1
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
2
|
Le Q, Madhu V, Hart JM, Farber CR, Zunder ER, Dighe AS, Cui Q. Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World J Stem Cells 2021; 13:1248-1277. [PMID: 34630861 PMCID: PMC8474721 DOI: 10.4252/wjsc.v13.i9.1248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.
Collapse
Affiliation(s)
- Quang Le
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Vedavathi Madhu
- Orthopaedic Surgery Research, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Joseph M Hart
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
- Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, United States
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Abhijit S Dighe
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
3
|
Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features. Stem Cells Int 2020; 2020:5726947. [PMID: 32612662 PMCID: PMC7315279 DOI: 10.1155/2020/5726947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.
Collapse
|
4
|
A Novel OsteomiRs Expression Signature for Osteoblast Differentiation of Human Amniotic Membrane-Derived Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8987268. [PMID: 31019974 PMCID: PMC6451790 DOI: 10.1155/2019/8987268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are a potential source of cells for therapeutic applications in bone regeneration. Recent evidence reveals a role for microRNAs (miRNAs) in the fine-tuning regulation of osteogenesis (osteomiRs) suggesting that they can be potential targets for skeleton diseases treatment. However, the functions of osteomiRs during differentiation of hAM-MSCs to osteogenic lineage are poorly understood. In this investigation, we discovered a novel miRNAs expression signature corresponding to the matrix maturation (preosteoblast) and mineralization (mature osteoblast) stages of dexamethasone-induced osteoblastic differentiation of hAM-MSCs. Comprehensive miRNAs profiling using TaqMan Low Density Arrays showed that 18 miRNAs were significantly downregulated, whereas 3 were upregulated in the matrix maturation stage (7 days after osteogenic induction) in comparison to undifferentiated cells used as control. Likewise, 47 miRNAs were suppressed and 25 were overexpressed at mineralization stage (14 days after osteogenic induction) in comparison to osteoprogenitors cells. Five out 93 miRNAs (miR-19b-3p, miR-335-3p, miR-197-3p, miR-34b-39, and miR-576-3p) were regulated at both 7 and 14 days suggesting a role in coordinated guidance of osteoblastic differentiation. Exhaustive bioinformatic predictions showed that the set of modulated miRNAs may target multiple genes involved in regulatory networks driving osteogenesis including key members of BMP, TGF-β, and WNT/β-catenin signaling pathways. Of these miRNAs, we selected miR-204, a noncoding small RNA that was expressed at matrix maturation phase and downregulated at maturation stage, for further functional studies. Interestingly, gain-of-function analysis showed that restoration of miR-204 using RNA mimics at the onset of mineralization stage dramatically inhibited deposition of calcium and osteogenic maturation of hAM-MSCs. Moreover in silico analysis detected a conserved miR-204 binding site at the 3'UTR of TGF-βR2 receptor gene. Using luciferase assays we confirmed that TGF-βR2 is a downstream effector of miR-204. In conclusion, we have identified a miRNAs signature for osteoblast differentiation of hAM-MSCs. The results from this study suggested that these miRNAs may act as potential inhibitors or activators of osteogenesis. Our findings also points towards the idea that miR-204/TGF-βR2 axis has a regulatory role in differentiation of hAM-MSCs committed to osteoblastic lineage.
Collapse
|
5
|
Li R, Lin QX, Liang XZ, Liu GB, Tang H, Wang Y, Lu SB, Peng J. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Res Ther 2018; 9:291. [PMID: 30359305 PMCID: PMC6202807 DOI: 10.1186/s13287-018-1018-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory disease that is associated with collapse of the femoral head, with a risk of hip arthroplasty in younger populations. Thus, there has been an increased focus on early interventions for ONFH that aim to preserve the native articulation. Stem cell therapy is a promising treatment, and an increasing number of recent studies have focused on this topic. Many clinical studies have reported positive outcomes of stem cell therapy for the treatment of ONFH. To improve the therapeutic effects of this approach, many related basic research studies have also been performed. However, some issues must be further explored, such as the appropriate patient selection procedure, the optimal stem cell selection protocol, the ideal injection number, and the safety of stem cell therapy. The purpose of this review is to summarize the available clinical studies and basic research related to stem cell therapy for ONFH.
