1
|
Borkowska P, Kowalczyk M, Zielińska A, Poskrobko K, Rother MB, Paul-Samojedny M, Kowalski J. NGF regulates survival and differentiation of umbilical mesenchymal stem/stromal cells into GABAergic, dopaminergic and cholinergic lineages. Eur J Pharm Sci 2025:107053. [PMID: 40010415 DOI: 10.1016/j.ejps.2025.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Mesenchymal stem cells advantageous properties have led scientists to conduct trials on a range of medical conditions, including incurable neurodegenerative diseases. Wharton-Jelly derived mesenchymal stem cells, given their ease of collection, are frequently selected for these studies. This research aimed to investigate the effects of nerve growth factor (NGF) gene overexpression on the neural differentiation, survivability, and gene and protein expression of these cells. The level of gene expression was tested using the ddPCR method. Six umbilical cords from donors were collected, and three randomly chosen primary cultures of Wharton-Jelly derived mesenchymal stem cells were used in experiment. Cells were transduced with lentiviral vectors and underwent a 12-day differentiation process. The results revealed neuron-like cells with significantly high expression of CHAT, GAD2 and TH genes. A corresponding increase in protein expression was also observed. Immunostaining demonstrated notable differences in neuron-like phenotypes, contingent on the environmental conditions of the research groups. Throughout the experiment, samples with transduced mesenchymal stem cells overexpressing the NGF gene showed the highest expression levels from almost all of studied genes and proteins, and were also the most phenotypically similar to neuron-like cells. The study concluded that sustained overexpression of NGF: guides mesenchymal stem cells towards the neural pathway, facilitates the differentiation of modified mesenchymal stem cells into GABAergic, dopaminergic, and cholinergic neuron-like cells, suggests that GABAergic neurons' marker predominantly co-expresses with other neurons' markers, such as cholinergic or dopaminergic ones, increases survivability of modified mesenchymal stem cells in toxic conditions; The limitations of the study is that we merely know that cells have begun to express neurogenic markers, but in the absence of standards for mature neuronal markers, we do not yet know how far they have progressed as differentiating cells.
Collapse
Affiliation(s)
- Paulina Borkowska
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Małgorzata Kowalczyk
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Aleksandra Zielińska
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Karol Poskrobko
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, The Netherlands
| | | | - Jan Kowalski
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Zhang F, Zhang L, Yu H. Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. Curr Stem Cell Res Ther 2024; 19:1195-1209. [PMID: 38523514 DOI: 10.2174/011574888x311270240319084835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.
Collapse
Affiliation(s)
- Fan Zhang
- Faculty of Life Sciences and Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People's Hospital of Jinan (The Third Affiliated Hospital of Shandong First Medical University), Jinan, 250031, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hao Yu
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
4
|
Truong NC, Phan TNM, Huynh NT, Pham KD, Van Pham P. Interferon-Gamma Increases the Immune Modulation of Umbilical Cord-Derived Mesenchymal Stem Cells but Decreases Their Chondrogenic Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [PMID: 37291444 DOI: 10.1007/5584_2023_776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The pro-inflammatory cytokine interferon-gamma (IFN-γ) is reported to be an agent that boosts the immune modulation of mesenchymal stem cells (MSCs). However, the effects of IFN-γ on the chondrogenic potential of treated MSCs have not been evaluated in depth. This study aimed to evaluate the effects of IFN-γ on the immune modulation and chondrogenic potential of human umbilical cord-derived MSCs (hUC-MSCs). METHODS UC-MSCs were isolated and expanded following published protocols. They were characterized as MSCs before their use in further experiments. The UC-MSCs were treated with IFN-γ at 10 ng/mL for 48 h. Changes in phenotype were investigated based on changes in MSC markers, immunomodulatory genes (TGF-β, IL-4, and IDO) for immune modulation, and cartilage-related genes during the induction of differentiation (Col1a2, Col2a1, Sox9, Runx2, and Acan) for chondrogenic potential. RESULTS IFN-γ-treated UC-MSCs maintained MSC markers and exhibited decreased expression of transcriptional regulatory factors in chondrogenesis (Sox9 and Runx2) and the extracellular matrix-specific genes Col1a2 and Acan but not Col2a1 compared to non-treated cells (p < 0.05). Furthermore, the immunomodulatory capability of IFN-γ-treated UC-MSCs was clearly revealed through their increased expression of IDO and IL-4 and decreased expression of TGF-β compared to non-treated cells (p < 0.05). CONCLUSION This study demonstrated that UC-MSCs treated with IFN-γ at 10 ng/mL had reduced expression of chondrocyte-specific genes; however, they maintained multi-lineage differentiation and exhibited immunomodulatory properties.
