preconditioning of their cells in a precision medicine fashion. This could reduce costs, culture times and improve clinical outcomes and patient prognosis. Stem Cells Translational Medicine 2017;6:1399-1411.
Collapse
Affiliation(s)
| | - Huajun Zhang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford, United Kingdom
| | - Pilar Sepúlveda
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sara P Garcia
- Department of Haematology.,British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge, United Kingdom.,R&D Division, National Health Service (NHS)-Blood and Transplant, Cambridge Centre, Cambridge, United Kingdom
| | - Dominic Sweeney
- Radcliffe Department of Medicine.,R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford, United Kingdom
| | - Fizzah A Choudry
- Department of Haematology.,British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Delia Castellano
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - George N Thomas
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford, United Kingdom
| | - Hassan Kattach
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Romina Petersen
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain.,Department of Haematology
| | - Derek J Blake
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - David P Taggart
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Mattia Frontini
- Department of Haematology.,British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge, United Kingdom.,R&D Division, National Health Service (NHS)-Blood and Transplant, Cambridge Centre, Cambridge, United Kingdom
| | - Suzanne M Watt
- Radcliffe Department of Medicine.,R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford, United Kingdom
| | - Enca Martin-Rendon
- Radcliffe Department of Medicine.,R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford, United Kingdom
| |
Collapse
|