1
|
Iyer RR, Žurauskas M, Rao Y, Chaney EJ, Boppart SA. Bichromatic tetraphasic full-field optical coherence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22704. [PMID: 38584966 PMCID: PMC10996847 DOI: 10.1117/1.jbo.29.s2.s22704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Significance Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast. Aim We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts. Approach BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast. Results BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors. Conclusions BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Žurauskas
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yug Rao
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana Champaign, NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
2
|
Spitz S, Schobesberger S, Brandauer K, Ertl P. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research. Bioeng Transl Med 2024; 9:e10604. [PMID: 38818126 PMCID: PMC11135156 DOI: 10.1002/btm2.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 06/01/2024] Open
Abstract
Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
- Present address:
Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
| |
Collapse
|
3
|
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res 2024; 102:e25342. [PMID: 38773878 DOI: 10.1002/jnr.25342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Collapse
Affiliation(s)
- Joseph W Molloy
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Denis Barry
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Antitumor Effects of a New Retinoate of the Fungal Cytotoxin Illudin M in Brain Tumor Models. Int J Mol Sci 2022; 23:ijms23169056. [PMID: 36012321 PMCID: PMC9408991 DOI: 10.3390/ijms23169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While the fungal metabolite illudin M (1) is indiscriminately cytotoxic in cancer and non-malignant cells, its retinoate 2 showed a greater selectivity for the former, especially in a cerebral context. Illudin M killed malignant glioma cells as well as primary neurons and astrocytes at similarly low concentrations and destroyed their microtubule and glial fibrillary acidic protein (GFAP) networks. In contrast, the ester 2 was distinctly more cytotoxic in highly dedifferentiated U87 glioma cells than in neurons, which were even stimulated to enhanced growth. This was also observed in co-cultures of neurons with U87 cells where conjugate 2 eventually killed them by induction of differentiation based on the activation of nuclear receptors, which bind to retinoid-responsive elements (RARE). Hence, illudin M retinoate 2 appears to be a promising drug candidate.
Collapse
|
5
|
Faria-Pereira A, Temido-Ferreira M, Morais VA. BrainPhys Neuronal Media Support Physiological Function of Mitochondria in Mouse Primary Neuronal Cultures. Front Mol Neurosci 2022; 15:837448. [PMID: 35774868 PMCID: PMC9239074 DOI: 10.3389/fnmol.2022.837448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
In vitro neuronal cultures are extensively used in the field of neurosciences as they represent an accessible experimental tool for neuronal genetic manipulation, time-lapse imaging, and drug screening. Optimizing the cultivation of rodent primary neuronal cultures led to the development of defined media that support the growth and maintenance of different neuronal types. Recently, a new neuronal medium, BrainPhys (BP), was formulated envisioning the mimicry of brain physiological conditions and suitability for cultured human iPSC-derived neurons and rat primary neurons. However, its advantages in mouse primary neuronal cultures and its effects in neuronal bioenergetics are yet to be demonstrated. In this study, we validated the beneficial use of BP in mouse primary neuronal cultures based on the observation that neuronal cultures in BP media showed enhanced ATP levels, which increased throughout neuronal maturation, a finding that correlates with higher mitochondrial activity and ATP production at later maturation stages, as well as an increased glycolysis response on mitochondrial inhibition and increased mitochondrial fuel flexibility. Taken together, our data demonstrate that BP medium promotes mitochondrial activity along with neuronal maturation of in vitro cultures.
Collapse
|
6
|
Oláh M, Farkas E, Székács I, Horvath R, Székács A. Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicol Rep 2022; 9:914-926. [PMID: 35875257 PMCID: PMC9301602 DOI: 10.1016/j.toxrep.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Cytotoxic effects of the market leading broad-spectrum, synthetic herbicide product Roundup Classic, its active ingredient glyphosate (in a form of its isopropylamine (IPA) salt) and its formulating surfactant polyethoxylated tallowamine (POE-15) were determined on two murine cell lines, a neuroectodermal stem cell-like (NE-4C) and a high alkaline phosphatase activity osteoblastic cell line (MC3T3-E1). Cytotoxicity, genotoxicity, effects on cell viability and cell cycles were examined in five flow cytometry tests, the two former of which were compared by the enzymatic-assay and the alkaline single cell gel electrophoresis (Comet) assay. All of the tests indicated the NE-4C cells being more sensitive, than the MC3T3-E1 cell line to the treatments with the target compounds. Higher sensitivity differences were detected in the viability test by flow cytometry (7-9-fold), than by the MTT assay (1.5-3-fold); in the genotoxicity test by the Comet assay (3.5-403-fold), than by the DNA-damage test (9.3-158-fold); and in the apoptosis test by the Annexin V dead cell kit (1.1-12.7-fold), than by the Caspase 3/7 kit (1-6.5-fold). Cell cycle assays indicated high count of cells (~70%) in the G0/G1 phase for MC3T3-E1 cells, than in NE-4C cell (~40%) after 24 h. The order of the inhibitory potency of the target substances has unequivocally been POE-15 > Roundup Classic > > glyphosate IPA salt.
