1
|
Nakagomi T. Injury/ischemia-induced stem cells: up-to-date knowledge and future perspectives for neural regeneration. Neural Regen Res 2025; 20:797-798. [PMID: 38886944 PMCID: PMC11433906 DOI: 10.4103/nrr.nrr-d-24-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
2
|
Fujiwara S, Nakano-Doi A, Sawano T, Kubo S, Doe N, Nakagomi T. Administration of Human-Derived Mesenchymal Stem Cells Activates Locally Stimulated Endogenous Neural Progenitors and Reduces Neurological Dysfunction in Mice after Ischemic Stroke. Cells 2024; 13:939. [PMID: 38891071 PMCID: PMC11171641 DOI: 10.3390/cells13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Increasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear. Therefore, mice were subjected to ischemic stroke, and mCherry-labeled human MSCs (h-MSCs) were transplanted around the injured sites of nestin-GFP transgenic mice. Immunohistochemistry of brain sections revealed that many GFP+ cells were observed around the grafted sites rather than in the regions in the subventricular zone, suggesting that transplanted mCherry+ h-MSCs stimulated GFP+ locally activated endogenous iNSPCs. In support of these findings, coculture studies have shown that h-MSCs promoted the proliferation and neural differentiation of iNSPCs extracted from ischemic areas. Furthermore, pathway analysis and gene ontology analysis using microarray data showed that the expression patterns of various genes related to self-renewal, neural differentiation, and synapse formation were changed in iNSPCs cocultured with h-MSCs. We also transplanted h-MSCs (5.0 × 104 cells/µL) transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion. Compared with phosphate-buffered saline-injected controls, h-MSC transplantation displayed significantly improved neurological functions. These results suggest that h-MSC transplantation improves neurological function after ischemic stroke in part by regulating the fate of iNSPCs.
Collapse
Affiliation(s)
- Shuichi Fujiwara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| |
Collapse
|
3
|
Nishiyama R, Nakagomi T, Nakano-Doi A, Kuramoto Y, Tsuji M, Yoshimura S. Neonatal Brains Exhibit Higher Neural Reparative Activities than Adult Brains in a Mouse Model of Ischemic Stroke. Cells 2024; 13:519. [PMID: 38534363 PMCID: PMC10969155 DOI: 10.3390/cells13060519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The neonatal brain is substantially more resistant to various forms of injury than the mature brain. For instance, the prognosis following ischemic stroke is generally poor in the elderly but favorable in neonates. Identifying the cellular and molecular mechanisms underlying reparative activities in the neonatal brain after ischemic injury may provide feasible targets for therapeutic interventions in adults. To this end, we compared the reparative activities in postnatal day 13 and adult (8-12-week-old) mouse brain following middle cerebral artery occlusion. Immunohistochemistry revealed considerably greater generation of ischemia-induced neural stem/progenitor cells (iNSPCs) expressing nestin or Sox2 in ischemic areas of the neonatal brain. The iNSPCs isolated from the neonatal brain also demonstrated greater proliferative activity than those isolated from adult mice. In addition, genes associated with neuronal differentiation were enriched in iNSPCs isolated from the neonatal brain according to microarray and gene ontogeny analyses. Immunohistochemistry further revealed considerably greater production of newborn doublecortin+ neurons at the sites of ischemic injury in the neonatal brain compared to the adult brain. These findings suggest that greater iNSPC generation and neurogenic differentiation capacities contribute to the superior regeneration of the neonatal brain following ischemia. Together, our findings may help identify therapeutic targets for enhancing the reparative potential of the adult brain following stroke.
Collapse
Affiliation(s)
- Ryo Nishiyama
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (R.N.); (A.N.-D.)