Collapse
Affiliation(s)
- Nhat Chau Truong
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Thu Ngoc-Minh Phan
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nhi Thao Huynh
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Viet Nam
| | - Khuong Duy Pham
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science, Ho Chi Minh City, Viet Nam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
- Laboratory of Cancer Research, University of Science, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against Parkinson's disease. Neurol Sci 2023:10.1007/s10072-023-06706-y. [PMID: 36949298 DOI: 10.1007/s10072-023-06706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
Parkinson's disease (PD) is a chronic, progressive, neurodegenerative disease. The predominant pathology of PD is the loss of dopaminergic cells in the substantia nigra. Cell transplantation is a strategy with significant potential for treating PD; mesenchymal stem cells (MSCs) are a tremendous therapeutic cell source because they are easily accessible. MSC-derived exosomes with potential protective action in lesioned sites serve as an essential promoter of neuroprotection, and neurodifferentiation, by modulating neural stem cells, neurons, glial cells, and axonal growth in vitro and in vivo environments. The biological properties of MSC-derived exosomes have been proposed as a beneficial tool in different pathological conditions, including PD. Therefore, in this review, we assort the current understanding of MSC-derived exosomes as a new possible therapeutic strategy for PD by providing an overview of the potential role of miRNAs as a component of exosomes in the cellular and molecular basis of PD.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neda Yazdanfar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
7
|
Karnas E, Dudek P, Zuba-Surma EK. Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Front Immunol 2023; 14:1120175. [PMID: 36761725 PMCID: PMC9902918 DOI: 10.3389/fimmu.2023.1120175] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.
Collapse
|
8
|
Ma X, Feng Y, Quan X, Geng B, Li G, Fu X, Zeng L. Multi-omics analysis revealed the role of CCT2 in the induction of autophagy in Alzheimer's disease. Front Genet 2023; 13:967730. [PMID: 36704351 PMCID: PMC9871314 DOI: 10.3389/fgene.2022.967730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer's disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in Alzheimer's disease. First, bioinformatics database analysis revealed that CCT2 was significantly downregulated in patients with Alzheimer's disease and associated with autophagic clearance of β-amyloid. The 789 differentially expressed genes overlapped in AD-group and CCT2-low/high group, and the CCT2-high-associated genes screened by Pearson coefficients were enriched in protein folding, autophagy, and messenger RNA stability regulation pathways. These results suggest that CCT2 is significantly and positively associated with multiple pathways linked to autophagy and negatively associated with neuronal death. The logistic prediction model with 13 key genes, such as CCT2, screened in this study better predicts Alzheimer's disease occurrence (AUC = 0.9671) and is a favorable candidate for predicting potential biological targets of Alzheimer's disease. Additionally, this study predicts reciprocal micro RNAs and small molecule drugs for hub genes. Our findings suggest that low CCT2 expression may be responsible for the autophagy suppression in Alzheimer's disease, providing an accurate explanation for its pathogenesis and new targets and small molecule inhibitors for its treatment.