Collapse
Affiliation(s)
- Rui Li
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qiu-Xia Lin
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xue-Zhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Guang-Bo Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - He Tang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yu Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shi-Bi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
6
|
Bermúdez-Reyes B, del Refugio Lara-Banda M, Reyes-Zarate E, Rojas-Martínez A, Camacho A, Moncada-Saucedo N, Pérez-Silos V, García-Ruiz A, Guzmán-López A, Peña-Martínez V, Lara-Arias J, Torres-Méndez S, Fuentes-Mera L. Effect on growth and osteoblast mineralization of hydroxyapatite-zirconia (HA-ZrO
2
) obtained by a new low temperature system. Biomed Mater 2018; 13:035001. [DOI: 10.1088/1748-605x/aaa3a4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Virjula S, Zhao F, Leivo J, Vanhatupa S, Kreutzer J, Vaughan TJ, Honkala AM, Viehrig M, Mullen CA, Kallio P, McNamara LM, Miettinen S. The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells. J Mech Behav Biomed Mater 2017; 72:38-48. [PMID: 28448920 DOI: 10.1016/j.jmbbm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentiation and mechanical properties of hASCs. Tailor-made, pneumatic cell stretching devices were used to expose hASCs to cyclic equiaxial stretching in osteogenic medium. Cell attachment and focal adhesions were visualised using immunocytochemical vinculin staining on days 3 and 6, and the proliferation and alkaline phosphatase activity, as a sign of early osteogenic differentiation, were analysed on days 0, 6 and 10. Furthermore, the mechanical properties of hASCs, in terms of apparent Young's modulus and normalised contractility, were obtained using a combination of atomic force microscopy based indentation and computational approaches. Our results indicated that cyclic equiaxial stretching delayed proliferation and promoted osteogenic differentiation of hASCs. Stretching also reduced cell size and intensified focal adhesions and actin cytoskeleton. Moreover, cell stiffening was observed during osteogenic differentiation and especially under mechanical stimulation. These results suggest that cyclic equiaxial stretching modifies cell morphology, focal adhesion formation and mechanical properties of hASCs. This could be exploited to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Sanni Virjula
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Feihu Zhao
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Joni Leivo
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Joose Kreutzer
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Anna-Maija Honkala
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Marlitt Viehrig
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Conleth A Mullen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Pasi Kallio
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| |
Collapse
|
8
|
Izgi K, Sonmez MF, Canatan H, Iskender B. Long Term Exposure to Myrtucommulone-A Changes CD105 Expression and Differentiation Potential of Mesenchymal Stem Cells. Tissue Eng Regen Med 2017; 14:113-121. [PMID: 30603468 DOI: 10.1007/s13770-016-0020-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a heterogeneous group of multipotent stem cells that could be found in various somatic tissues. MSCs are defined by molecular and functional features including spindle-shape morphology, adherence to plastic surfaces, expression of specific surface markers and differentiation potential to chondrocytes, adipocytes and osteocytes. The surface markers were proposed to affect the differentiation potential of MSCs by a limited number of studies. Endoglin (CD105) is defined to be a significant marker for osteogenic and chondrogenic differentiation ability of MSCs. Low CD105 expression is associated with increased osteogenic potential while high CD105 expression is correlated with strong chondrogenic potential. Myrtucommulone-A (MC-A) is an active compound with various biological effects on different cell types but its effect on MSC differentiation has not been described yet. In the present study we aimed at investigating the long-term effects of MC-A on hMSCs. MC-A-treatment reduced CD105 expression in distinct human mesenchymal stem cell (hMSC) lines and gave rise to CD105low population but did not change CD44, CD90 or CD73 expression. The decrease in CD105 expression reduced the chondrogenic potential of hMSCs subsequently while adipogenic or osteogenic differentiation was not affected dramatically. MC-A-treatment also suppressed the NF-κB p65 activation which might be responsible for the reduced chondrogenic potential. Our findings suggest that MC-A could be used to enrich CD105low hMSCs without the need for cell sorting or changing culture conditions which could be utilised in targeted differentiation studies.
