1
|
Pontiggia L, Michalak-Micka K, Hürlimann N, Yosef HK, Böni R, Klar AS, Ehrbar M, Ochsenbein-Kölble N, Biedermann T, Moehrlen U. Raman spectroscopy analysis of human amniotic fluid cells from fetuses with myelomeningocele. Exp Cell Res 2024; 439:114048. [PMID: 38697275 DOI: 10.1016/j.yexcr.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Prenatal surgery for the treatment of spina bifida (myelomeningocele, MMC) significantly enhances the neurological prognosis of the patient. To ensure better protection of the spinal cord by large defects, the application of skin grafts produced with cells gained from the amniotic fluid is presently studied. In order to determine the most appropriate cells for this purpose, we tried to shed light on the extremely complex amniotic fluid cellular composition in healthy and MMC pregnancies. We exploited the potential of micro-Raman spectroscopy to analyse and characterize human amniotic fluid cells in total and putative (cKit/CD117-positive) stem cells of fetuses with MMC in comparison with amniotic fluid cells from healthy individuals, human fetal dermal fibroblasts and adult adipose derived stem cells. We found that (i) the differences between healthy and MMC amniocytes can be attributed to specific spectral regions involving collagen, lipids, sugars, tryptophan, aspartate, glutamate, and carotenoids, (ii) MMC amniotic fluid contains two particular cell populations which are absent or reduced in normal pregnancies, (iii) the cKit-negative healthy amniocyte subpopulation shares molecular features with human fetal fibroblasts. On the one hand we demonstrate a different amniotic fluid cellular composition in healthy and MMC pregnancies, on the other our work confirms micro-Raman spectroscopy to be a valuable tool for discriminating cell populations in unknown mixtures of cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Nadine Hürlimann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | | | - Roland Böni
- White House Center for Liposuction, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Martin Ehrbar
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland; Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
2
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Liu N, Cheng Y, Wang D, Guan H, Chen D, Zeng J, Lu D, Li Y, Yang Y, Luo Q, Zhu L, Jiang B, Sun X, Song B. Tissue-specific populations from amniotic fluid-derived mesenchymal stem cells manifest variant in vitro and in vivo properties. Hum Cell 2024; 37:408-419. [PMID: 38085460 PMCID: PMC10891244 DOI: 10.1007/s13577-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/03/2023] [Indexed: 02/24/2024]
Abstract
Amniotic fluid derived mesenchymal stem cells (AFMSCs), shed along the fetal development, exhibit superior multipotency and immunomodulatory properties compared to MSCs derived from other somatic tissues (e.g., bone marrow and fat). However, AFMSCs display heterogeneity due to source ambiguity, making them an underutilized stem cells source for translational clinical trials. Consequently, there is an urgent need to identify a method to purify the AFMSCs for clinical use. We found that the AFMSCs can be categorized into three distinct groups: kidney-specific AFMSCs (AFMSCs-K), lung-specific AFMSCs (AFMSCs-L), and AFMSCs with an undefined tissue source (AFMSCs-X). This classification was based on tissue-specific gene expression pattern of single cell colony. Additionally, we observed that AFMSCs-X, a minority population within the AFMSCs, exhibited the highest multipotency, proliferation, resistance to senescence and immuno-modulation. Our results showed that AFMSCs-X significantly improved survival rates and reduced bacterial colony forming units (CFU) in cecal ligation and puncture (CLP)-induced septic mice. Therefore, our study introduces a novel classification method to enhance the consistency and efficacy of AFMSCs. These subpopulations, originating from different tissue source, may offer a valuable and innovative resource of cells for regenerative medicine purposes.