Collapse
Affiliation(s)
- Xueting Ma
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Feng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Quan
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Bingyu Geng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Guodong Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Zeng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Linlin Zeng,
| |
Collapse
|
9
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
10
|
Zhu K, Tao Q, Yan J, Lang Z, Li X, Li Y, Fan C, Yu Z. Machine learning identifies exosome features related to hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1020415. [PMID: 36200042 PMCID: PMC9527306 DOI: 10.3389/fcell.2022.1020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. There is still a lack of effective biomarkers to predict its prognosis. Exosomes participate in intercellular communication and play an important role in the development and progression of cancers. Methods: In this study, two machine learning methods (univariate feature selection and random forest (RF) algorithm) were used to select 13 exosome-related genes (ERGs) and construct an ERG signature. Based on the ERG signature score and ERG signature-related pathway score, a novel RF signature was generated. The expression of BSG and SFN, members of 13 ERGs, was examined using real-time quantitative polymerase chain reaction and immunohistochemistry. Finally, the effects of the inhibition of BSG and SFN on cell proliferation were examined using the cell counting kit-8 (CCK-8) assays. Results: The ERG signature had a good predictive performance, and the ERG score was determined as an independent predictor of HCC overall survival. Our RF signature showed an excellent prognostic ability with the area under the curve (AUC) of 0.845 at 1 year, 0.811 at 2 years, and 0.801 at 3 years in TCGA, which was better than the ERG signature. Notably, the RF signature had a good performance in the prediction of HCC prognosis in patients with the high exosome score and high NK score. Enhanced BSG and SFN levels were found in HCC tissues compared with adjacent normal tissues. The inhibition of BSG and SFN suppressed cell proliferation in Huh7 cells. Conclusion: The RF signature can accurately predict prognosis of HCC patients and has potential clinical value.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiatao Yan
- Wenzhou Business College, Wenzhou, China
| | - Zhichao Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhengping Yu,
| |
Collapse
|
11
|
Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci 2022; 23:ijms231810972. [PMID: 36142881 PMCID: PMC9502508 DOI: 10.3390/ijms231810972] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Puyang Gong
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| | - Jian Gu
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| |
Collapse
|
12
|
Watanabe Y, Fukuda T, Hayashi C, Nakao Y, Toyoda M, Kawakami K, Shinjo T, Iwashita M, Yamato H, Yotsumoto K, Taketomi T, Uchiumi T, Sanui T, Nishimura F. Extracellular vesicles derived from GMSCs stimulated with TNF-α and IFN-α promote M2 macrophage polarization via enhanced CD73 and CD5L expression. Sci Rep 2022; 12:13344. [PMID: 35922474 PMCID: PMC9349189 DOI: 10.1038/s41598-022-17692-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.
Collapse
Affiliation(s)
- Yukari Watanabe
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Chikako Hayashi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Nakao
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaaki Toyoda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Kawakami
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanori Shinjo
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Misaki Iwashita
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroaki Yamato
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Karen Yotsumoto
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takaharu Taketomi
- Department of Dental and Oral Surgery, St. Mary's Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Fusanori Nishimura
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
13
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Molnar V, Pavelić E, Vrdoljak K, Čemerin M, Klarić E, Matišić V, Bjelica R, Brlek P, Kovačić I, Tremolada C, Primorac D. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes (Basel) 2022; 13:genes13060949. [PMID: 35741711 PMCID: PMC9222975 DOI: 10.3390/genes13060949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
With the insufficient satisfaction rates and high cost of operative treatment for osteoarthritis (OA), alternatives have been sought. Furthermore, the inability of current medications to arrest disease progression has led to rapidly growing clinical research relating to mesenchymal stem cells (MSCs). The availability and function of MSCs vary according to tissue source. The three primary sources include the placenta, bone marrow, and adipose tissue, all of which offer excellent safety profiles. The primary mechanisms of action are trophic and immunomodulatory effects, which prevent the further degradation of joints. However, the function and degree to which benefits are observed vary significantly based on the exosomes secreted by MSCs. Paracrine and autocrine mechanisms prevent cell apoptosis and tissue fibrosis, initiate angiogenesis, and stimulate mitosis via growth factors. MSCs have even been shown to exhibit antimicrobial effects. Clinical results incorporating clinical scores and objective radiological imaging have been promising, but a lack of standardization in isolating MSCs prevents their incorporation in current guidelines.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Pavelić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Kristijan Vrdoljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Martin Čemerin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Emil Klarić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Vid Matišić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | | | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Correspondence:
| |
Collapse
|
15
|
Therapeutic Potential of Human Fetal Mesenchymal Stem Cells in Musculoskeletal Disorders: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031439. [PMID: 35163361 PMCID: PMC8835918 DOI: 10.3390/ijms23031439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration, but also the research evidence for the engraftment and immunomodulation of hfMSCs based on their sources and biological components. Of particular clinical relevance, the present review also suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis imperfecta.
Collapse
|
16
|
Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol 2021; 12:749192. [PMID: 34646275 PMCID: PMC8503317 DOI: 10.3389/fimmu.2021.749192] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
18
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
19
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Morente-López M, Fafián-Labora JA, Carrera M, de Toro FJ, Gil C, Mateos J, Arufe MC. Mesenchymal Stem Cell-Derived Extracellular Vesicle Isolation and Their Protein Cargo Characterization. Methods Mol Biol 2021; 2259:3-12. [PMID: 33687705 DOI: 10.1007/978-1-0716-1178-4_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the present protocol, extracellular vesicles (EVs) released from a primary culture of human umbilical cord mesenchymal stem cells (MSCs) were isolated by ultracentrifugation processes, characterized by transmission electron microscopy (TEM) and measured by nanoparticle tracking analysis (NTA). Protein was extracted from EVs using RIPA buffer and then was assessed for integrity. The proteomic content of the total EV protein samples was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after labeling by tandem mass tag (TMT). This combined approach allowed the development of an effective strategy to study the protein cargo from MSC-derived EVs.
