1
|
Giovanetti K, Tuma RB, Sant'Ana Pegorin Brasil G, Miranda MCR, Borges FA, Tanaka JL, Burd BS, Cortellazzi KL, Guerra NB, Mussagy CU, Floriano JF, Dos Santos LS, de Melo Silva W, Cao W, Herculano RD, Caria PHF. β-Tricalcium phosphate incorporated natural rubber latex membranes for calvarial bone defects: Physicochemical, in vitro and in vivo assessment. Int J Biol Macromol 2024; 282:137328. [PMID: 39515716 DOI: 10.1016/j.ijbiomac.2024.137328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Natural rubber latex membrane (NRL) is a biocompatible macromolecule that stimulates angiogenesis and promotes bone repair. Similarly, β-tricalcium phosphate (β-TCP) is an osteoconductive and osteoinductive bioceramic widely used as a bone substitute. Here, we investigated the combined use of these biomaterials in the guided bone regeneration process for calvarial defects in rats. Physicochemical characterization was performed to evaluate the interaction between β-TCP and NRL. Membrane toxicity was assessed using MC3T3 osteoblasts culture and in vivo assays with Caenorhabditis elegans. Lastly, NRL membranes, NRL incorporated with β-TCP membranes (NRL-β-TCP), and a periosteum-only (control group) were tested on rodents. MC3T3 cells adhered to membranes, preserving their morphology and intercellular connections. NRL-β-TCP membranes demonstrated no toxicity in larvae, which maintained their sinusoidal wave shape. Tests results on rodents revealed statistical difference between the groups at 60 days post-operation. NRL-β-TCP (56.1 ± 14.0 %) had an average 1.48-fold higher than the control group (38.0 ± 9.1 %), with tissue production and bone remodeling. Our qualitative histological analyses revealed that membranes significantly accelerated bone formation without any signs of inflammatory reactions. We conclude that NRL-β-TCP has potential to be used for flat bone regeneration, with osteoconductive properties, being a cheap, biocompatible, and effective occlusive barrier.
Collapse
Affiliation(s)
- Karina Giovanetti
- Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Rafael Brull Tuma
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (USP), Diadema, SP, Brazil
| | - Felipe Azevedo Borges
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jean Lucas Tanaka
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Karine Laura Cortellazzi
- Departmentof Social Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), Bauru, São Paulo 17033-360, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil; National Heart and Lung Institute, Imperial College London, London, UK
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo (USP), 3900 Bandeirantes Avenue, Ribeirão Preto, SP 14.040-901, Brazil
| | - William de Melo Silva
- Institute of Biotechnology, São Paulo State University (UNESP), University Avenue 3780, 18610-034, Botucatu, Brazil
| | - Wei Cao
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | | |
Collapse
|
2
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Li L, Liu Y, Qian X, Zhou L, Fan Y, Yang X, Luo K, Chen Y. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts. Int Immunopharmacol 2024; 132:112000. [PMID: 38583238 DOI: 10.1016/j.intimp.2024.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Ling Zhou
- Fujian Provincial Governmental Hospital, Fuzhou 350003, People's Republic of China
| | - Yujie Fan
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, People's Republic of China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
4
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lösser L, Ledesma-Colunga MG, Andrés Sastre E, Scholtysek C, Hofbauer LC, Noack B, Baschant U, Rauner M. Transferrin receptor 2 mitigates periodontitis-driven alveolar bone loss. J Cell Physiol 2024; 239:e31172. [PMID: 38214117 DOI: 10.1002/jcp.31172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.