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (Y.K.); (S.Y.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (R.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (R.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (Y.K.); (S.Y.)
| | - Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (Y.K.); (S.Y.)
| |
Collapse
|
4
|
Nakagomi T, Nakano-Doi A, Kubo S, Sawano T, Kuramoto Y, Yamahara K, Matsuyama T, Takagi T, Doe N, Yoshimura S. Transplantation of Human Brain-Derived Ischemia-Induced Multipotent Stem Cells Ameliorates Neurological Dysfunction in Mice After Stroke. Stem Cells Transl Med 2023:7177376. [PMID: 37221140 DOI: 10.1093/stcltm/szad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), Chuo-ku, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| |
Collapse
|
5
|
A transient magnetic resonance spectroscopy peri-ischemic peak: a possible radiological biomarker of post-stroke neurogenesis. Neurol Sci 2023; 44:967-978. [PMID: 36348170 DOI: 10.1007/s10072-022-06479-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIMS In adult human brain, neurogenesis seems to persist throughout life and ischemic stroke was proved to stimulate this process. Using magnetic resonance spectroscopy (MRS), a 1.28-ppm peak, putative biomarker of neural progenitor cells (NPCs), was identified both in vitro and in vivo, i.e., in normal rat and healthy human brain. The aim of our study was to identify a 1.28-ppm peak in adult human ischemic brain by using 3.0 T multivoxel MRS. METHODS We studied 10 patients, six males, and four females, with a mean (± SD) age of 59.3 (± 17.3), at three different time points from ischemic stroke onset (T0: < 5 days; T14: 14 ± 2 days; T30: 30 ± 2 days). RESULTS In all patients except one, a 1.28-ppm peak at T14 was detected at the ischemic boundary (all p values < 0.05). MRS performed on six voluntary age-matched healthy subjects did not detect any 1.28-ppm peak. CONCLUSIONS The nature of this 1.28-pm peak is uncertain; however, our data support the hypothesis that it might represent a marker of NPCs in post-stroke human brain.
Collapse
|
6
|
Minato Y, Nakano-Doi A, Maeda S, Nakagomi T, Yagi H. A Bone Morphogenetic Protein Signaling Inhibitor, LDN193189, Converts Ischemia-Induced Multipotent Stem Cells into Neural Stem/Progenitor Cell-Like Cells. Stem Cells Dev 2022; 31:756-765. [PMID: 36053672 DOI: 10.1089/scd.2022.0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy is used to restore neurological function in stroke patients. We have previously reported that ischemia-induced multipotent stem cells (iSCs), which are likely derived from brain pericytes, develop in poststroke human and mouse brains. Although we have demonstrated that iSCs can differentiate into neural lineage cells, the factors responsible for inducing this differentiation remain unclear. In this study, we found that LDN193189, a bone morphogenetic protein (BMP) inhibitor, caused irreversible changes in the shape of iSCs. In addition, compared with iSCs incubated without LDN193189, the iSCs incubated with LDN193189 (LDN-iSCs) showed upregulated expression of neural lineage-related genes and proteins, including those expressed in neural stem/progenitor cells (NSPCs), and downregulated expression of mesenchymal and pericytic-related genes and proteins. Moreover, microarray analysis revealed that LDN-iSCs and NSPCs had similar gene expression profiles. Furthermore, LDN-iSCs differentiated into electrophysiologically functional neurons. These results indicate that LDN193189 induces NSPC-like cells from iSCs, suggesting that bioactive molecules regulating BMP signaling are potential targets for promoting neurogenesis from iSCs in the pathological brain, such as during ischemic stroke. We believe that our findings will bring us one step closer to the clinical application of iSCs.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan.,Department of Therapeutic Progress in Brain Diseases, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan.,Department of Therapeutic Progress in Brain Diseases, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
7
|
Sakuma R, Kobayashi M, Kobashi R, Onishi M, Maeda M, Kataoka Y, Imaoka S. Brain Pericytes Acquire Stemness via the Nrf2-Dependent Antioxidant System. Stem Cells 2022; 40:641-654. [PMID: 35353891 DOI: 10.1093/stmcls/sxac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Pericytes (PCs) are a mural support cell population elongated at intervals along the walls of capillaries. Recent studies reported that PCs are multipotent cells that are activated in response to tissue injury and contribute to the regenerative process. Using a C.B-17 mouse model of ischemic stroke, it has been proposed that normal brain pericytes (nPCs) are converted to ischemic pericytes (iPCs), some of which function as multipotent stem cells. Furthermore, oxygen-glucose