Collapse
Affiliation(s)
- Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa. Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, Agrupación estratégica CICA-INIBIC, A Coruña, Spain
| | - Juan A Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa. Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, Agrupación estratégica CICA-INIBIC, A Coruña, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Francisco J de Toro
- Grupo de Terapia Celular y Medicina Regenerativa. Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, Agrupación estratégica CICA-INIBIC, A Coruña, Spain
| | - Concha Gil
- Proteomics Facility-Complutense University and Scientific Park Foundation of Madrid, Madrid, Spain
| | - Jesús Mateos
- Department of Food Technology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain.
| | - María C Arufe
- Grupo de Terapia Celular y Medicina Regenerativa. Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, Agrupación estratégica CICA-INIBIC, A Coruña, Spain.
| |
Collapse
|
21
|
Anderson J, Belafsky P, Clayton S, Archard J, Pavlic J, Rao S, Farwell DG, Kuhn M, Deng P, Halmai J, Bauer G, Fink K, Fury B, Perotti N, Walker J, Beliveau A, Birkeland A, Abouyared M, Cary W, Nolta J. Model of radiation-induced ambulatory dysfunction. JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/jmedsci.jmedsci_259_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Cheng A, Choi D, Lora M, Shum-Tim D, Rak J, Colmegna I. Human multipotent mesenchymal stromal cells cytokine priming promotes RAB27B-regulated secretion of small extracellular vesicles with immunomodulatory cargo. Stem Cell Res Ther 2020; 11:539. [PMID: 33317598 PMCID: PMC7734842 DOI: 10.1186/s13287-020-02050-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background The paracrine effects of multipotent mesenchymal stromal cells (MSCs) are mediated by their secretome composed by soluble factors (i.e., cytokines, growth factors, hormones) and extracellular vesicles (EVs). EVs promote intercellular communication, and the EV cargoes [e.g., proteins, soluble factors, microRNAs (miRNAs), messenger RNA (mRNA), DNA] reflect the molecular and functional characteristics of their parental cells. MSC-derived EVs (MSC-EVs) are currently evaluated as subcellular therapeutics. A key function of the MSC secretome is its ability to promote immune tolerance (i.e., immunopotency), a property that is enhanced by priming approaches (e.g., cytokines, hypoxia, chemicals) and inversely correlates with the age of the MSC donors. We evaluated mechanisms underlying MSC vesiculation and the effects of inflammation and aging on this process. Methods We evaluated the effects of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) on human adipose-derived MSC: (a) vesiculation (custom RT2 Profiler PCR Array), (b) EV profiles (Nanoparticle Tracking Analysis and Nanoparticle Flow Cytometry), (c) EV cargo (proteomic analysis and Western blot analysis), and (d) immunopotency (standard MSC:CD4 T cell proliferation inhibition assay). We confirmed the role of RAB27B on MSC vesiculation (RAB27B siRNA) and assessed its differential contribution to vesiculation in adult and pediatric MSCs (qPCR). Results Cytokine priming upregulated RAB27B in adipose-derived MSCs increasing their secretion of exosome-like small EVs (sEVs; < 200 nm) containing two key mediators of immunopotency: A20 and TSG-6. These EVs inhibited T cell proliferation in a dose-dependent manner. RAB27B siRNA inhibited MSC vesiculation. Adipose-derived MSCs isolated from pediatric donors exhibited higher RAB27B expression and secreted more sEVs than adult MSCs. Conclusions Cytokine priming is a useful strategy to harvest anti-inflammatory MSC-sEVs for clinical applications. Of relevance, donor age should be considered in the selection of MSC-sEVs for clinical applications.