Collapse
Affiliation(s)
- Lennart Lösser
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Enrique Andrés Sastre
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3, University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Barbara Noack
- Policlinic of Operative Dentistry, Periodontology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Wang Y, Li HY, Guan SY, Yu SH, Zhou YC, Zheng LW, Zhang J. Different Sources of Bone Marrow Mesenchymal Stem Cells: A Comparison of Subchondral, Mandibular, and Tibia Bone-derived Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:1029-1041. [PMID: 37937557 DOI: 10.2174/011574888x260686231023091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs. OBJECTIVE The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats in vitro. METHODS Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels. RESULTS The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9, and Hdac10 may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate. CONCLUSION This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu-Yuan Guan
- Department of Stomatology, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Chuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Zhang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
7
|
E L, Lu R, Zheng Y, Zhang L, Ma X, Lv Y, Gao M, Zhang S, Wang L, Liu H, Zhang R. Effect of Insulin on Bone Formation Ability of Rat Alveolar Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:652-666. [PMID: 37282516 DOI: 10.1089/scd.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The alveolar bone marrow mesenchymal stem cells (ABM-MSCs) play an important role in oral bone healing and regeneration. Insulin is considered to improve impaired oral bones due to local factors, systemic factors and pathological conditions. However, the effect of insulin on bone formation ability of ABM-MSCs still needs to be elucidated. The aim of this study was to determine the responsiveness of rat ABM-MSCs to insulin and to explore the underlying mechanism. We found that insulin promoted ABM-MSCs proliferation in a concentration-dependent manner, in which 10-6 M insulin exerted the most significant effect. 10-6 M insulin significantly promoted the type I collagen (COL-1) synthesis, alkaline phosphatase (ALP) activity, osteocalcin (OCN) expression, and mineralized matrix formation in ABM-MSCs, significantly enhanced the gene and protein expressions of intracellular COL-1, ALP, and OCN. Acute insulin stimulation significantly promoted insulin receptor (IR) phosphorylation, IR substrate-1 (IRS-1) protein expression, and mammalian target of rapamycin (mTOR) phosphorylation, but chronic insulin stimulation decreased these values, while inhibitor NT219 could attenuate these responses. When seeded on β-tricalcium phosphate (β-TCP), ABM-MSCs adhered and grew well, during the 28-day culture period, ABM-MSCs+β-TCP +10-6 M insulin group showed significantly higher extracellular total COL-1 amino-terminus prolongation peptide content, ALP activity, OCN secretion, and Ca and P concentration. When implanted subcutaneously in severe combined immunodeficient mice for 1 month, the ABM-MSCs+β-TCP +10-6 M insulin group obtained the most bone formation and blood vessels. These results showed that insulin promoted the proliferation and osteogenic differentiation of ABM-MSCs in vitro, and enhance osteogenesis and angiogenesis of ABM-MSCs in vivo. Inhibition studies demonstrated that the insulin-induced osteogenic differentiation of ABM-MSCs was dependent of insulin/mTOR signaling. It suggests that insulin has a direct anabolic effect on ABM-MSCs.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongjian Lu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Zheng
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Zhang
- Traditional Chinese Medicine Physiotherapy Department, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Xiaocao Ma
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli Zhang
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Limei Wang
- Reception Office, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Hongchen Liu
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| |
Collapse
|
8
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
9
|
Cheng M, Yuan W, Moshaverinia A, Yu B. Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells 2023; 12:998. [PMID: 37048071 PMCID: PMC10093211 DOI: 10.3390/cells12070998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.
Collapse
Affiliation(s)
- Mingjia Cheng
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Section of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
11
|
Soares AP, Fischer H, Aydin S, Steffen C, Schmidt-Bleek K, Rendenbach C. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration. Front Physiol 2023; 14:1152301. [PMID: 37008011 PMCID: PMC10063818 DOI: 10.3389/fphys.2023.1152301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.