deprivation (OGD) promoted mesenchymal-epithelial transition in nPCs; however, nestin was not induced under OGD conditions. Therefore, further studies are needed to elucidate the PC reprogramming phenomenon. We herein isolated nPCs from the cortex of C.B-17 mice, and compared the traits of iPCs and nPCs. The results obtained showed that nPCs and iPCs shared common pericytic markers. Furthermore, intercellular levels of reactive oxygen species and the nuclear accumulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a key player in antioxidant defenses, were higher in iPCs than in nPCs. OGD/reoxygenation and a treatment with tBHQ, an Nrf2 inducer, increased nestin levels in nPCs. Moreover, epithelial marker levels, including nestin, Sox2, and CDH1 (E-cadherin) mRNAs, were elevated in Nrf2-overexpressing PCs, which formed neurosphere-like cell clusters that differentiated into Tuj1-positive neurons. The present results demonstrate that oxidative stress and Nrf2 are required for the generation of stem cells after stroke and will contribute to the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Rika Sakuma
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Miku Kobayashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Rui Kobashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mako Onishi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Susumu Imaoka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
8
|
Kuramoto Y, Takagi T, Takeda Y, Rajbhandari S, Yoshida Y, Nakagomi T, Yoshimura S. Identification of novel multipotent stem cells in mouse spinal cord following traumatic injury. Stem Cells Dev 2022; 31:555-568. [PMID: 35708107 DOI: 10.1089/scd.2021.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We showed that injury-induced multipotent stem cells (iSCs) emerge in the brain after stroke. These brain-derived iSCs (B-iSCs) can differentiate into various lineages, including neurons. This study aimed to determine whether similar stem cells can be induced even after non-ischemic injuries, such as trauma to the spinal cord. We characterized these cells, mainly focusing on their stemness, multipotency, and neuronal differentiation activities. Spinal cord injury was produced using forceps in adult mice. On day 3 after spinal cord injury, samples were obtained from the injured areas. Spinal cord sections were subjected to histological analyses. Cells were isolated and assessed for proliferative activities, immunohistochemistry, RT-PCR, FACS, and microarray analysis. Although nerve cell morphology was disrupted within the injured spinal cord, our histological observations revealed the presence of cells expressing stem cells, such as nestin and Sox2 in these areas. In addition, cells extracted from injured areas exhibited high proliferative abilities. These cells also expressed markers of both neural stem cells (e.g., nestin, Sox2) and multipotent stem cells (e.g., Sox2, c-myc, Klf4). They differentiated into adipocytes, osteocytes and chondrocytes, as well as neuronal cells. Microarray analysis further identified similar properties between spinal cord (SC)-derived iSCs and B-iSCs. However, SC-iSCs revealed specific genes related to the regulation of stemness and neurogenesis. We identified similar features related to multipotency in SC-iSCs compared to B-iSCs, including neuronal differentiation potential. Although the differences between SC-iSCs and B-iSCs remain largely undetermined, the present study shows that iSCs can develop even after non-ischemic injuries such as trauma. This phenomenon can occur outside the brain within the CNS.
Collapse
Affiliation(s)
- Yoji Kuramoto
- Hyogo College of Medicine, 12818, Neurosurgery, 1-1, Mukogawa-cho, Nishinomiya, Japan, 663-8501;
| | - Toshinori Takagi
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Hyogo, Japan;
| | - Yuki Takeda
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan;
| | | | - Yasunori Yoshida
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan;
| | - Takayuki Nakagomi
- Hyogo College of Medicine, 12818, Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan.,Hyogo College of Medicine, 12818, Therapeutic Progress in Brain Diseases, Nishinomiya, Hyogo, Japan;
| | - Shinichi Yoshimura
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan.,Hyogo College of Medicine, 12818, Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan;
| |
Collapse
|
9
|
Nishie H, Nakano-Doi A, Sawano T, Nakagomi T. Establishment of a Reproducible Ischemic Stroke Model in Nestin-GFP Mice with High Survival Rates. Int J Mol Sci 2021; 22:ijms222312997. [PMID: 34884811 PMCID: PMC8657611 DOI: 10.3390/ijms222312997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