Collapse
Affiliation(s)
- Marianna Oláh
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Enikő Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| |
Collapse
|
7
|
Kuzniak OV, Sorochynska OM, Bayliak MM, Klonovskyi AY, Vasylyk YV, Semchyshyn HM, Storey KB, Garaschuk O, Lushchak VI. Feeding to satiation induces mild oxidative/carbonyl stress in the brain of young mice. EXCLI JOURNAL 2022; 21:77-92. [PMID: 35145367 PMCID: PMC8822308 DOI: 10.17179/excli2021-4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Intermittent fasting as a dietary intervention can prevent overweight and obesity in adult organisms. Nevertheless, information regarding consequences of intermittent fasting for redox status and reactive metabolite-mediated processes that are crucial for the normal functioning of organisms is limited. Since the information on effects of intermittent fasting on parameters of oxidative/carbonyl stress in the brains of young mice was absent, the present study addressed these questions using an every-other-day fasting (EODF) protocol. The levels of carbonyl proteins were ~28 %, 22 % and 18 % lower in the cerebral cortex of EODF males and females and middle parts of the brain of EODF males, respectively, as compared to their ad libitum fed counterparts. Lipid peroxides and α-dicarbonyl compounds were lower only in the cortex and medulla part of EODF male brain. The EODF regimen resulted in higher total non-specific antioxidant capacity in different parts of male brain and a tendency to be higher this parameter in females. At the same time, EODF regimen had no effect on the activities of the defensive antioxidant enzymes, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glyoxylase 1 and glucose-6-phosphate dehydrogenase in the cortex of both sexes, but even decreased activities of these enzymes in medulla and middle part of the brain. In general, the results suggest that in the brain of young mice ad libitum feeding induces mild oxidative/carbonyl stress which may be partially alleviated by the EODF regimen. The effect of EODF regimen is more pronounced in the medulla part than in the cortex.
Collapse
Affiliation(s)
- Oksana V. Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M. Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria M. Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Andrii Ya. Klonovskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V. Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Halyna M. Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine,*To whom correspondence should be addressed: Volodymyr I. Lushchak, Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine, E-mail:
| |
Collapse
|
8
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Bioenergetic Impairment of Triethylene Glycol Dimethacrylate- (TEGDMA-) Treated Dental Pulp Stem Cells (DPSCs) and Isolated Brain Mitochondria are Amended by Redox Compound Methylene Blue †. MATERIALS 2020; 13:ma13163472. [PMID: 32781723 PMCID: PMC7475988 DOI: 10.3390/ma13163472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed. METHODS Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 μM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically. RESULTS MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA. CONCLUSION MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells.
Collapse
|
10
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
11
|
Sarkadi B, Meszaros K, Krencz I, Canu L, Krokker L, Zakarias S, Barna G, Sebestyen A, Papay J, Hujber Z, Butz H, Darvasi O, Igaz P, Doczi J, Luconi M, Chinopoulos C, Patocs A. Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers (Basel) 2020; 12:E599. [PMID: 32150977 PMCID: PMC7139890 DOI: 10.3390/cancers12030599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 01/08/2023] Open
Abstract
Pheochromocytoma/paragangliomas (Pheo/PGL) are rare endocrine cancers with strong genetic background. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) predispose patients to malignant disease with limited therapeutic options and poor prognosis. Using a host of cellular and molecular biology techniques in 2D and 3D cell culture formats we show that SDH inhibition had cell line specific biological and biochemical consequences. Based on our studies performed on PC12 (rat chromaffin cell line), Hela (human cervix epithelial cell line), and H295R (human adrenocortical cell line) cells, we demonstrated that chromaffin cells were not affected negatively by the inhibition of SDH either by siRNA directed against SDHB or treatment with SDH inhibitors (itaconate and atpenin A5). Cell viability and intracellular metabolite measurements pointed to the cell line specific consequences of SDH impairment and to the importance of glutamate metabolism in chromaffin cells. A significant increase in glutaminase-1 (GLS-1) expression after SDH impairment was observed in PC12 cells. GLS-1 inhibitor BPTES was capable of significantly decreasing proliferation of SDH impaired PC12 cells. Glutaminase-1 and SDHB expressions were tested in 35 Pheo/PGL tumor tissues. Expression of GLS1 was higher in the SDHB low expressed group compared to SDHB high expressed tumors. Our data suggest that the SDH-associated malignant potential of Pheo/PGL is strongly dependent on GLS-1 expression and glutaminases may be novel targets for therapy.