Collapse
Affiliation(s)
- Anastasia Cheng
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Dongsic Choi
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Maximilien Lora
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Inés Colmegna
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada. .,Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol 2020; 319:H1162-H1180. [PMID: 32986962 PMCID: PMC7792703 DOI: 10.1152/ajpheart.00075.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are a subtype of extracellular vesicles. They range from 30 to 150 nm in diameter and originate from intraluminal vesicles. Exosomes were first identified as the mechanism for releasing unnecessary molecules from reticulocytes as they matured to red blood cells. Since then, exosomes have been shown to be secreted by a broad spectrum of cells and play an important role in the cardiovascular system. Different stimuli are associated with increased exosome release and result in different exosome content. The release of harmful DNA and other molecules via exosomes has been proposed as a mechanism to maintain cellular homeostasis. Because exosomes contain parent cell-specific proteins on the membrane and in the cargo that is delivered to recipient cells, exosomes are potential diagnostic biomarkers of various types of diseases, including cardiovascular disease. As exosomes are readily taken up by other cells, stem cell-derived exosomes have been recognized as a potential cell-free regenerative therapy to repair not only the injured heart but other tissues as well. The objective of this review is to provide an overview of the biological functions of exosomes in heart disease and tissue regeneration. Therefore, state-of-the-art methods for exosome isolation and characterization, as well as approaches to assess exosome functional properties, are reviewed. Investigation of exosomes provides a new approach to the study of disease and biological processes. Exosomes provide a potential "liquid biopsy," as they are present in most, if not all, biological fluids that are released by a wide range of cell types.
Collapse
Affiliation(s)
- Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | | | - Lily M A Rahnama
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Shenwen V Gu
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| |
Collapse
|
24
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
25
|
Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2020; 10:346-356. [PMID: 33112056 PMCID: PMC7900586 DOI: 10.1002/sctm.20-0284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oropeza
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|
27
|
Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease. Alzheimers Res Ther 2020; 12:109. [PMID: 32928293 PMCID: PMC7488700 DOI: 10.1186/s13195-020-00670-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) has been a devastating public health with the development of global aging. Approaches for reducing the current AD epidemic are becoming a primary focus of human healthcare due to the lack of achieved lasting and complete remission strategies to treat AD with the characteristics of heterogeneity and complexity. Exosomes, which is the new emerging approach to intercellular communication, provide novel perspective on identified therapeutic strategies of AD. Mesenchymal stem cell-derived exosomes (MSC-exos) are emerging to be an appealing therapeutic tool for AD, with the donor-derived properties and the characteristics of minimal immunogenicity, effortless storage, nature delivery vehicles, and low risks of tumor formation based on the previous researches. In this review, we elaborate the mechanism of MSC-exos in the treatment of AD and discuss limitations in the clinical application.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
28
|
Lee BC, Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 2020; 11:397. [PMID: 32928306 PMCID: PMC7491075 DOI: 10.1186/s13287-020-01920-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently been considered a promising alternative treatment for diverse immune disorders due to their unique biomedical potentials including the immunomodulatory property and ability to promote tissue regeneration. However, despite many years of pre-clinical studies in the research field, results from clinical trials using these cells have been diverse and conflicting. This discrepancy is caused by several factors such as poor engraftment, low survival rate, and donor-dependent variation of the cells. Enhancement of consistency and efficacy of MSCs remains a challenge to overcome the current obstacles to MSC-based therapy and subsequently achieve an improved therapeutic outcome. In this review, we investigated function enhancement strategies by categorizing as preconditioning, genetic manipulation, usage of supportive materials, and co-administration with currently used drugs. Preconditioning prior to MSC application makes up a large proportion of improvement strategies and preconditioning reagents include bioactive substances (cytokines, growth factors, and innate immune receptor agonists), hypoxia, and modification in culture method. With the piled results from previous studies using each method, disease- or patient-specific therapy has become more important than ever. On the other hand, genetic manipulation targeting therapeutic-associated factors or co-administration of biocompatible materials has also arisen as other therapeutic strategies. Thus, we summarized several specialized tactics by analyzing up-to-date results in the field and proposed some promising enhancement methods to improve the clinical outcomes for MSC therapy.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 2020; 111:3100-3110. [PMID: 32639675 PMCID: PMC7469857 DOI: 10.1111/cas.14563] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSC) are multipotent stromal cells with the potential to differentiate into several cell types. MSC‐based therapy has emerged as a promising strategy for various diseases. Accumulating evidence suggests that the paracrine effects of MSC are partially exerted by the secretion of soluble factors, in particular exosomes. MSC‐derived exosomes are involved in intercellular communication through transfer of proteins, RNA, DNA and bioactive lipids, which might constitute a novel intercellular communication mode. This review illustrates the current knowledge on the composition and biological functions as well as the therapeutic potential of MSC‐derived exosomes in cancer, with a focus on clinical translation opportunities.