An accumulation of evidence shows that endogenous neural stem/progenitor cells (NSPCs) are activated following brain injury such as that suffered during ischemic stroke. To understand the expression patterns of these cells, researchers have developed mice that express an NSPC marker, Nestin, which is detectable by specific reporters such as green fluorescent protein (GFP), i.e., Nestin-GFP mice. However, the genetic background of most transgenic mice, including Nestin-GFP mice, comes from the C57BL/6 strain. Because mice from this background strain have many cerebral arterial branches and collateral vessels, they are accompanied by several major problems including variable ischemic areas and high mortality when subjected to ischemic stroke by occluding the middle cerebral artery (MCA). In contrast, CB-17 wild-type mice are free from these problems. Therefore, with the aim of overcoming the aforementioned defects, we first crossed Nestin-GFP mice (C57BL/6 background) with CB-17 wild-type mice and then developed Nestin-GFP mice (CB-17 background) by further backcrossing the generated hybrid mice with CB-17 wild-type mice. Subsequently, we investigated the phenotypes of the established Nestin-GFP mice (CB-17 background) following MCA occlusion; these mice had fewer blood vessels around the MCA compared with the number of blood vessels in Nestin-GFP mice (C57BL/6 background). In addition, TTC staining showed that infarcted volume was variable in Nestin-GFP mice (C57BL/6 background) but highly reproducible in Nestin-GFP mice (CB-17 background). In a further investigation of mice survival rates up to 28 days after MCA occlusion, all Nestin-GFP mice (CB-17 background) survived the period, whereas Nestin-GFP mice (C57BL/6 background) frequently died within 1 week and exhibited a higher mortality rate. Immunohistochemistry analysis of Nestin-GFP mice (CB-17 background) showed that GFP+ cells were mainly obverted in not only conventional neurogenic areas, including the subventricular zone (SVZ), but also ischemic areas. In vitro, cells isolated from the ischemic areas and the SVZ formed GFP+ neurosphere-like cell clusters that gave rise to various neural lineages including neurons, astrocytes, and oligodendrocytes. However, microarray analysis of these cells and genetic mapping experiments by Nestin-CreERT2 Line4 mice crossed with yellow fluorescent protein (YFP) reporter mice (Nestin promoter-driven YFP-expressing mice) indicated that cells with NSPC activities in the ischemic areas and the SVZ had different characteristics and origins. These results show that the expression patterns and fate of GFP+ cells with NSPC activities can be precisely investigated over a long period in Nestin-GFP mice (CB-17 background), which is not necessarily possible with Nestin-GFP mice (C57BL/6 background). Thus, Nestin-GFP mice (CB-17 background) could become a useful tool with which to investigate the mechanism of neurogenesis via the aforementioned cells under pathological conditions such as following ischemic stroke.
Collapse
Affiliation(s)
- Hideaki Nishie
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.N.); (A.N.-D.)
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| |
Collapse
|
10
|
Adult Human Multipotent Neural Cells Could Be Distinguished from Other Cell Types by Proangiogenic Paracrine Effects via MCP-1 and GRO. Stem Cells Int 2021; 2021:6737288. [PMID: 34434240 PMCID: PMC8380502 DOI: 10.1155/2021/6737288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Adult human multipotent neural cells (ahMNCs) are unique cells derived from adult human temporal lobes. They show multipotent differentiation potentials into neurons and astrocytes. In addition, they possess proangiogenic capacities. The objective of this study was to characterize ahMNCs in terms of expression of cell type-specific markers, in vitro differentiation potentials, and paracrine factors compared with several other cell types including fetal neural stem cells (fNSCs) to provide detailed molecular and functional features of ahMNCs. Interestingly, the expression of cell type-specific markers of ahMNCs could not be differentiated from those of pericytes, mesenchymal stem cells (MSCs), or fNSCs. In contrast, differentiation potentials of ahMNCs and fNSCs into neural cells were higher than those of other cell types. Compared with MSCs, ahMNCs showed lower differentiation capacities into osteogenic and adipogenic cells. Moreover, ahMNCs uniquely expressed higher levels of MCP-1 and GRO family paracrine factors than fNSCs and MSCs. These high levels of MCP-1 and GRO family mediated in vivo proangiogenic effects of ahMNCs. These results indicate that ahMNCs have their own distinct characteristics that could distinguish ahMNCs from other cell types. Characteristics of ahMNCs could be utilized further in the preclinical and clinical development of ahMNCs for regenerative medicine. They could also be used as experimental references for other cell types including fNSCs.
