1
|
Ma M, Ma G, Zhang C, Wang Y, He X, Kang X. Identification of Autophagy-Related Genes Involved in Intervertebral Disc Degeneration by Microarray Data Analysis. World Neurosurg 2024; 188:e1-e17. [PMID: 38782255 DOI: 10.1016/j.wneu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Nucleus pulposus cells survive in a hypoxic, acidic, nutrient-poor, and hypotonic microenvironment. Consequently, they maintain low proliferation and undergo autophagy to protect themselves from cellular stress. Therefore, we aimed to identify autophagy-related biomarkers involved in intervertebral disc degeneration pathogenesis. METHODS Autophagy-related differentially expressed genes were derived from the intersection between the public GSE147383 microarray data set to identify differentially expressed genes and online databases to identify autophagy-related genes. Furthermore, we assessed their biological functions with gene annotation and enrichment analysis in the Metscape portal. Then, the STRING database and Cytoscape software allowed inferring a protein-protein interaction (PPI) network and identifying hub genes. In addition, to predict transcription factors that may regulate the hub genes, we used the GeneMANIA website. Finally, the competing endogenous RNA prediction tools and Cytoscape were also used to construct an mRNA-miRNA-lncRNA network. RESULTS A total of 123 autophagy-related differentially expressed genes were identified, they were mainly involved in phosphoinositide 3-kinase-Akt signaling, autophagy animal, and apoptosis pathways. Nine were identified as hub genes (PTEN, MYC, CTNNB1, JUN, BECN1, ERBB2, FOXO3, ATM, and FN1) and 36 transcription factors were associated with them. Finally, an autophagy-associated competing endogenous RNA network was constructed based on the 9 hub genes. CONCLUSIONS Nine hub genes were identified and a network of competing endogenous RNA associated with autophagy was established. They can be used as autophagy-related biomarkers of intervertebral disc degeneration and for further exploration.
Collapse
Affiliation(s)
- Miao Ma
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guifu Ma
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yajun Wang
- Breast Department, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Cui P, Liu T, Sheng Y, Wang X, Wang Q, He D, Wu C, Tian W. Identification and validation of ferroptosis-related lncRNA signature in intervertebral disc degeneration. Gene 2024; 914:148381. [PMID: 38492610 DOI: 10.1016/j.gene.2024.148381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Low back pain influences people of every age and is one of the major contributors to the global cost of illness. Intervertebral disc degeneration (IVDD) is a major contributor to low back pain, but its pathogenesis is unknown. Recently, ferroptosis has been shown to have a substantial role in modulating IVDD progression. However, the function of ferroptosis-related long non-coding RNAs (lncRNAs) has rarely been reported in IVDD. Consequently, the research was conducted to explore the ferroptosis-related lncRNA signature in the IVDD occurrence and development. We analyzed two datasets (GSE167199 and GSE167931) archived in the NCBI Gene Expression Omnibus (GEO) public database. We screened differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELncs) in these datasets using the limma package. Ferroptosis-related genes (FRGs) were derived from the FerrDb V2 website and the intersection of DEGs and FRGs was considered as differentially expressed ferroptosis-related genes (DFGs). These genes were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Correlations between DFGs and DELncs were shown by Pearson test to determine differential expression of ferroptosis-related lncRNAs. The Pearson test showed that CPEB1-HTR2A-AS1 and ACSL3-DNAJC27-AS1 pairs had correlation coefficients over 0.9. Twenty ferroptosis-related lncRNAs were identified and validated in IVDD. Eight of these lncRNAs were upregulated in IVDD nucleus pulposus cells, including HTR2A-AS1, MIF-AS1, SLC8A1-AS1, LINC00942, DUXAP8, LINC00161, LUCAT1 and LINC01615. Twelve were downregulated in IVDD nucleus pulposus cells, including DNAJC27-AS1, H19, LINC01588, LINC02015, FLNC1, CARMN, PRKG1-AS1, APCDD1L-DT, LINC00839, LINC00536, LINC00710 and LINC01535. Eighteen of the 20 lncRNAs (excluding H19 and LUCAT1) were identified as ferroptosis-related lncRNAs for the first time and verified in IVDD. We have identified a ferroptosis-related lncRNA signature involved in IVDD and revealed a close relationship between CPEB1 and HTR2A-AS1, and between ACSL3 and DNAJC27-AS1. Our findings indicate that ferroptosis-related lncRNAs are a new target set for the early detection and therapy of IVDD.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China
| | - Tianyi Liu
- Department of Medical Oncology, National Cancer Center, Beijing 100021, PR China; National Clinical Research Center for Cancer, Beijing 100021, PR China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China
| | - Xinyu Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China
| | - Qianqian Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China.