Collapse
Affiliation(s)
- Nengqing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yi Cheng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Hongmei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Diyu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Dian Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Qian Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Lifen Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Bing Song
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
4
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Peserico A, Barboni B, Russo V, Nardinocchi D, Turriani M, Cimini C, Bernabò N, Parolini O, Silini AR, Antonucci I, Stuppia L, Berardinelli P, Falanga I, Perruzza D, Valbonetti L, Mauro A. AEC and AFMSC Transplantation Preserves Fertility of Experimentally Induced Rat Varicocele by Expressing Differential Regenerative Mechanisms. Int J Mol Sci 2023; 24:ijms24108737. [PMID: 37240083 DOI: 10.3390/ijms24108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Amniotic membrane and amniotic fluid derived cells are regarded as a promising stem cell source for developing regenerative medicine techniques, although they have never been tested on male infertility diseases such as varicocele (VAR). The current study aimed to examine the effects of two distinct cell sources, human Amniotic Fluid Mesenchymal Stromal Cells (hAFMSCs) and amniotic epithelial cells (hAECs), on male fertility outcomes in a rat induced VAR model. To explain cell-dependent enhancement of reproductive outcomes in rats transplanted with hAECs and hAFMSCs, insights on testis morphology, endocannabinoid system (ECS) expression and inflammatory tissue response have been carried out alongside cell homing assessment. Both cell types survived 120 days post-transplantation by modulating the ECS main components, promoting proregenerative M2 macrophages (Mφ) recruitment and a favorable anti-inflammatory IL10 expression pattern. Of note, hAECs resulted to be more effective in restoring rat fertility rate by enhancing both structural and immunoresponse mechanisms. Moreover, immunofluorescence analysis revealed that hAECs contributed to CYP11A1 expression after transplantation, whereas hAFMSCs moved towards the expression of Sertoli cell marker, SOX9, confirming a different contribution into the mechanisms leading to testis homeostasis. These findings highlight, for the first time, a distinct role of amniotic membrane and amniotic fluid derived cells in male reproduction, thus proposing innovative targeted stem-based regenerative medicine protocols for remedying high-prevalence male infertility conditions such as VAR.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Delia Nardinocchi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Costanza Cimini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Ivana Antonucci
- Department of Oral Sciences, Nano and Biotechnologies, "G. d'Annunzio" University, Via dei Vestini 31, 66013 Chieti, Italy
| | - Liborio Stuppia
- Department of Oral Sciences, Nano and Biotechnologies, "G. d'Annunzio" University, Via dei Vestini 31, 66013 Chieti, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Ilaria Falanga
- Medline Srl, Via Galileo Ferraris 1, 84018 Scafati, Italy
| | - Davide Perruzza
- Reproductive Medicine Unit, S.I.S.Me.R., Via Mazzini 12, 40138 Bologna, Italy
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
7
|
Giannetti A, Pantalone A, Antonucci I, Verna S, Di Gregorio P, Stuppia L, Calvisi V, Buda R, Salini V. The Role of Platelet-Rich Plasma on the Chondrogenic and Osteogenic Differentiation of Human Amniotic-Fluid-Derived Stem Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15786. [PMID: 36497861 PMCID: PMC9738099 DOI: 10.3390/ijerph192315786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Amniotic fluid represents a new and promising source of engraftable stem cells. The purpose of this study was to investigate the in vitro effects of platelet-rich plasma (PRP) on amniotic-fluid-derived stem cells (AFSCs) on chondrogenic or osteogenic differentiation potential. Amniotic fluid samples were obtained from women undergoing amniocentesis for prenatal diagnosis at 16-18 weeks of pregnancy. Undifferentiated human AFSCs were cocultured with PRP for 14 days. The study includes two protocols investigating the effects of activated PRP using two different methods: via freeze-thaw cycles and via the addition of calcium gluconate. On the 14th day of culturing, the differentiation potential of the cocultured AFSCs was then compared with undifferentiated AFSCs. Staining with alcian blue solution (ABS) and alizarine red solution (ARS) was performed, and chondrogenic- and osteogenic-associated genes markers were investigated. ABS demonstrated enhanced glycosaminoglycan expression. Cocultured cells expressed chondrocyte-associated genes, determined by real-time polymerase chain reaction (RT-PCR), including type I collagen, type II collagen, COMP, and aggrecan. In regard to the osteogenic markers, osteopontin and bone sialoprotein, there were no changes. In particular, the activation of PRP using the freeze-thaw cycle protocol showed a higher expression of the chondrogenic markers. Our preliminary in vitro results showed that PRP has good potential in the chondrogenic differentiation of AFSCs.