Collapse
Affiliation(s)
- Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ana Prates Soares,
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centrum für Muskuloskeletale Chirurgie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrin Aydin
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
14
|
Si D, Su B, Zhang J, Zhao K, Li J, Chen D, Hu S, Wang X. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro. Lasers Med Sci 2022; 37:3509-3516. [PMID: 36066778 DOI: 10.1007/s10103-022-03624-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 10/14/2022]
Abstract
Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Daiwei Si
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Bo Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jingwei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Kui Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - JinMeng Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - DeChun Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - ShiQi Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
15
|
Li Q, Yang Q, Liu X, Liang W, Zhang X, Wang Y. Effect and mechanism of a novel Mg-Nd-Gd-Sr alloy on osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomater Appl 2022; 37:829-837. [PMID: 35977627 DOI: 10.1177/08853282221121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect and mechanism of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy on the osteogenic differentiation of bone marrow mesenchymal stem cells extracted from Sprague-Dawley rats. Cultured cells were divided into five groups: a control group cultured in osteogenic induction medium alone without Mg-Nd-Gd-Sr alloy extract, and four experimental groups cultured in the same medium with 25%, 50%, 75%, and 100% Mg-Nd-Gd-Sr alloy extracts, respectively. After 14 days of culture, ALP activity was determined and expressions of osteogenesis-related factors Runx2, OCN, and OPN at the mRNA level and Runx2, OCN, and OPN at the protein level were detected by RT-PCR and western blot, respectively. After 21 days of culture, mineralized nodules were detected by alizarin red staining. The results showed that bone marrow mesenchymal stem cells from Sprague-Dawley rats were successfully isolated in vitro using the whole bone marrow adherence method. Flow cytometry revealed that the cells expressed high levels of CD44 and CD90, but low levels of CD31 and CD45. Alizarin red staining indicated the formation of mineralized nodules in all five groups. Compared with the control group, the number of mineralized nodules was increased significantly in the four experimental groups (p < 0.05). The ALP activity in each group was significantly higher on day 14 than on day 7, and was significantly higher in the four experimental groups compared with the control group (p < 0.05). Moreover, the ALP activity was highest when the concentration of Mg-Nd-Gd-Sr alloy extract was 75% (p < 0.05). RT-PCR results showed that, compared with the control group, the mRNA expression of Runx2, OPN, and OCN was significantly higher in the four experimental groups (p < 0.05), and the highest mRNA expression of Runx2, OPN, and OCN was observed in the 75% experimental group (p < 0.05). Western blotting showed that Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of Runx2, OCN, and OPN compared with the control group (p < 0.05). Our data indicate that the novel Mg-Nd-Gd-Sr alloy can promotes the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from Sprague-Dawley rats. During this process, there is an increase in the expressions of Runx2, OPN, and OCN mRNAs and Runx2, OCN, and OPN proteins.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Qinglin Yang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- College of Clinical Medicine, 12426Northwest University for Nationalities, Lanzhou, China.,Department of Laboratory, the Second People's Hospital of Gansu Province, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yongping Wang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Cheng Y, Du Y, Zhang X, Zhang P, Liu Y. Conditional knockout of Cdc20 attenuates osteogenesis in craniofacial bones. Tissue Cell 2022; 77:101829. [DOI: 10.1016/j.tice.2022.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
17
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Deng P, Chang I, Wang J, Badreldin AA, Li X, Yu B, Wang CY. Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging. Int J Oral Sci 2022; 14:24. [PMID: 35525910 PMCID: PMC9079076 DOI: 10.1038/s41368-022-00175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Collapse
Affiliation(s)
- Peng Deng
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Insoon Chang
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
- Section of Endodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Jiongke Wang
- Division of Preventive and Restorative Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Amr A Badreldin
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Xiyao Li
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA
| | - Bo Yu
- Division of Preventive and Restorative Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Examination of the Quality of Particulate and Filtered Mandibular Bone Chips for Oral Implants: An In Vitro Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
(1) Background: Autologous bone is supposed to contain vital cells that might improve the osseointegration of dental implants. The aim of this study was to investigate particulate and filtered bone chips collected during oral surgery intervention with respect to their osteogenic potential and the extent of microbial contamination to evaluate its usefulness for jawbone reconstruction prior to implant placement. (2) Methods: Cortical and cortical-cancellous bone chip samples of 84 patients were collected. The stem cell character of outgrowing cells was characterized by expression of CD73, CD90 and CD105, followed by osteogenic differentiation. The degree of bacterial contamination was determined by Gram staining, catalase and oxidase tests and tests to evaluate the genera of the found bacteria (3) Results: Pre-surgical antibiotic treatment of the patients significantly increased viability of the collected bone chip cells. No significant difference in plasticity was observed between cells isolated from the cortical and cortical-cancellous bone chip samples. Thus, both types of bone tissue can be used for jawbone reconstruction. The osteogenic differentiation was independent of the quantity and quality of the detected microorganisms, which comprise the most common bacteria in the oral cavity. (4) Discussion: This study shows that the quality of bone chip-derived stem cells is independent of the donor site and the extent of present common microorganisms, highlighting autologous bone tissue, assessable without additional surgical intervention for the patient, as a useful material for dental implantology.
