1
|
Song W, Wang H, Wang X. Research hotspots and emerging trends in the treatment of Sjogren's syndrome: A bibliometric analysis from 1900 to 2022. Heliyon 2024; 10:e23216. [PMID: 38187243 PMCID: PMC10767134 DOI: 10.1016/j.heliyon.2023.e23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Sjogren's syndrome (SS) is an autoimmune disease that mainly affects the salivary and lacrimal glands and further leads to dry mouth and eyes. In recent years, knowledge about the treatment of SS is developing rapidly. This study aims to assess research progress on SS treatment using a bibliometric approach and to identify research hotspots and emerging trends in this area. Methods The publications related to the treatment of SS were retrieved from the Science Citation Index Expanded (SCI-E) database. The following search terms were used to extract document data: TS=(Sjogren* OR Sicca*) AND TS= (Treat* OR Therap* OR Disease Management). Articles and review articles published in English from 1900 to 2022 were selected. After the manual screening, the publication data were exported to a plain text file and applied for cooperative network analysis, keyword analysis, and reference co-citation analysis by using CiteSpace. Results A total of 2038 publications were included in the analysis from 571 journals by 9063 authors. The annual number of published studies and times cited showed an overall upward trend since 1992. There was a degree of national/regional collaboration in this area, but direct collaboration between institutions and authors was still lacking. The country with the highest number of publications was in the United States, followed by China and Japan. Five SS-related treatments as the research hotspots were summarized by analyzing keywords and references, including immunosuppressive and anti-inflammatory therapy, regenerative therapy, gene therapy, surgical treatment, and symptomatic treatment. Among them, B cells, T cells, mucosal-associated invariant T (MAIT) cells, mesenchymal stem cells (MSCs), rituximab, belimumab, cell-target therapy, and immunosuppressive and anti-inflammatory therapy were emerging trends in this field. Conclusions This study conducted a data-based and objective introduction to the treatment of SS from a fresh perspective. An analysis of the intellectual bases, research hotspots, and emerging trends in the field will contribute to future research and treatment decisions, which will ultimately benefit SS patients.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with the pathological hallmark of lymphoplasmacytic infiltration of exocrine glands - more specifically salivary and lacrimal glands - resulting in a diminished production of tears and saliva (sicca syndrome). The pathophysiology underscoring the mechanisms of the sicca symptoms in SS has still yet to be unraveled but recent advances have identified a cardinal role of aquaporin-5 (AQP5) as a key player in saliva secretion as well as salivary gland epithelial cell dysregulation. AQP5 expression and localization are significantly altered in salivary glands from patients and mice models of the disease, shedding light on a putative mechanism accounting for diminished salivary flow. Furthermore, aberrant expression and localization of AQP5 protein partners, such as prolactin-inducible protein and ezrin, may account for altered AQP5 localization in salivary glands from patients suffering from SS and are considered as new players in SS development. This review provides an overview of the role of AQP5 in SS salivary gland epithelial cell dysregulation, focusing on its trafficking and protein-protein interactions.
Collapse
|
4
|
Li J, Wu L, Chen Y, Yan Z, Fu J, Luo Z, Du J, Guo L, Xu J, Liu Y. Anticeramide Improves Sjögren's Syndrome by Blocking BMP6-Induced Th1. J Dent Res 2023; 102:93-102. [PMID: 36281063 DOI: 10.1177/00220345221119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell dysfunction has been shown to play an important role in the pathogenesis of Sjögren's syndrome (SS). In recent studies, the increased expression of BMP6 has been reported to be related to SS. However, the roles that BMP6 plays in immune homeostasis in the development of SS as well as the downstream signals activated by BMP6 remain unclear. In this study, we investigated the effects and molecular mechanisms of BMP6 on naive CD4+ T cells, showing that BMP6 could upregulate interferon (IFN)-γ secretion from CD4+ T cells through a ceramide/nuclear factor-κB pathway, with no effect on T-cell activation or proliferation. Moreover, an in vivo study showed that anticeramide treatment (myriocin) for an SS animal model (NOD/LtJ mice) could significantly decrease the IFN-γ expression and Th1 frequency in the salivary glands and suppress the inflammation infiltration in salivary glands and maintain the salivary flow rates, both of which reflect SS-like symptoms. This study identifies a promising target that could effectively attenuate the abnormal state of CD4+ T cells and reverse the progression of SS.