Collapse
Affiliation(s)
- Balazs Sarkadi
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
| | - Katalin Meszaros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Ildiko Krencz
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Lilla Krokker
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Sara Zakarias
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
| | - Gabor Barna
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Anna Sebestyen
- Bionics Innovation Center, 1088 Budapest, Hungary;
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Judit Papay
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Zoltan Hujber
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Henriett Butz
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Otto Darvasi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Peter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Judit Doczi
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Attila Patocs
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
12
|
Hujber Z, Horváth G, Petővári G, Krencz I, Dankó T, Mészáros K, Rajnai H, Szoboszlai N, Leenders WPJ, Jeney A, Tretter L, Sebestyén A. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:271. [PMID: 30404651 PMCID: PMC6223071 DOI: 10.1186/s13046-018-0946-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Background Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. Methods Metabolic characteristics of human glioma cell models – including mitochondrial function, glycolytic pathway and energy substrate oxidation – in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. Results U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). Conclusions Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas. Electronic supplementary material The online version of this article (10.1186/s13046-018-0946-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Katalin Mészáros
- Hungarian Academy of Sciences - Momentum Hereditary Endocrine Tumours Research Group, Semmelweis University - National Bionics Program, Budapest, 1088, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, 1518, Hungary
| | - William P J Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
13
|
Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schwamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. LAB ON A CHIP 2018; 18:3172-3183. [PMID: 30204191 DOI: 10.1039/c8lc00206a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human midbrain-specific organoids (hMOs) serve as an experimental in vitro model for studying the pathogenesis of Parkinson's disease (PD). In hMOs, neuroepithelial stem cells (NESCs) give rise to functional midbrain dopaminergic (mDA) neurons that are selectively degenerating during PD. A limitation of the hMO model is an under-supply of oxygen and nutrients to the densely packed core region, which leads eventually to a "dead core". To reduce this phenomenon, we applied a millifluidic culture system that ensures media supply by continuous laminar flow. We developed a computational model of oxygen transport and consumption in order to predict oxygen levels within the hMOs. The modelling predicts higher oxygen levels in the hMO core region under millifluidic conditions. In agreement with the computational model, a significantly smaller "dead core" was observed in hMOs cultured in a bioreactor system compared to those ones kept under conventional shaking conditions. Comparing the necrotic core regions in the organoids with those obtained from the model allowed an estimation of the critical oxygen concentration necessary for ensuring cell vitality. Besides the reduced "dead core" size, the differentiation efficiency from NESCs to mDA neurons was elevated in hMOs exposed to medium flow. Increased differentiation involved a metabolic maturation process that was further developed in the millifluidic culture. Overall, bioreactor conditions that improve hMO quality are worth considering in the context of advanced PD modelling.
Collapse
Affiliation(s)
- Emanuel Berger
- University of Luxembourg (UL), Centre for Systems Biomedicine (LCSB) - Developmental and Cellular Biology group, Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res Rev 2018; 45:24-32. [PMID: 29689408 DOI: 10.1016/j.arr.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
Late-onset Parkinson disease is a multifactorial and multietiological disorder, age being one of the factors implicated. Genetic and/or environmental factors, such as pesticides, can also be involved. Up to 80% of dopaminergic neurons of the substantia nigra are lost before motor features of the disorder begin to appear. In humans, these neurons are only formed a few weeks after fertilization. Therefore, prenatal exposure to pesticides or industrial chemicals during crucial steps of brain development might also alter their proliferation and differentiation. Oxidative phosphorylation is one of the metabolic pathways sensitive to environmental toxicants and it is crucial for neuronal differentiation. Many inhibitors of this biochemical pathway, frequently found as persistent organic pollutants, affect dopaminergic neurogenesis, promote the degeneration of these neurons and increase the risk of suffering late-onset Parkinson disease. Here, we discuss how an early, prenatal, exposure to these oxidative phosphorylation xenobiotics might trigger a late-onset, old age, Parkinson disease.