Collapse
Affiliation(s)
- Alessio Giannetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Pantalone
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Verna
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vittorio Calvisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Buda
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Salini
- Department of Orthopaedics and Traumatology, San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
8
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
9
|
Centurione L, Centurione MA, Antonucci I, Sancilio S, Stati G, Stuppia L, Di Pietro R. Human amniotic fluid stem cells are able to form embryoid body-like aggregates which performs specific functions: morphological evidences. Histochem Cell Biol 2021; 155:381-390. [PMID: 33219831 PMCID: PMC8021515 DOI: 10.1007/s00418-020-01940-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
Human second trimester Amniotic Fluid Stem Cells (hAFSCs) harbour the potential to differentiate into cells of each of the three germ layers and to form Embryoid Body (EB)-like aggregates, without inducing teratoma formation and with no ethical concerns. However, in spite of the number of reports on hAFSCs-EBs and their characterization, a thorough evaluation in light and electron microscopy of morphological and morphometric features of hAFSCs-EBs development in vitro has not been reported yet. Apart from a superficial layer of epithelial-like flat cells, displaying rare microvilli on the free surface, hAFSCs-EBs enclose inner material, abundant in vesicles and secretory granules, showing early characteristics of connective extracellular matrix dispersed among different types of inner cells. The observation of a number of microvesicles mainly represented by microparticles and, to a lower extent, by exosomes indicates the presence of a complex cellular communication system within this structure. According to morphological analysis, after 7 days of in vitro culture hAFSCs-EB appears as a well-organized corpuscle, sufficiently young to be a carrier of stemness and at the same time, when appropriately stimulated, able to differentiate. In fact, 7-day hAFSCs-EB represents itself an initial cellular transformation towards a specialized structure both in recording and in providing different stimuli from the surrounding environment, organizing structures and cells towards a differentiation fate.
Collapse
Affiliation(s)
- Lucia Centurione
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
| | - Maria Antonietta Centurione
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
- Institute of Molecular Genetics, National Research Council, CNR, Unit of Chieti-Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66013, Chieti, Italy
| | - Ivana Antonucci
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University Chieti-Pescara, 66013, Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy.
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy.
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University Chieti-Pescara, 66013, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
- StemTeCh Group, Center for Advanced Studies and Technology (C.A.S.T.), G. d'Annunzio University of Chieti-Pescara, 66013, Chieti, Italy
| |
Collapse
|
10
|
Castelli V, Antonucci I, d'Angelo M, Tessitore A, Zelli V, Benedetti E, Ferri C, Desideri G, Borlongan C, Stuppia L, Cimini A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 2021; 10:251-266. [PMID: 33027557 PMCID: PMC7848376 DOI: 10.1002/sctm.20-0268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell-based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)-derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs-derived secretome was able to activate pro-survival and anti-apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs-conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro-survival processes, at least in part, due to the activity of secreted miRNAs.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Michele d'Angelo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Claudio Ferri
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | | | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Annamaria Cimini
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Sbarro Institute for Cancer Research and Molecular Medicine and Centre for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
11
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
12
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
13
|
Harrell CR, Gazdic M, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Therapeutic Potential of Amniotic Fluid Derived Mesenchymal Stem Cells Based on their Differentiation Capacity and Immunomodulatory Properties. Curr Stem Cell Res Ther 2019; 14:327-336. [PMID: 30806325 DOI: 10.2174/1574888x14666190222201749] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. OBJECTIVE In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. METHODS An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: "amniotic fluid derived mesenchymal stem cells", "cell-therapy", "degenerative diseases", "inflammatory diseases", "regeneration", "immunosuppression". Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. RESULTS AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. CONCLUSION Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Carl R Harrell
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Marina Gazdic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Crissy Fellabaum