Collapse
Affiliation(s)
- J Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - L Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Yan
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - L Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| |
Collapse
|
5
|
Mo YQ, Nakamura H, Tanaka T, Odani T, Perez P, Ji Y, French BN, Pranzatelli TJ, Michael DG, Yin H, Chow SS, Khalaj M, Afione SA, Zheng C, Oliveira FR, Motta ACF, Ribeiro-Silva A, Rocha EM, Nguyen CQ, Noguchi M, Atsumi T, Warner BM, Chiorini JA. Lysosomal exocytosis of HSP70 stimulates monocytic BMP6 expression in Sjögren's syndrome. J Clin Invest 2022; 132:e152780. [PMID: 35113815 PMCID: PMC8920330 DOI: 10.1172/jci152780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
BMP6 is a central cytokine in the induction of Sjögren's syndrome-associated (SS-associated) secretory hypofunction. However, the upstream initiation leading to the production of this cytokine in SS is unknown. In this study, RNA ISH on salivary gland sections taken from patients with SS indicated monocytic lineage cells as a cellular source of BMP6. RNA-Seq data on human salivary glands suggested that TLR4 signaling was an upstream regulator of BMP6, which was confirmed by in vitro cell assays and single-cell transcriptomics of human PBMCs. Further investigation showed that HSP70 was an endogenous natural TLR4 ligand that stimulated BMP6 expression in SS. Release of HSP70 from epithelial cells could be triggered by overexpression of lysosome-associated membrane protein 3 (LAMP3), a protein also associated with SS in several transcriptome studies. In vitro studies supported the idea that HSP70 was released as a result of lysosomal exocytosis initiated by LAMP3 expression, and reverse transcription PCR on RNA from minor salivary glands of patients with SS confirmed a positive correlation between BMP6 and LAMP3 expression. BMP6 expression could be experimentally induced in mice by overexpression of LAMP3, which developed an SS-like phenotype. The newly identified LAMP3/HSP70/BMP6 axis provided an etiological model for SS gland dysfunction and autoimmunity.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perez
- AAV Biology Section and
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | - Ana Carolina F. Motta
- Department of Stomatology, Public Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto
| | | | - Eduardo M. Rocha
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cuong Q. Nguyen
- Department of Pathology and Infectious Diseases, University of Florida, Gainesville, Florida, USA
| | | | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Blake M. Warner
- AAV Biology Section and
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
6
|
Chihaby N, Orliaguet M, Le Pottier L, Pers JO, Boisramé S. Treatment of Sjögren's Syndrome with Mesenchymal Stem Cells: A Systematic Review. Int J Mol Sci 2021; 22:10474. [PMID: 34638813 PMCID: PMC8508641 DOI: 10.3390/ijms221910474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitous in the human body. Mesenchymal stem cells were initially isolated from bone marrow and later from other organs such as fatty tissues, umbilical cords, and gingiva. Their secretory capacities give them interesting immunomodulatory properties in cell therapy. Some studies have explored the use of MSCs to treat Sjögren's syndrome (SS), a chronic inflammatory autoimmune disease that mainly affects exocrine glands, including salivary and lacrimal glands, although current treatments are only palliative. This systematic review summarizes the current data about the application of MSCs in SS. Reports show improvements in salivary secretions and a decrease in lymphocytic infiltration in salivary glands in patients and mice with SS after intravenous or infra-peritoneal injections of MSCs. MSC injections led to a decrease in inflammatory cytokines and an increase in anti-inflammatory cytokines. However, the intrinsic mechanism of action of these MSCs currently remains unknown.