Collapse
|
15
|
Barry D, Ellul S, Watters L, Lee D, Haluska R, White R. The ketogenic diet in disease and development. Int J Dev Neurosci 2018; 68:53-58. [DOI: 10.1016/j.ijdevneu.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Affiliation(s)
- Denis Barry
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Sarah Ellul
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Lindsey Watters
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - David Lee
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Robert Haluska
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| | - Robin White
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| |
Collapse
|
16
|
Nagy AM, Fekete R, Horvath G, Koncsos G, Kriston C, Sebestyen A, Giricz Z, Kornyei Z, Madarasz E, Tretter L. Versatility of microglial bioenergetic machinery under starving conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:201-214. [PMID: 29273412 DOI: 10.1016/j.bbabio.2017.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 11/18/2022]
Abstract
Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.
Collapse
Affiliation(s)
- Adam M Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Tuzolto st. 37-47, Budapest, Hungary
| | - Rebeka Fekete
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Szigony st. 43, Budapest, Hungary
| | - Gergo Horvath
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Tuzolto st. 37-47, Budapest, Hungary
| | - Gabor Koncsos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Nagyvarad square 4, Budapest, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Ulloi st. 26, Budapest, Hungary
| | - Anna Sebestyen
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Ulloi st. 26, Budapest, Hungary
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Nagyvarad square 4, Budapest, Hungary
| | - Zsuzsanna Kornyei
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Szigony st. 43, Budapest, Hungary
| | - Emilia Madarasz
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Szigony st. 43, Budapest, Hungary
| | - Laszlo Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Tuzolto st. 37-47, Budapest, Hungary.
| |
Collapse
|
17
|
Ducray AD, Felser A, Zielinski J, Bittner A, Bürgi JV, Nuoffer JM, Frenz M, Mevissen M. Effects of silica nanoparticle exposure on mitochondrial function during neuronal differentiation. J Nanobiotechnology 2017; 15:49. [PMID: 28676089 PMCID: PMC5496409 DOI: 10.1186/s12951-017-0284-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/17/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nanomedicine offers a promising tool for therapies of brain diseases, but potential effects on neuronal health and neuronal differentiation need to be investigated to assess potential risks. The aim of this study was to investigate effects of silica-indocyanine green/poly (ε-caprolactone) nanoparticles (PCL-NPs) engineered for laser tissue soldering in the brain before and during differentiation of SH-SY5Y cells. Considering adaptations in mitochondrial homeostasis during neuronal differentiation, metabolic effects of PCL-NP exposure before and during neuronal differentiation were studied. In addition, kinases of the PI3 kinase (PI3-K/Akt) and the MAP kinase (MAP-K/ERK) pathways related to neuronal differentiation and mitochondrial function were investigated. RESULTS Differentiation resulted in a decrease in the cellular respiration rate and the extracellular acidification rate (ECAR). PCL-NP exposure impaired mitochondrial function depending on the time of exposure. The cellular respiration rate was significantly reduced compared to differentiated controls when PCL-NPs were given before differentiation. The shift in ECAR was less pronounced in PCL-NP exposure during differentiation. Differentiation and PCL-NP exposure had no effect on expression levels and the enzymatic activity of respiratory chain complexes. The activity of the glycolytic enzyme phosphofructokinase was significantly reduced after differentiation with the effect being more pronounced after PCL-NP exposure before differentiation. The increase in mitochondrial membrane potential observed after differentiation was not found in SH-SY5Y cells exposed to PCL-NPs before differentiation. The cellular adenosine triphosphate (ATP) production significantly dropped during differentiation, and this effect was independent of the PCL-NP exposure. Differentiation and nanoparticle exposure had no effect on superoxide levels at the endpoint of the experiments. A slight decrease in the expression of the neuronal differentiation markers was found after PCL-NP exposure, but no morphological variation was observed. CONCLUSIONS PCL-NP exposure affects mitochondrial function depending on the time of exposure before and during neuronal differentiation. PCL-NP exposure during differentiation was associated with impaired mitochondrial function, which may affect differentiation. Considering the importance of adaptations in cellular respiration for neuronal differentiation and function, further studies are needed to unravel the underlying mechanisms and consequences to assess the possible risks including neurodegeneration.
Collapse
Affiliation(s)
- Angélique D Ducray
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Andrea Felser
- Institute of Clinical Chemistry, University Hospital Bern, 3010, Bern, Switzerland
| | - Jana Zielinski
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Aniela Bittner
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Julia V Bürgi
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital Bern, 3010, Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland.
| |
Collapse
|