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Nemanja Jovicic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| |
Collapse
|
14
|
Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, Grotta L, Di Tomo P, Marchetti S, Di Pietro N, Cichelli A, Pandolfi A, Martino G. Identification and Characterization of a Stem Cell-Like Population in Bovine Milk: A Potential New Source for Regenerative Medicine in Veterinary. Stem Cells Dev 2018; 27:1587-1597. [PMID: 30142991 DOI: 10.1089/scd.2018.0114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Milk is a complex fluid required for development, nutrition and immunological protection to the newborn offspring. Interestingly, latest finding proved the presence of novel stem cell population in human milk with multilineage differentiation potential. Given that little is known about cellular milk content in other mammalian species such as bovine, the purpose of our study was to isolate and characterize a potential stem cell-like population in bovine milk. In detail, we first analyzed the phenotype of the isolated cells able to grow in plastic adherence and then their capability to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Bovine milk stem cells (bMSCs) resulted plastic adherent and showed a heterogeneous population with epithelial and spindle-shaped cells. Successively, their immunophenotype indicated that bovine milk cells were positive for the typical epithelial markers E-cadherin, cytokeratin-14, cytokeratin-18, and smooth muscle actin. Notably, a subset (30%-40%), constantly observed in purified milk cells, showed the typical mesenchymal surface antigens CD90, CD73, and CD105. Furthermore, the same percentage of bMSCs expressing CD90, CD73, and CD105 presented the stemness markers SOX2 and OCT4 translocated in their nuclei. Finally, our data showed that bMSCs were able to differentiate into osteoblasts, chondroblasts, and adipocytes. In addition, the flow cytometry analysis revealed the presence of a subpopulation of events characterized by typical extracellular vesicles (EVs, size 0.1-1 μm), which did not contain nuclei and were positive for the same markers identified on the surface of bMSCs (CD73, CD90, and CD105), and thus might be considered milk cell-derived EVs. In conclusion, our data suggest that bovine milk is an easily available source of multipotent stem cells able to differentiate into multiple cell lineages. These features can open new possibilities for development biology and regenerative medicine in veterinary area to improving animal health.
Collapse
Affiliation(s)
- Caterina Pipino
- 1 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Domitilla Mandatori
- 2 Department of Medicine and Aging Science, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Flavia Buccella
- 3 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Paola Lanuti
- 2 Department of Medicine and Aging Science, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Alessandra Preziuso
- 1 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Federica Castellani
- 3 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Lisa Grotta
- 3 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Pamela Di Tomo
- 2 Department of Medicine and Aging Science, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Sonia Marchetti
- 3 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Natalia Di Pietro
- 2 Department of Medicine and Aging Science, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Angelo Cichelli
- 1 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Assunta Pandolfi
- 1 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara , Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.S.I.-MeT), StemTeCh Group, Chieti, Italy
| | - Giuseppe Martino
- 3 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo , Teramo, Italy
| |
Collapse
|
15
|
Alessio N, Pipino C, Mandatori D, Di Tomo P, Ferone A, Marchiso M, Melone MAB, Peluso G, Pandolfi A, Galderisi U. Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: An in vitro study. J Cell Physiol 2018; 233:8996-9006. [PMID: 29904927 DOI: 10.1002/jcp.26845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF-MSCs are less prone to senescence with respect to BM-MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF-MSCs are able to return to the basal condition more efficiently with respect to BM-MSCs. Indeed, AF-MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF-MSCs may represent a valid alternative to BM-MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF-MSCs and BM-MSCs may pave the way to their rational use in the medical field.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University Chieti-Pescara, Chieti, Italy
| | - Domitilla Mandatori
- Department of Medicine and Aging Sciences, G. D'Annunzio University Chieti-Pescara, Chieti, Italy
| | - Pamela Di Tomo
- Department of Medicine and Aging Sciences, G. D'Annunzio University Chieti-Pescara, Chieti, Italy
| | - Angela Ferone
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco Marchiso
- Department of Medicine and Aging Sciences, G. D'Annunzio University Chieti-Pescara, Chieti, Italy
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | | | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University Chieti-Pescara, Chieti, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Da Sacco S, Perin L, Sedrakyan S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 2018. [PMID: 28620747 DOI: 10.1007/s00467-017-3711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA.