Collapse
Affiliation(s)
- Najwa Chihaby
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
| | - Marie Orliaguet
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| | - Laëtitia Le Pottier
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Jacques-Olivier Pers
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Sylvie Boisramé
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| |
Collapse
|
7
|
SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063203. [PMID: 33801157 PMCID: PMC8004153 DOI: 10.3390/ijms22063203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable interest in delineating the molecular mechanisms of action of transforming growth factor-β (TGF-β), considered as central player in a plethora of human conditions, including cancer, fibrosis and autoimmune disease. TGF-β elicits its biological effects through membrane bound serine/threonine kinase receptors which transmit their signals via downstream signalling molecules, SMADs, which regulate the transcription of target genes in collaboration with various co-activators and co-repressors. Until now, therapeutic strategy for primary Sjögren’s syndrome (pSS) has been focused on inflammation, but, recently, the involvement of TGF-β/SMADs signalling has been demonstrated in pSS salivary glands (SGs) as mediator of the epithelial-mesenchymal transition (EMT) activation. Although EMT seems to cause pSS SG fibrosis, TGF-β family members have ambiguous effects on the function of pSS SGs. Based on these premises, this review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in pSS that are dictated by orchestrations of SMADs, and describe TGF-β/SMADs value as both disease markers and/or therapeutic target for pSS.
Collapse
|
8
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
9
|
TGF-β Pathway in Salivary Gland Fibrosis. Int J Mol Sci 2020; 21:ijms21239138. [PMID: 33266300 PMCID: PMC7730716 DOI: 10.3390/ijms21239138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is presented in various physiologic and pathologic conditions of the salivary gland. Transforming growth factor beta (TGF-β) pathway has a pivotal role in the pathogenesis of fibrosis in several organs, including the salivary glands. Among the TGF-β superfamily members, TGF-β1 and 2 are pro-fibrotic ligands, whereas TGF-β3 and some bone morphogenetic proteins (BMPs) are anti-fibrotic ligands. TGF-β1 is thought to be associated with the pro-fibrotic pathogenesis of sialadenitis, post-radiation salivary gland dysfunction, and Sjögren’s syndrome. Potential therapeutic strategies that target multiple levels in the TGF-β pathway are under preclinical and clinical research for fibrosis. Despite the anti-fibrotic effect of BMPs, their in vivo delivery poses a challenge in terms of adequate clinical efficacy. In this article, we will review the relevance of TGF-β signaling in salivary gland fibrosis and advances of potential therapeutic options in the field.
Collapse
|
10
|
McCoy SS, Giri J, Das R, Paul PK, Pennati A, Parker M, Liang Y, Galipeau J. Minor salivary gland mesenchymal stromal cells derived from patients with Sjӧgren's syndrome deploy intact immune plasticity. Cytotherapy 2020; 23:301-310. [PMID: 33262072 DOI: 10.1016/j.jcyt.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) provide minor salivary glands (MSGs) with support and niche cells for epithelial glandular tissue. Little is known about resident MSG-derived MSCs (MSG-MSCs) in primary Sjӧgren's syndrome (PSS). The authors' objective is to define the immunobiology of endogenous PSS MSG-MSCs. METHODS Using culture-adapted MSG-MSCs isolated from consenting PSS subjects (n = 13), the authors performed in vitro interrogation of PSS MSG-MSC immunobiology and global gene expression compared with controls. To this end, the authors performed phenotypic and immune functional analysis of indoleamine 2,3-dioxygenase (IDO), programmed death ligand 1 (PD-L1) and intercellular adhesion marker 1 (ICAM-1) before and after interferon γ (IFNγ) licensing as well as the effect of MSG-MSCs on T-cell proliferation. Considering the female predominance of PSS, the authors also addressed the influence of 17-β-estradiol on estrogen receptor α-positive-related MSC function. RESULTS The authors found that MSG-MSCs deployed normal immune regulatory functionality after IFNγ stimulation, as demonstrated by increased protein-level expression of IDO, PD-L1 and ICAM-1. The authors also found that MSG-MSCs suppressed T-cell proliferation in a dose-dependent manner independent of 17-β-estradiol exposure. Gene ontology and pathway analysis highlighted extracellular matrix deposition as a possible difference between PSS and control MSG-MSCs. MSG-MSCs demonstrated increased α-smooth muscle actin expression in PSS, indicating a partial myofibroblast-like adaptation. CONCLUSIONS These findings establish similar immune regulatory function of MSG-MSCs in both PSS and control patients, precluding intrinsic MSC immune regulatory defects in PSS. PSS MSG-MSCs show a partial imprinted myofibroblast-like phenotype that may arise in the setting of chronic inflammation, providing a plausible etiology for PSS-related glandular fibrosis.