Collapse
|
20
|
The feasibility of craniofacial-derived bone marrow stem cells for the treatment of oral and maxillofacial hard tissue defects. J Dent Sci 2022; 17:1445-1447. [PMID: 35784165 PMCID: PMC9236948 DOI: 10.1016/j.jds.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Indexed: 11/23/2022] Open
|
21
|
Yan H, Oshima M, Raju R, Raman S, Sekine K, Waskitho A, Inoue M, Inoue M, Baba O, Morita T, Miyagi M, Matsuka Y. Dentin-Pulp Complex Tissue Regeneration via Three-Dimensional Cell Sheet Layering. Tissue Eng Part C Methods 2021; 27:559-570. [PMID: 34583551 DOI: 10.1089/ten.tec.2021.0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The dentin-pulp complex is a unique structure in teeth that contains both hard and soft tissues. Generally, deep caries and trauma cause damage to the dentin-pulp complex, and if left untreated, this damage will progress to irreversible pulpitis. The aim of this study was to fabricate a layered cell sheet composed of rat dental pulp (DP) cells and odontogenic differentiation of pulp (OD) cells and to investigate the ability to regenerate the dentin-pulp complex in a scaffold tooth. We fabricated two single cell sheets composed of DP cells (DP cell sheet) or OD cells (OD cell sheet) and a layered cell sheet made by layering both cells. The characteristics of the fabricated cell sheets were analyzed using light microscopy, scanning electron microscope (SEM), hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC). Furthermore, the cell sheets were transplanted into the subrenal capsule of immunocompromised mice for 8 weeks. After this, the regenerative capacity to form dentin-like tissue was evaluated using micro-computed tomography (micro-CT), HE staining, and IHC. The findings of SEM and IHC confirmed that layered cell sheets fabricated by stacking OD cells and DP cells maintained their cytological characteristics. Micro-CT of layered cell sheet transplants revealed a mineralized capping of the access cavity in the crown area, similar to that of natural dentin. In contrast, the OD cell sheet group demonstrated the formation of irregular fragments of mineralized tissue in the pulp cavity, and the DP cell sheet did not develop any hard tissue. Moreover, bone volume/tissue volume (BV/TV) showed a significant increase in hard tissue formation in the layered cell sheet group compared with that in the single cell sheet group (p < 0.05). HE staining also showed a combination of soft and hard tissue formation in the layered cell sheet group. Furthermore, IHC confirmed that the dentin-like tissue generated from the layered cell sheet expressed characteristic markers of dentin but not bone equivalent to that of a natural tooth. In conclusion, this study demonstrates the feasibility of regenerating dentin-pulp complex using a bioengineered tissue designed to simulate the anatomical structure. Impact statement The dentin-pulp complex can be destroyed by deep caries and trauma, which may cause pulpitis and progress to irreversible pulpitis, apical periodontitis, and even tooth loss. Current treatments cannot maintain pulp health, and teeth can become brittle. We developed a three-dimensional (3D) layered cell sheet using dental pulp cells and odontogenic differentiation of pulp cells for dentin-pulp complex regeneration. Our layered cell sheet enables the regeneration of an organized 3D dentin-pulp-like structure comparable with that of natural teeth. This layered cell sheet technology may contribute to dentin-pulp complex regeneration and provide a novel method for complex tissue engineering.