| |
Collapse
|
17
|
DE Colli M, Radunovic M, Zizzari VL, DI Giacomo V, DI Nisio C, Piattelli A, Calvo Guirado JL, Zavan B, Cataldi A, Zara S. Osteoblastic differentiating potential of dental pulp stem cells in vitro cultured on a chemically modified microrough titanium surface. Dent Mater J 2018; 37:197-205. [PMID: 29415969 DOI: 10.4012/dmj.2016-418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium surface modification is critical for dental implant success. Our aim was to determine surfaces influence on dental pulp stem cells (DPSCs) viability and differentiation. Implants were divided into sandblasted/acid-etched (control) and sandblasted/acid-etched coated with calcium and magnesium ions (CaMg), supplied as composite (test). Proliferation was evaluated by MTT, differentiation checking osteoblastic gene expression, PGE2 secretion and matrix formation, inflammation by Interleukin 6 (IL-6) detection. MTT and IL-6 do not modify on test. A PGE2 increase on test is recorded. BMP2 is higher on test at early experimental points, Osterix and RUNX2 augment later. Alizarin-red S reveals higher matrix production on test. These results suggest that test surface is more osteoinductive, representing a start point for in vivo studies aiming at the construction of more biocompatible dental implants, whose integration and clinical performance are improved and some undesired effects, such as implant stability loss and further surgical procedures, are reduced.
Collapse
Affiliation(s)
| | | | | | | | - Chiara DI Nisio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio" Chieti-Pescara
| | - José L Calvo Guirado
- Faculty of Medicine and Dentistry, Universidad Catolica San Antonio De Murcia (UCAM)
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara
| |
Collapse
|
18
|
Block TJ, Marinkovic M, Tran ON, Gonzalez AO, Marshall A, Dean DD, Chen XD. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 2017; 8:239. [PMID: 29078802 PMCID: PMC5658952 DOI: 10.1186/s13287-017-0688-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Degenerative diseases are a major public health concern for the aging population and mesenchymal stem cells (MSCs) have great potential for treating many of these diseases. However, the quantity and quality of MSCs declines with aging, limiting the potential efficacy of autologous MSCs for treating the elderly population. METHODS Human bone marrow (BM)-derived MSCs from young and elderly donors were obtained and characterized using standard cell surface marker criteria (CD73, CD90, CD105) as recommended by the International Society for Cellular Therapy (ISCT). The elderly MSC population was isolated into four subpopulations based on size and stage-specific embryonic antigen-4 (SSEA-4) expression using fluorescence-activated cell sorting (FACS), and subpopulations were compared to the unfractionated young and elderly MSCs using assays that evaluate MSC proliferation, quality, morphology, intracellular reactive oxygen species, β-galactosidase expression, and adenosine triphosphate (ATP) content. RESULTS The ISCT-recommended cell surface markers failed to detect any differences between young and elderly MSCs. Here, we report that elderly MSCs were larger in size and displayed substantially higher concentrations of intracellular reactive oxygen species and β-galactosidase expression and lower amounts of ATP and SSEA-4 expression. Based on these findings, cell size and SSEA-4 expression were used to separate the elderly MSCs into four subpopulations by FACS. The original populations (young and elderly MSCs), as well as the four subpopulations, were then characterized before and after culture on tissue culture plastic and BM-derived extracellular matrix (BM-ECM). The small SSEA-4-positive subpopulation representing ~ 8% of the original elderly MSC population exhibited a "youthful" phenotype that was similar to that of young MSCs. The biological activity of this elderly subpopulation was inhibited by senescence-associated factors produced by the unfractionated parent population. After these "youthful" cells were isolated and expanded (three passages) on a "young microenvironment" (i.e., BM-ECM produced by BM cells from young donors), the number of cells increased ≈ 17,000-fold to 3 × 109 cells and retained their "youthful" phenotype. CONCLUSIONS These results suggest that it is feasible to obtain large numbers of high-quality autologous MSCs from the elderly population and establish personal stem cell banks that will allow serial infusions of "rejuvenated" MSCs for treating age-related diseases.