Collapse
Affiliation(s)
- Kenan Izgi
- 2Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039 Melikgazi, Kayseri Turkey
- 3Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| | - Mehmet Fatih Sonmez
- 4Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| | - Halit Canatan
- 1Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039 Melikgazi, Kayseri Turkey
- 3Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| | - Banu Iskender
- 1Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039 Melikgazi, Kayseri Turkey
- 3Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| |
Collapse
|
9
|
Shotorbani BB, Alizadeh E, Salehi R, Barzegar A. Adhesion of mesenchymal stem cells to biomimetic polymers: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1192-1200. [PMID: 27987676 DOI: 10.1016/j.msec.2016.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization.
Collapse
Affiliation(s)
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
11
|
Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis. Stem Cells Int 2016; 2016:1375031. [PMID: 27642302 PMCID: PMC5014955 DOI: 10.1155/2016/1375031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Synovium-derived mesenchymal stromal cells (SMSCs) may play an important role in the pathogenesis of rheumatoid arthritis (RA) and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs). Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications.
Collapse
|
12
|
Fu Y, Liu S, Cui SJ, Kou XX, Wang XD, Liu XM, Sun Y, Wang GN, Liu Y, Zhou YH. Surface Chemistry of Nanoscale Mineralized Collagen Regulates Periodontal Ligament Stem Cell Fate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15958-15966. [PMID: 27280804 DOI: 10.1021/acsami.6b04951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interplay between stem cells and their extracellular microenvironment is of critical importance to the stem cell-based therapeutics in regenerative medicine. Mineralized collagen is the main component of bone extracellular matrix, but the effect of interfacial properties of mineralized collagen on subsequent cellular behaviors is unclear. This study examined the role of surface chemistry of nanoscale mineralized collagen on human periodontal ligament stem cell (hPDLSC) fate decisions. The intrafibrillarly mineralized collagen (IMC), fabricated by a biomimetic bottom-up approach, showed a bonelike hierarchy with nanohydroxyapatites (HAs) periodically embedded within fibrils. The infrared spectrum of the IMC showed the presence of phosphate, carbonate, amide I and II bands; and infrared mapping displayed uniform and higher spatial distribution of mineralization in the IMC. However, the distribution of the phosphate group differed far from that of the amide I group in the extrafibrillarly mineralized collagen (EMC), in which flowerlike HA clusters randomly depositing around the surface of the fibrils. Moreover, a large quantity of extrafibrillar HAs covered up the C═O stretch and N-H in-plane bend, resulting in substantial reduction of amide I and II bands. Cell experiments demonstrated that the hPDLSCs seeded on the IMC exhibited a highly branched, osteoblast-like polygonal shape with extended pseudopodia and thick stress fiber formation; while cells on the EMC displayed a spindle shape with less branch points and thin actin fibril formation. Furthermore, the biocompatibility of EMC was much lower than that of IMC. Interestingly, even without osteogenic induction, mRNA levels of major osteogenic differentiation genes were highly expressed in the IMC during cultivation time. These data suggest that the IMC with a similar nanotopography and surface chemistry to natural mineralized collagen directs hPDLSCs toward osteoblast differentiation, providing a promising scaffold in bone tissue regeneration.
Collapse
Affiliation(s)
- Yu Fu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Shuai Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Sheng-Jie Cui
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xiao-Xing Kou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xue-Dong Wang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xiao-Mo Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yue Sun
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Gao-Nan Wang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yan Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yan-Heng Zhou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| |
Collapse
|
13
|
Fan W, Li J, Wang Y, Pan J, Li S, Zhu L, Guo C, Yan Z. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling. Biochem Biophys Res Commun 2016; 474:338-344. [PMID: 27107692 DOI: 10.1016/j.bbrc.2016.04.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation.
Collapse
Affiliation(s)
- Wenshuai Fan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinghuan Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiming Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfeng Pan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuo Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Zhu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changan Guo
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|