Collapse
Affiliation(s)
- Huijiao Yan
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Resmi Raju
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Arief Waskitho
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Miho Inoue
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahisa Inoue
- Laboratories for Structure and Function Research, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mayu Miyagi
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
22
|
Duan DY, Tang J, Tian HT, Shi YY, Jia J. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway. Life Sci 2021; 278:119548. [PMID: 33930365 DOI: 10.1016/j.lfs.2021.119548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023]
Abstract
AIMS Adipocyte-secreted microvesicles (MVs)-derived microRNAs (miRNAs) are relevant to adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteonecrosis of the femoral head (ONFH). Our aims are to investigate the mechanism of adipocyte-derived MVs-miR-148a in ONFH. MATERIALS AND METHODS Adipocyte-derived MVs were identified via transmission electron microscopy and specific markers expression. The adipogenic and osteogenic differentiation were investigated by Oil-Red O staining, alkaline phosphatase (ALP) activity, Alizarin Red S (ARS) staining and osteogenic or adipogenic factors levels. Genes and proteins expression were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The relationship between miR-148a and Wnt5a was tested via dual-luciferase reporter analysis. The adipogenic differentiation and osteogenic differentiation in methylprednisolone (MPS)-induced ONFH rat model were assessed via hematoxylin-eosin (HE) staining, and immunohistochemical staining of collagen I (COL I). KEY FINDINGS Adipocyte-derived MVs promoted adipogenic differentiation via increasing Oil-Red O staining positive cells, adiponectin (Adipoq), acid-binding protein 2 (aP2) and peroxisome proliferator-activated receptor γ (PPAR-γ) levels, and repressed osteogenic differentiation of BMSCs via decreasing ARS staining positive cells, ALP, Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) levels. MiR-148a was present in adipocyte-derived MVs, and miR-148a knockdown inhibited adipogenic differentiation and promoted osteogenic differentiation. Furthermore, Wnt5a expression was regulated by miR-148a. MiR-148a overexpression facilitated adipogenic differentiation and suppressed osteogenic differentiation via regulating the Wnt5a/Ror2 pathway. Adipocyte-derived MVs promoted adipogenic differentiation and inhibited osteogenic differentiation in MPS-induced ONFH rat model. SIGNIFICANCE Adipocyte-derived MVs-miR-148a promoted adipogenic differentiation and suppressed osteogenic differentiation via targeting the Wnt5a/Ror2 pathway.
Collapse
Affiliation(s)
- De-Yu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Hong-Tao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Yang-Yang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
23
|
Hanson K, Isder C, Shogren K, Mikula AL, Lu L, Yaszemski MJ, Elder BD. The inhibitory effects of vancomycin on rat bone marrow-derived mesenchymal stem cell differentiation. J Neurosurg Spine 2021; 34:931-935. [PMID: 33799299 DOI: 10.3171/2020.10.spine201511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of intrawound vancomycin powder in spine surgery has been shown to decrease the rate of surgical site infections; however, the optimal dose is unknown. High-dose vancomycin inhibits osteoblast proliferation in vitro and may decrease the rate of solid arthrodesis. Bone marrow-derived mesenchymal stem cells (BMSCs) are multipotent cells that are a source of osteogenesis in spine fusions. The purpose of this study was to determine the effects of vancomycin on rat BMSC viability and differentiation in vitro. METHODS BMSCs were isolated from the femurs of immature female rats, cultured, and then split into two equal groups; half were treated to stimulate osteoblastic differentiation and half were not. Osteogenesis was stimulated by the addition of 50 µg/mL l-ascorbic acid, 10 mM β-glycerol phosphate, and 0.1 µM dexamethasone. Vancomycin was added to cell culture medium at concentrations of 0, 0.04, 0.4, or 4 mg/mL. Early differentiation was determined by alkaline phosphatase activity (4 days posttreatment) and late differentiation by alizarin red staining for mineralization (9 days posttreatment). Cell viability was determined at both the early and late time points by measurement of formazan colorimetric product. RESULTS Viability within the first 4 days decreased with high-dose vancomycin treatment, with cells receiving 4 mg/mL vancomycin having 40%-60% viability compared to the control. A gradual decrease in alizarin red staining and nodule formation was observed with increasing vancomycin doses. In the presence of the osteogenic factors, vancomycin did not have deleterious effects on alkaline phosphatase activity, whereas a trend toward reduced activity was seen in the absence of osteogenic factors when compared to osteogenically treated cells. CONCLUSIONS Vancomycin reduced BMSC viability and impaired late osteogenic differentiation with high-dose treatment. Therefore, the inhibitory effects of high-dose vancomycin on spinal fusion may result from both reduced BMSC viability and some impairment of osteogenic differentiation.