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China.
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, PR China.
| |
Collapse
|
3
|
Zhang J, Zhu J, Zou X, Liu Y, Zhao B, Chen L, Li B, Chen B. Identifying autophagy-related mRNAs and potential ceRNA networks in meniscus degeneration based on RNA sequencing and experimental validation. Heliyon 2024; 10:e32782. [PMID: 38975204 PMCID: PMC11226846 DOI: 10.1016/j.heliyon.2024.e32782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose The intimate connection between long noncoding RNA (lncRNA) and autophagy has been established in cartilage degeneration. However, their roles in meniscal degeneration remain ambiguous. This study aimed to identify the key autophagy-related lncRNA and its associated regulatory network in meniscal degeneration in the context of osteoarthritis (OA). Methods RNA sequencing was performed to identify differentially expressed lncRNAs (DELs) and mRNAs (DEMs), which were then conducted to enrichment analyses using the DAVID database and Metascape. Autophagy-related DEMs were identified by combining DEMs with data from the Human Autophagy Database. Three databases were used to predict miRNA, and the DIANA LncBase Predicted database was utilized to predict miRNA-lncRNA interactions. Based on these predictions, comprehensive competitive endogenous RNA (ceRNA) network were constructed. The expression levels of the classical autophagy markers and autophagy-related ceRNA network were validated. Additionally, Gene Set Enrichment Analysis (GSEA) was performed using autophagy-related DEMs. Results 310 DELs and 320 DEMs were identified, with five upregulated and one downregulated autophagy-related DEMs. Through reverse prediction of miRNA, paired miRNA-lncRNA interactions, and verification using RT-qPCR, two lncRNAs (PCAT19, CLIP1-AS1), two miRNA (has-miR-3680-3p and has-miR-4795-3p) and two mRNAs (BAG3 and HSP90AB1) were included in the constructed ceRNA regulatory networks. GSEA indicated that the increased expression of autophagy-related mRNAs inhibited glycosaminoglycan biosynthesis in the degenerative meniscus. Conclusion This study presented the first construction of regulatory ceRNA network involving autophagy-related lncRNA-miRNA-mRNA interactions in OA meniscus. These findings offered valuable insights into the mechanisms underlying meniscal degeneration and provided potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Xinyu Zou
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Yiming Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Boming Zhao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| |
Collapse
|
4
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
5
|
Tang X, Lin S, Luo H, Wang L, Zhong J, Xiong J, Lv H, Zhou F, Wan Z, Cao K. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 2024; 897:148084. [PMID: 38104954 DOI: 10.1016/j.gene.2023.148084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.
Collapse
Affiliation(s)
- Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Sijian Lin
- The Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Zongmiao Wan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
6
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188932. [PMID: 37329993 DOI: 10.1016/j.bbcan.2023.188932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Lu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Song C, Hu Z, Xu D, Bian H, Lv J, Zhu X, Zhang Q, Su L, Yin H, Lu T, Li Y. STING signaling in inflammaging: a new target against musculoskeletal diseases. Front Immunol 2023; 14:1227364. [PMID: 37492580 PMCID: PMC10363987 DOI: 10.3389/fimmu.2023.1227364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.
Collapse
Affiliation(s)
- Chenyu Song
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuoyi Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tong Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Nucleus pulposus related lncRNA and mRNA expression profiles in intervertebral disc degeneration. Genomics 2023; 115:110570. [PMID: 36746221 DOI: 10.1016/j.ygeno.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
In the present study, we aimed to have a comprehensive understanding of nucleus pulposus related long noncoding RNA (lncRNA) and mRNA expression profiles in intervertebral disc degeneration (IDD). In total, 2418 mRNAs and 528 lncRNAs were found to be differentially expressed in the IDD group compared with the Control group. Combining microarray datasets and sequencing data, 5 overlapping DEMs and 7 overlapping DELs were identified. NF-κB signaling pathway, PI3K-Akt signaling pathway and Wnt/β-catenin signaling pathway were strongly linked with enriched GO terms and KEGG pathways. The ceRNA network suggested that lnc-TMEM44-AS1-hsa-miR-206-HDAC4 may be one crucial axis in IDD. PPI network analysis was constructed with 309 nodes and 129 edges. And the highest connectivity degrees were ALB, APOB and CCL2. This study suggested that specific lncRNAs and ceRNA axes may be crucial in the development of IDD. It provides a new perspective for delaying IDD process and enhancing intervertebral disc repair.