Collapse
Affiliation(s)
- Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Amanda Marshall
- San Antonio Orthopaedic Specialists, San Antonio, TX, 78258, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA. .,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA. .,Audie Murphy VA Medical Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Kehl D, Generali M, Görtz S, Geering D, Slamecka J, Hoerstrup SP, Bleul U, Weber B. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells. Stem Cells Dev 2017; 26:1424-1437. [DOI: 10.1089/scd.2016.0352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Debora Kehl
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Sabrina Görtz
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Diego Geering
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Jaroslav Slamecka
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty University of Zurich, Zurich, Switzerland
| | - Benedikt Weber
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Mandatori D, Penolazzi L, Pipino C, Di Tomo P, Di Silvestre S, Di Pietro N, Trevisani S, Angelozzi M, Ucci M, Piva R, Pandolfi A. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems. J Tissue Eng Regen Med 2017; 12:447-459. [PMID: 28508565 DOI: 10.1002/term.2471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/03/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment.
Collapse
Affiliation(s)
- Domitilla Mandatori
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Caterina Pipino
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| | - Pamela Di Tomo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| | - Sara Di Silvestre
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| | - Natalia Di Pietro
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medicine and Aging Sciences, University 'G. d'Annunzio' Chieti-Pescara, Italy
| | - Sara Trevisani
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariangela Ucci
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Assunta Pandolfi
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (Ce.SI-MeT), Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' Chieti-Pescara, StemTeCh Group 'G. d'Annunzio' University Foundation, Chieti, Italy
| |
Collapse
|
21
|
Antonucci I, Crowley MG, Stuppia L. Amniotic fluid stem cell models: A tool for filling the gaps in knowledge for human genetic diseases. Brain Circ 2017; 3:167-174. [PMID: 30276320 PMCID: PMC6057697 DOI: 10.4103/bc.bc_23_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have attracted attention in recent years as a model of human genetic diseases. Starting from the diseased somatic cells isolated from an affected patient, iPS cells can be created and subsequently differentiated into various cell types that can be used to gain a better understanding of the disease at a cellular and molecular level. There are limitations of iPS cell generation, however, due to low efficiency, high costs, and lengthy protocols. The use of amniotic fluid stem cells (AFS) presents a worthy alternative as a stem cell source for modeling of human genetic diseases. Prenatal identification of chromosomal or Mendelian diseases may require the collection of amniotic fluid which is not only useful for the sake of diagnosis but also from this, AFS cells can be isolated and cultured. Since AFS cells show some characteristics of pluripotency, having the capacity to differentiate into various cell types derived from all three germ layers in vitro, they are a well-suited model for investigations regarding alterations in the molecular biology of a cell due to a specific genetic disease. This readily accessible source of stem cells can replace the necessity for generating iPS cells. Here, we expand on the applicability and importance of AFS cells as a model for discovery in the field of human genetic disease research. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, Annunzio University, Chieti-Pescara, Italy
| | - Marci G Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida, 12901, USA
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
22
|
D'Alimonte I, Mastrangelo F, Giuliani P, Pierdomenico L, Marchisio M, Zuccarini M, Di Iorio P, Quaresima R, Caciagli F, Ciccarelli R. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp. Stem Cells Dev 2017; 26:843-855. [DOI: 10.1089/scd.2016.0190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Iolanda D'Alimonte
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
- Department of Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Filiberto Mastrangelo