Collapse
Affiliation(s)
- Kari Hanson
- Departments of1Neurologic Surgery
- 2Orthopedic Surgery, and
| | | | | | | | - Lichun Lu
- 2Orthopedic Surgery, and
- 3Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael J Yaszemski
- 2Orthopedic Surgery, and
- 3Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Benjamin D Elder
- Departments of1Neurologic Surgery
- 2Orthopedic Surgery, and
- 3Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
E LL, Zhang R, Li CJ, Zhang S, Ma XC, Xiao R, Liu HC. Effects of rhBMP-2 on Bone Formation Capacity of Rat Dental Stem/Progenitor Cells from Dental Follicle and Alveolar Bone Marrow. Stem Cells Dev 2021; 30:441-457. [PMID: 33798004 DOI: 10.1089/scd.2020.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dental stem/progenitor cells are a promising cell sources for alveolar bone (AB) regeneration because of their same embryonic origin and superior osteogenic potential. However, their molecular processes during osteogenic differentiation remain unclear. The objective of this study was to identify the responsiveness of dental follicle cells (DFCs) and AB marrow-derived mesenchymal stem cells (ABM-MSCs) to recombinant human bone morphogenetic protein-2 (rhBMP-2). These cells expressed vimentin and MSC markers and did not express cytokeratin and hematopoietic stem cell markers and showed multilineage differentiation potential under specific culture conditions. DFCs exhibited higher proliferation and colony-forming unit-fibroblast efficiency than ABM-MSCs; rhBMP-2 induced DFCs to differentiate toward a cementoblast/osteoblast phenotype and ABM-MSCs to differentiate only toward a osteoblast phenotype; and rhBMP-2-induced DFCs exhibited higher osteogenic differentiation potential than ABM-MSCs. These cells adhered, grew, and produced extracellular matrix on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA). During a 14-day culture on nHAC/PLA, the extracellular alkaline phosphatase (ALP) activity of DFCs decreased gradually and that of ABM-MSCs increased gradually; rhBMP-2 enhanced their extracellular ALP activity, intracellular osteocalcin (OCN), and osteopontin (OPN) protein expression; and DFCs exhibited higher extracellular ALP activity and intracellular OCN protein expression than ABM-MSCs. When implanted subcutaneously in severe combined immunodeficient mice for 3 months, DFCs+nHAC/PLA+rhBMP-2 obtained higher percentage of bone formation area, OCN, and cementum attachment protein expression and lower OPN expression than ABM-MSCs+nHAC/PLA+rhBMP-2. These results showed that DFCs possessed superior proliferation and osteogenic differentiation potential in vitro, and formed higher quantity and quality bones in vivo. It suggested that DFCs might exhibit a more sensitive responsiveness to rhBMP-2, so that DFCs enter a relatively mature stage of osteogenic differentiation earlier than ABM-MSCs after rhBMP-2 induction. The findings imply that these dental stem/progenitor cells are alternative sources for AB engineering in regenerative medicine, and developing dental tissue may provide better source for stem/progenitor cells.