Collapse
|
11
|
Decimo I, Dolci S, Panuccio G, Riva M, Fumagalli G, Bifari F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2020; 27:506-528. [PMID: 32935634 PMCID: PMC8442137 DOI: 10.1177/1073858420954826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence highlights the several roles that meninges play in
relevant brain functions as they are a protective membrane for the
brain, produce and release several trophic factors important for
neural cell migration and survival, control cerebrospinal fluid
dynamics, and embrace numerous immune interactions affecting neural
parenchymal functions. Furthermore, different groups have identified
subsets of neural progenitors residing in the meninges during
development and in the adulthood in different mammalian species,
including humans. Interestingly, these immature neural cells are able
to migrate from the meninges to the neural parenchyma and
differentiate into functional cortical neurons or oligodendrocytes.
Immature neural cells residing in the meninges promptly react to brain
disease. Injury-induced expansion and migration of meningeal neural
progenitors have been observed following experimental demyelination,
traumatic spinal cord and brain injury, amygdala lesion, stroke, and
progressive ataxia. In this review, we summarize data on the function
of meninges as stem cell niche and on the presence of immature neural
cells in the meninges, and discuss their roles in brain health and
disease. Furthermore, we consider the potential exploitation of
meningeal neural progenitors for the regenerative medicine to treat
neurological disorders.
Collapse
Affiliation(s)
- Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sissi Dolci
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Riva
- Unit of Neurosurgery, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Guido Fumagalli
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
13
|
Rajbhandari S, Beppu M, Takagi T, Nakano-Doi A, Nakagomi N, Matsuyama T, Nakagomi T, Yoshimura S. Ischemia-Induced Multipotent Stem Cells Isolated from Stroke Patients Exhibit Higher Neurogenic Differentiation Potential than Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:994-1006. [PMID: 32515302 DOI: 10.1089/scd.2020.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perivascular areas of the brain harbor multipotent stem cells. We recently demonstrated that after a stroke, brain pericytes exhibit features of multipotent stem cells. Moreover, these ischemia-induced multipotent stem cells (iSCs) are present within ischemic areas of the brain of patients diagnosed with stroke. Although increasing evidence shows that iSCs have traits similar to those of mesenchymal stem cells (MSCs), the phenotypic similarities and differences between iSCs and MSCs remain unclear. In this study, we used iSCs extracted from stroke patients (h-iSCs) and compared their neurogenic potential with that of human MSCs (h-MSCs) in vitro. Microarray analysis, fluorescence-activated cell sorting, immunohistochemistry, and multielectrode array were performed to compare the characteristics of h-iSCs and h-MSCs. Although h-iSCs and h-MSCs had similar gene expression profiles, the percentage expressing the neural stem/progenitor cell marker nestin was significantly higher in h-iSCs than in h-MSCs. Consistent with these findings, h-iSCs, but not h-MSCs, differentiated into electrophysiologically functional neurons. In contrast, although both h-iSCs and h-MSCs were able to differentiate into several mesodermal lineages, including adipocytes, osteocytes, and chondrocytes, the potential of h-iSCs to differentiate into adipocytes and osteocytes was relatively low. These results suggest that compared with h-MSCs, h-iSCs predominantly exhibit neural rather than mesenchymal lineages. In addition, these results indicate that h-iSCs have the potential to repair the injured brain of patients with stroke by directly differentiating into neuronal lineages.
Collapse
Affiliation(s)
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Nami Nakagomi
- Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan.,Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
14
|
Tanaka Y, Nakagomi N, Doe N, Nakano-Doi A, Sawano T, Takagi T, Matsuyama T, Yoshimura S, Nakagomi T. Early Reperfusion Following Ischemic Stroke Provides Beneficial Effects, Even After Lethal Ischemia with Mature Neural Cell Death. Cells 2020; 9:cells9061374. [PMID: 32492968 PMCID: PMC7349270 DOI: 10.3390/cells9061374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models—90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)—to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.