Collapse
Affiliation(s)
- Zhou Xunian
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Bioengineering, Rice University, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
31
|
Branscome H, Paul S, Yin D, El-Hage N, Agbottah ET, Zadeh MA, Liotta LA, Kashanchi F. Use of Stem Cell Extracellular Vesicles as a "Holistic" Approach to CNS Repair. Front Cell Dev Biol 2020; 8:455. [PMID: 32587858 PMCID: PMC7298153 DOI: 10.3389/fcell.2020.00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodegeneration is a hallmark of many diseases and disorders of the central nervous system (CNS). High levels of neuroinflammation are often associated with irreparable damage to CNS cells due to the dysregulation of signaling cascades that are unable to restore a homeostatic balance. Due to the inherent complexity of the CNS, development of CNS-related therapeutics has met limited success. While stem cell therapy has been evaluated in the context of CNS repair, the mechanisms responsible for their functional properties have not been clearly defined. In recent years, there has been growing interest in the use of stem cell extracellular vesicles (EVs) for the treatment of various CNS pathologies as these vesicles are believed to mediate many of the functional effects associated with their donor stem cells. The potency of stem cell EVs is believed to be largely driven by their biological cargo which includes various types of RNAs, proteins, and cytokines. In this review, we describe the characteristic properties of stem cell EVs and summarize their reported neuroprotective and immunomodulatory functions. A special emphasis is placed on the identification of specific biological cargo, including proteins and non-coding RNA molecules, that have been found to be associated with stem cell EVs. Collectively, this review highlights the potential of stem cell EVs as an alternative to traditional stem cell therapy for the repair of cellular damage associated with diverse CNS pathologies.
Collapse
Affiliation(s)
- Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
- American Type Culture Collection (ATCC), Manassas, VA, United States
| | - Siddhartha Paul
- American Type Culture Collection (ATCC) Cell Systems, Gaithersburg, MD, United States
| | - Dezhong Yin
- American Type Culture Collection (ATCC) Cell Systems, Gaithersburg, MD, United States
| | - Nazira El-Hage
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Emmanuel T. Agbottah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
32
|
Clayton SM, Archard JA, Wagner J, Farwell DG, Bewley AF, Beliveau A, Birkeland A, Rao S, Abouyared M, Belafsky PC, Anderson JD. Immunoregulatory Potential of Exosomes Derived from Cancer Stem Cells. Stem Cells Dev 2020; 29:327-335. [PMID: 31856674 PMCID: PMC7081244 DOI: 10.1089/scd.2019.0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are malignancies that originate in the mucosal lining of the upper aerodigestive tract. Despite advances in therapeutic interventions, survival rates among HNSCC patients have remained static for years. Cancer stem cells (CSCs) are tumor-initiating cells that are highly resistant to treatment, and are hypothesized to contribute to a significant fraction of tumor recurrences. Consequently, further investigations of how CSCs mediate recurrence may provide insights into novel druggable targets. A key element of recurrence involves the tumor's ability to evade immunosurveillance. Recent published reports suggest that CSCs possess immunosuppressive properties, however, the underlying mechanism have yet to be fully elucidated. To date, most groups have focused on the role of CSC-derived secretory proteins, such as cytokines and growth factors. Here, we review the established immunoregulatory role of exosomes derived from mixed tumor cell populations, and propose further study of CSC-derived exosomes may be warranted. Such studies may yield novel insights into new druggable targets, or lay the foundation for future exosome-based diagnostics.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Joehleen A. Archard
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Joseph Wagner
- University of California Drug Discovery Consortium, University of California, Davis, Sacramento, California
| | - D. Gregory Farwell
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Arnaud F. Bewley
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Angela Beliveau
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Andrew Birkeland
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Shyam Rao
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Marianne Abouyared
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Peter C. Belafsky
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| | - Johnathon D. Anderson
- Department of Otolaryngology, University of California, Davis, Sacramento, California
| |
Collapse
|
33
|
Li X, Chen R, Kemper S, Brigstock DR. Dynamic Changes in Function and Proteomic Composition of Extracellular Vesicles from Hepatic Stellate Cells during Cellular Activation. Cells 2020; 9:cells9020290. [PMID: 31991791 PMCID: PMC7072607 DOI: 10.3390/cells9020290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