Collapse
Affiliation(s)
- Ling-Ling E
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Cao Ma
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Xiao
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Chang SY, Lee MY. Photobiomodulation with a wavelength > 800 nm induces morphological changes in stem cells within otic organoids and scala media of the cochlea. Lasers Med Sci 2021; 36:1917-1925. [PMID: 33604771 DOI: 10.1007/s10103-021-03268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) is a therapeutic approach to certain diseases based on light energy. Currently, stem cells (SCs) are being considered as putative treatments for previously untreatable diseases. One medical condition that could be treated using SCs is sensorineural hearing loss. Theoretically, if properly delivered and differentiated, SCs could replace lost hair cells in the cochlea. However, this is not currently possible due to the structural complexity and limited survival of SCs within the cochlea. PBM facilitates SC differentiation into other target cells in multiple lineages. Using light with a wavelength > 800 nm, which can penetrate the inner ear through the tympanic membrane, we assessed morphological changes of mouse embryonic stem cells (mESCs) during "otic organoid" generation, and within the scala media (SM) of the cochlea, after light energy stimulation. We observed enhanced differentiation, which was confirmed by an increased number of otic vesicles and increased cell attachment inside the SM. These results suggest that > 800-nm light affected the morphology of mESCs within otic organoids and SM of the cochlea. Based on our results, light energy could be used to enhance otic sensory differentiation, despite the structural complexity of the inner ear and limited survival time of SCs within the cochleae. Additional studies to refine the light energy delivery technology and maximize the effect on otic differentiation are required.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea. .,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
26
|
Zhang Y, Yang Y, Xu M, Zheng J, Xu Y, Chen G, Guo Q, Tian W, Guo W. The Dual Effects of Reactive Oxygen Species on the Mandibular Alveolar Bone Formation in SOD1 Knockout Mice: Promotion or Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8847140. [PMID: 33613826 PMCID: PMC7878083 DOI: 10.1155/2021/8847140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
The status of reactive oxygen species (ROS) correlates closely with the normal development of the oral and maxillofacial tissues. Oxidative stress caused by ROS accumulation not only affects the development of enamel and dentin but also causes pathological changes in periodontal tissues (periodontal ligament and alveolar bone) that surround the root of the tooth. Although previous studies have shown that ROS accumulation plays a pathologic role in some oral and maxillofacial tissues, the effects of ROS on alveolar bone development remain unclear. In this study, we focused on mandibular alveolar bone development of mice deficient in superoxide dismutase1 (SOD1). Analyses were performed using microcomputerized tomography (micro-CT), TRAP staining, immunohistochemical (IHC) staining, and enzyme-linked immunosorbent assay (ELISA). We found for the first time that slightly higher ROS in mandibular alveolar bone of SOD1(-/-) mice at early ages (2-4 months) caused a distinct enlargement in bone size and increased bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and osteopontin (OPN). With ROS accumulation to oxidative stress level, increased trabecular bone separation (Tb.Sp) and decreased expression of ALP, Runx2, and OPN were found in SOD1(-/-) mice at 6 months. Additionally, dosing with N-acetylcysteine (NAC) effectively mitigated bone loss and normalized expression of ALP, Runx2, and OPN. These results indicate that redox imbalance caused by SOD1 deficiency has dual effects (promotion or inhibition) on mandibular alveolar bone development, which is closely related to the concentration of ROS and the stage of growth. We present a valuable model here for investigating the effects of ROS on mandibular alveolar bone formation and highlight important roles of ROS in regulating tissue development and pathological states, illustrating the complexity of the redox signal.
Collapse
Affiliation(s)
- Yunyan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuzhi Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingxue Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingwen Zheng
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|