- Unit of Dentistry, IRCCS San Raffaele Scientific Institute, Vita e Salute University, Milano, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
- Department of Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
- Department of Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
- Department of Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Raimondo Quaresima
- Department of Civil Engineering, Architecture and Environment, University of L'Aquila, L'Aquila, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
- Department of Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| |
Collapse
|
23
|
Effects of Pharmacological Agents on Human Amniotic Fluid-Derived Stem Cells in Culture. Stem Cells Dev 2016; 25:1570-1579. [DOI: 10.1089/scd.2016.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, Arancio W, Di Cara G, Pucci-Minafra I, Cillino S, Giordano C. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther 2016; 7:83. [PMID: 27296060 PMCID: PMC4906894 DOI: 10.1186/s13287-016-0342-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/14/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In regenerative medicine the maintenance of stem cell properties is of crucial importance. Ageing is considered a cause of reduced stemness capability. The limbus is a stem niche of easy access and harbors two stem cell populations: epithelial stem cells and fibroblast-like stem cells. Our aim was to investigate whether donor age and/or long-term culture have any influence on stem cell marker expression and the profiles in the fibroblast-like stem cell population. METHODS Fibroblast-like stem cells were isolated and digested from 25 limbus samples of normal human corneo-scleral rings and long-term cultures were obtained. SSEA4 expression and sphere-forming capability were evaluated; cytofluorimetric assay was performed to detect the immunophenotypes HLA-DR, CD45, and CD34 and the principle stem cell markers ABCG2, OCT3/4, and NANOG. Molecular expression of the principal mesenchymal stem cell genes was investigated by real-time PCR. Two-dimensional gel electrophoresis and mass spectrometric sequencing were performed and a stable proteomic profile was identified. The proteins detected were explored by gene ontology and STRING analysis. The data were reported as means ± SD, compared by Student's unpaired t test and considering p < 0.05 as statistically significant. RESULTS The isolated cells did not display any hematopoietic surface marker (CD34 and CD45) and HLA-DR and they maintained these features in long-term culture. The expression of the stemness genes and the multilineage differentiation under in-vitro culture conditions proved to be well maintained. Proteomic analysis revealed a fibroblast-like stem cell profile of 164 proteins with higher expression levels. Eighty of these showed stable expression levels and were involved in maintenance of "the stem gene profile"; 84 were differentially expressed and were involved in structural activity. CONCLUSIONS The fibroblast-like limbal stem cells confirmed that they are a robust source of adult stem cells and that they have good plasticity, good proliferative capability, and long-term maintenance of stem cell properties, independently of donor age and long-term culture conditions. Our findings confirm that limbal fibroblast-like stem cells are highly promising for application in regenerative medicine and that in-vitro culture steps do not influence their stem cell properties. Moreover, the proteomic data enrich our knowledge of fibroblast-like stem cells.
Collapse
Affiliation(s)
- Laura Tomasello
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Rosa Musso
- Centro di Oncobiologia Sperimentale (COBS), Palermo, Italy
| | - Giovanni Cillino
- Department of Ophthalmology, University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
- ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Walter Arancio
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | | | | | | | - Carla Giordano
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.
- ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy.
| |
Collapse
|
25
|
Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases. Int J Mol Sci 2016; 17:ijms17040607. [PMID: 27110774 PMCID: PMC4849058 DOI: 10.3390/ijms17040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS) for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS) represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.
Collapse
|