Collapse
Affiliation(s)
- Sara S McCoy
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Maxwell Parker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yun Liang
- Department of Medical Biology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Yin H, Kalra L, Lai Z, Guimaro MC, Aber L, Warner BM, Michael D, Zhang N, Cabrera-Perez J, Karim A, Swaim WD, Afione S, Voigt A, Nguyen CQ, Yu PB, Bloch DB, Chiorini JA. Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjögren's syndrome in mice. Sci Rep 2020; 10:2967. [PMID: 32076051 PMCID: PMC7031521 DOI: 10.1038/s41598-020-59443-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease, with only palliative treatments available. Recent work has suggested that increased bone morphogenetic protein 6 (BMP6) expression could alter cell signaling in the salivary gland (SG) and result in the associated salivary hypofunction. We examined the prevalence of elevated BMP6 expression in a large cohort of pSS patients and tested the therapeutic efficacy of BMP signaling inhibitors in two pSS animal models. Increased BMP6 expression was found in the SGs of 54% of pSS patients, and this increased expression was correlated with low unstimulated whole saliva flow rate. In mouse models of SS, inhibition of BMP6 signaling reduced phosphorylation of SMAD1/5/8 in the mouse submandibular glands, and led to a recovery of SG function and a decrease in inflammatory markers in the mice. The recovery of SG function after inhibition of BMP6 signaling suggests cellular plasticity within the salivary gland and a possibility for therapeutic intervention that can reverse the loss of function in pSS.
Collapse
Affiliation(s)
- Hongen Yin
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lovika Kalra
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Zhennan Lai
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Maria C Guimaro
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Aber
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Drew Michael
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhang
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Javier Cabrera-Perez
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Arif Karim
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - William D Swaim
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Afione
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alexandria Voigt
- Department of Pathology and Infectious Diseases, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Pathology and Infectious Diseases, University of Florida, Gainesville, FL, USA
| | - Paul B Yu
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John A Chiorini
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Vivino FB, Bunya VY, Massaro-Giordano G, Johr CR, Giattino SL, Schorpion A, Shafer B, Peck A, Sivils K, Rasmussen A, Chiorini JA, He J, Ambrus JL. Sjogren's syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin Immunol 2019; 203:81-121. [PMID: 31022578 DOI: 10.1016/j.clim.2019.04.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Frederick B Vivino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Vatinee Y Bunya
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Giacomina Massaro-Giordano
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Chadwick R Johr
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Stephanie L Giattino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Annemarie Schorpion
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Brian Shafer
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, PO Box 100125, Gainesville, FL 32610, USA.
| | - Kathy Sivils
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - John A Chiorini
- NIH, Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, Building 10, Room 1n113, 10 Center DR Msc 1190, Bethesda, MD 20892-1190, USA.
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Toshio Odani
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Mendi A, Ulutürk H, Ataç MS, Yılmaz D. Stem Cells for the Oromaxillofacial Area: Could they be a promising source for regeneration in dentistry? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:101-121. [PMID: 30725365 DOI: 10.1007/5584_2018_327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oromaxillofacial tissues (OMT) are composed of tooth and bone, together with nerves and blood vessels. Such a composite material is a huge source for mesenchymal stem cells (MSCs) that can be obtained with ease from extracted teeth, teeth structures and socket blood, flapped gingiva tissue, and mandibular/maxillar bone marrow. They offer a biological answer for restoring damaged dental tissues such as the regeneration of alveolar bone, prevention of pulp tissue defects, and dental structures. Dental tissue-derived mesenchymal stem cells share properties with bone marrow-derived mesenchymal stem cells and there is a considerable potential for these cells to be used in different stem cell-based therapies, such as bone and nerve regeneration. Dental pulp tissue might be a very good source for neurological disorders whereas gingiva-derived mesenchymal stem cells could be a good immune modulatory/suppressive mediators. OMT-MSCs is also promising candidates for regeneration of orofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology and potential for future regeneration strategies of MSCs in oromaxillofacial research.
Collapse
Affiliation(s)
- Ayşegül Mendi
- Faculty of Dentistry, Department of Basic Sciences, Gazi University, Ankara, Turkey.
| | - Hacer Ulutürk
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara, Turkey
| | - Mustafa Sancar Ataç
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara, Turkey
| | - Derviş Yılmaz
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|