During chronic liver injury, hepatic stellate cells (HSC) undergo activation and are the principal cellular source of collagenous scar. In this study, we found that activation of mouse HSC (mHSC) was associated with a 4.5-fold increase in extracellular vesicle (EV) production and that fibrogenic gene expression (CCN2, Col1a1) was suppressed in Passage 1 (P1; activated) mHSC exposed to EVs from Day 4 (D4; relatively quiescent) mHSC but not to EVs from P1 mHSC. Conversely, gene expression (CCN2, Col1a1, αSMA) in D4 mHSC was stimulated by EVs from P1 mHSC but not by EVs from D4 mHSC. EVs from Day 4 mHSC contained only 46 proteins in which histones and keratins predominated, while EVs from P1 mHSC contained 337 proteins and these were principally associated with extracellular spaces or matrix, proteasome, collagens, vesicular transport, metabolic enzymes, ribosomes and chaperones. EVs from the activated LX-2 human HSC (hHSC) line also promoted fibrogenic gene expression in D4 mHSC in vitro and contained 524 proteins, many of which shared identity or had functional overlap with those in P1 mHSC EVs. The activation-associated changes in production, function and protein content of EVs from HSC likely contribute to the regulation of HSC function in vivo and to the fine-tuning of fibrogenic pathways in the liver.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - David R Brigstock
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-355-2824; Fax: +1-614-722-5892
| |
Collapse
|
34
|
Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 2020; 38:15-21. [PMID: 31381842 PMCID: PMC7004029 DOI: 10.1002/stem.3061] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles secreted by virtually all cells. Exosomes mediate the horizontal transfer of various macromolecules previously believed to be cell-autonomous in nature, including nonsecretory proteins, various classes of RNA, metabolites, and lipid membrane-associated factors. Exosomes derived from mesenchymal stem/stromal cells (MSCs) appear to be particularly beneficial for enhancing recovery in various models of disease. To date, there have been more than 200 preclinical studies of exosome-based therapies in a number of different animal models. Despite a growing number of studies reporting the therapeutic properties of MSC-derived exosomes, their underlying mechanism of action, pharmacokinetics, and scalable manufacturing remain largely outstanding questions. Here, we review the global trends associated with preclinical development of MSC-derived exosome-based therapies, including immunogenicity, source of exosomes, isolation methods, biodistribution, and disease categories tested to date. Although the in vivo data assessing the therapeutic properties of MSC-exosomes published to date are promising, several outstanding questions remain to be answered that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCalifornia
| | - D. Gregory Farwell
- Department of OtolaryngologyUniversity of California DavisSacramentoCalifornia
| | - Jan A. Nolta
- Institute for Regenerative CuresUniversity of California DavisSacramentoCalifornia
| | | |
Collapse
|
35
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
36
|
Munshi A, Mehic J, Creskey M, Gobin J, Gao J, Rigg E, Muradia G, Luebbert CC, Westwood C, Stalker A, Allan DS, Johnston MJW, Cyr T, Rosu-Myles M, Lavoie JR. A comprehensive proteomics profiling identifies NRP1 as a novel identity marker of human bone marrow mesenchymal stromal cell-derived small extracellular vesicles. Stem Cell Res Ther 2019; 10:401. [PMID: 31852509 PMCID: PMC6921509 DOI: 10.1186/s13287-019-1516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance. METHODS Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers. RESULTS Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 1010 ± 3.23 × 109/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors. CONCLUSION The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.
Collapse
Affiliation(s)
- Afnan Munshi
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jelica Mehic
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jonathan Gobin
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jun Gao
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Emma Rigg
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Gauri Muradia
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Christian C Luebbert
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carole Westwood
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Stalker
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Michael J W Johnston
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Carleton, Ottawa, Ontario, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
37
|
Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci 2019; 9:62. [PMID: 31402975 PMCID: PMC6683569 DOI: 10.1186/s13578-019-0325-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Colon-cancer-cell-derived exosomes (CDEs) are emerging mediators of tumorigenesis and serve as messengers of intercellular communication; however, whether the CDEs affect the proliferation of colon cancer cells themselves remains unknown. In the current study, the CDEs isolated from human colon cancer cell line SW480 and HCT116 showed a size range of 60-150 nm, typical bilayer-encapsulated vesicles, and expressed the exosomal markers CD81 and CD63. Incubation of SW480 cells with CDEs labelled with PKH67 fluorescent markers revealed that SW480 cells were able to absorb CDEs, which were mostly distributed around the nucleus. Hypoxic conditions promoted colon cancer cells to release a greater number of CDEs than normoxic conditions. MTT cell proliferation assay demonstrated CDEs promoted the proliferation of colon cancer cells in a time- and dose-dependent manner. Mechanistically, CDEs promoted colon cancer cell growth mainly through shortening mitosis duration. Meanwhile, the levels of phosphorylated STAT3 in colon cancer cells was up-regulated with the treatment of CDEs derived from hypoxic tumor cells. Our data suggests that colon cancer cells are able to promote self-growth through the secretion of exosomes, especially under hypoxic conditions, which shortens mitosis duration and activates STAT3.