Collapse
Affiliation(s)
- Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan;
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| |
Collapse
|
15
|
Sawada R, Nakano-Doi A, Matsuyama T, Nakagomi N, Nakagomi T. CD44 expression in stem cells and niche microglia/macrophages following ischemic stroke. Stem Cell Investig 2020; 7:4. [PMID: 32309418 DOI: 10.21037/sci.2020.02.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Background CD44, an adhesion molecule in the hyaluronate receptor family, plays diverse and important roles in multiple cell types and organs. Increasing evidence is mounting for CD44 expression in various types of stem cells and niche cells surrounding stem cells. However, the precise phenotypes of CD44+ cells in the brain under pathologic conditions, such as after ischemic stroke, remain unclear. Methods In the present study, using a mouse model for cerebral infarction by middle cerebral artery (MCA) occlusion, we examined the localization and traits of CD44+ cells. Results In sham-mice operations, CD44 was rarely observed in the cortex of MCA regions. Following ischemic stroke, CD44+ cells emerged in ischemic areas of the MCA cortex during the acute phase. Although CD44 at ischemic areas was, in part, expressed in stem cells, it was also expressed in hematopoietic lineages, including activated microglia/macrophages, surrounding the stem cells. CD44 expression in microglia/macrophages persisted through the chronic phase following ischemic stroke. Conclusions These data demonstrate that CD44 is expressed in stem cells and cells in the niches surrounding them, including inflammatory cells, suggesting that CD44 may play an important role in reparative processes within ischemic areas under neuroinflammatory conditions; in particular, strokes.
Collapse
Affiliation(s)
- Rikako Sawada
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
16
|
Potential of Adult Endogenous Neural Stem/Progenitor Cells in the Spinal Cord to Contribute to Remyelination in Experimental Autoimmune Encephalomyelitis. Cells 2019; 8:cells8091025. [PMID: 31484369 PMCID: PMC6769975 DOI: 10.3390/cells8091025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Demyelination and remyelination play pivotal roles in the pathological process of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), a well-established animal model of MS. Although increasing evidence shows that various stimuli can promote the activation/induction of endogenous neural stem/progenitor cells (NSPCs) in the central nervous system, the potential contributions of these cells to remyelination following inflammatory injury remain to be fully investigated. In the present study, using an adult mouse model of EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide, we investigated whether adult NSPCs in the spinal cord can lead to remyelination under inflammatory conditions. Immunohistochemistry showed that cells expressing the NSPC marker Nestin appeared after MOG peptide administration, predominantly at the sites of demyelination where abundant inflammatory cells had accumulated, whereas Nestin+ cells were rarely present in the spinal cord of PBS-treated control mice. In vitro, Nestin+ NSPCs obtained from EAE mice spinal cords could differentiate into multiple neural lineages, including neurons, astrocytes, and myelin-producing oligodendrocytes. Using the Cre-LoxP system, we established a mouse strain expressing yellow fluorescent protein (YFP) under the control of the Nestin promoter and investigated the expression patterns of YFP-expressing cells in the spinal cord after EAE induction. At the chronic phase of the disease, immunohistochemistry showed that YFP+ cells in the injured regions expressed markers for various neural lineages, including myelin-forming oligodendrocytes. These results show that adult endogenous NSPCs in the spinal cord can be subject to remyelination under inflammatory conditions, such as after EAE, suggesting that endogenous NSPCs represent a therapeutic target for MS treatment.
Collapse
|
17
|
Nakagomi T, Takagi T, Beppu M, Yoshimura S, Matsuyama T. Neural regeneration by regionally induced stem cells within post-stroke brains: Novel therapy perspectives for stroke patients. World J Stem Cells 2019; 11:452-463. [PMID: 31523366 PMCID: PMC6716084 DOI: 10.4252/wjsc.v11.i8.452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a critical disease which causes serious neurological functional loss such as paresis. Hope for novel therapies is based on the increasing evidence of the presence of stem cell populations in the central nervous system (CNS) and the development of stem-cell-based therapies for stroke patients. Although mesenchymal stem cells (MSCs) represented initially a promising cell source, only a few transplanted MSCs were present near the injured areas of the CNS. Thus, regional stem cells that are present and/or induced in the CNS may be ideal when considering a treatment following ischemic stroke. In this context, we have recently showed that injury/ischemia-induced neural stem/progenitor cells (iNSPCs) and injury/ischemia-induced multipotent stem cells (iSCs) are present within post-stroke human brains and post-stroke mouse brains. This indicates that iNSPCs/iSCs could be developed for clinical applications treating patients with stroke. The present study introduces the traits of mouse and human iNSPCs, with a focus on the future perspective for CNS regenerative therapies using novel iNSPCs/iSCs.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|