Collapse
|
38
|
Najar M, Bouhtit F, Melki R, Afif H, Hamal A, Fahmi H, Merimi M, Lagneaux L. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges. J Clin Med 2019; 8:jcm8050626. [PMID: 31071990 PMCID: PMC6572531 DOI: 10.3390/jcm8050626] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cells have been the focus of intense research opening up new possibilities for the treatment of various diseases. Mesenchymal stromal cells (MSCs) are multipotent cells with relevant immunomodulatory properties and are thus considered as a promising new strategy for immune disease management. To enhance their efficiency, several issues related to both MSC biology and functions are needed to be identified and, most importantly, well clarified. The sources from which MSCs are isolated are diverse and might affect their properties. Both clinicians and scientists need to handle a phenotypic-characterized population of MSCs, particularly regarding their immunological profile. Moreover, it is now recognized that the tissue-reparative effects of MSCs are based on their immunomodulatory functions that are activated following a priming/licensing step. Thus, finding the best ways to pre-conditionate MSCs before their injection will strengthen their activity potential. Finally, soluble elements derived from MSC-secretome, including extracellular vesicles (EVs), have been proposed as a cell-free alternative tool for therapeutic medicine. Collectively, these features have to be considered and developed to ensure the efficiency and safety of MSC-based therapy. By participating to this Special Issue “Mesenchymal Stem/Stromal Cells in Immunity and Disease”, your valuable contribution will certainly enrich the content and discussion related to the thematic of MSCs.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Fatima Bouhtit
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium.
| | - Rahma Melki
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Hassan Afif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
| | - Abdellah Hamal
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
| | - Makram Merimi
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium.
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
| |
Collapse
|
39
|
Showalter MR, Wancewicz B, Fiehn O, Archard JA, Clayton S, Wagner J, Deng P, Halmai J, Fink KD, Bauer G, Fury B, Perotti NH, Apperson M, Butters J, Belafsky P, Farwell G, Kuhn M, Nolta JA, Anderson JD. Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochem Biophys Res Commun 2019; 512:729-735. [PMID: 30926165 DOI: 10.1016/j.bbrc.2019.03.119] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) based therapies are currently being evaluated as a putative therapeutic in numerous human clinical trials. Recent reports have established that exosomes mediate much of the therapeutic properties of MSCs. Exosomes are nanovesicles which mediate intercellular communication, transmitting signals between cells which regulate a diverse range of biological processes. MSC-derived exosomes are packaged with numerous types of proteins and RNAs, however, their metabolomic and lipidomic profiles to date have not been well characterized. We previously reported that MSCs, in response to priming culture conditions that mimic the in vivo microenvironmental niche, substantially modulate cellular signaling and significantly increase the secretion of exosomes. Here we report that MSCs exposed to such priming conditions undergo glycolytic reprogramming, which homogenizes MSCs' metabolomic profile. In addition, we establish that exosomes derive from primed MSCs are packaged with numerous metabolites that have been directly associated with immunomodulation, including M2 macrophage polarization and regulatory T lymphocyte induction.
Collapse
Affiliation(s)
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, USA
| | | | - Shannon Clayton
- Department of Otolaryngology, University of California Davis, USA
| | - Joseph Wagner
- Drug Discovery Consortium, University of California, USA
| | - Peter Deng
- Department of Neurology, University of California Davis, USA
| | - Julian Halmai
- Department of Neurology, University of California Davis, USA
| | - Kyle D Fink
- Department of Neurology, University of California Davis, USA
| | - Gerhard Bauer
- Good Manufacturing Practice Facility, University of California Davis, USA
| | - Brian Fury
- Good Manufacturing Practice Facility, University of California Davis, USA
| | - Nicholas H Perotti
- Good Manufacturing Practice Facility, University of California Davis, USA
| | | | - Janelle Butters
- Department of Neurology, University of California Davis, USA
| | - Peter Belafsky
- Department of Otolaryngology, University of California Davis, USA
| | - Gregory Farwell
- Department of Otolaryngology, University of California Davis, USA
| | - Maggie Kuhn
- Department of Otolaryngology, University of California Davis, USA
| | - Jan A Nolta
- Stem Cell Program, University of California Davis, USA
| | | |
Collapse
|