Collapse
|
9
|
Wang D, Zhu J, Yang Y, Wang Z, Ying Z, Zhang H. The role of the miR-4306/PAK6 axis in degenerative nucleus pulposus cells in human intervertebral disc degeneration. Cell Signal 2023; 102:110528. [PMID: 36423859 DOI: 10.1016/j.cellsig.2022.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Intervertebral disc degeneration (IDD), characterized by degenerative changes that occur in intervertebral discs due to aging or structural injury, is thought to be the most common cause of lower back pain. Recent studies have shown that microRNAs (miRNAs) have a critical role in the etiopathogenesis of IDD. In the current study, we aimed to determine the role of miRNAs in mediating the underlying mechanisms associated with IDD. First, differentially expressed miRNAs (DEmiRNAs) were identified using the GEO database, and subsequently confirmed by RT-qPCR and in situ hybridization. We found that miR-4306 expression was significantly decreased in human nucleus pulposus (NP) tissues compared with healthy controls, and was negatively correlated with the patients' Pfirrmann grade. To determine the mechanism by which miR-4306 was involved in IDD pathogenesis, we examined the effects of overexpressing or silencing miR-4306 on extracellular matrix (ECM) synthesis/degradation, proliferation, autophagy and apoptosis of human degenerated NP cells isolated from IDD patients. Next, we used dual-luciferase reporter assays to demonstrate that miR-4306 interacted with the 3'-untranslated regions of p21-activated kinase 6 (PAK6) mRNA, resulting in significant suppression of PAK6 expression. This effect was abolished by miR-4306 binding site mutations. Using miR-4306/PAK6 gain-of-function and loss-of-function studies in human degenerated NP cells, we demonstrated that miR-4306 promoted NP cell proliferation, ECM synthesis and autophagy, while inhibiting apoptosis and ECM degradation via PAK6. Thus, our findings indicate that miR-4306, acting via PAK6, has an important role in IDD and can be used as a promising therapeutic target for the treatment of patients with IDD.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Orthopedics, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Ji Zhu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuanqing Yang
- Department of Orthopedics, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhizhou Wang
- Department of Orthopedics, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhengran Ying
- Department of Orthopedics, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Hailong Zhang
- Department of Orthopedics, Putuo People's Hospital, Tongji University, Shanghai 200060, China.
| |
Collapse
|
10
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
11
|
Shi X, Li P, Wu X, Wang Z, Zhao G, Shu J. RNA-Seq Comprehensive Analysis Reveals the Long Noncoding RNA Expression Profile and Coexpressed mRNA in Adult Degenerative Scoliosis. Front Genet 2022; 13:902943. [PMID: 36035195 PMCID: PMC9403536 DOI: 10.3389/fgene.2022.902943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Owing to the intensification of the aging process worldwide, the prevalence of adult degenerative scoliosis (ADS) is increasing at an alarming rate. However, genomic research related to the etiology of ADS is rarely reported worldwide. Since long noncoding RNAs (lncRNAs) play a pivotal role in the progression of human diseases, this study aimed to investigate ADS-associated messenger RNAs (mRNAs) and lncRNAs by RNA sequencing (RNA-seq), as well as performed comprehensive bioinformatics analysis based on the lncRNA–mRNA coexpression network and protein–protein interaction (PPI) network. Methods: Initially, six whole blood (WB) samples were obtained from three ADS and three nondegenerative lumbar trauma patients who underwent surgical operation for RNA-seq exploration to construct differential mRNA and lncRNA expression profiles. Subsequently, quantitative RT-PCR (qRT-PCR) was performed to validate three randomly selected differentially expressed mRNAs and lncRNAs derived from the nucleus pulposus (NP) tissue of 14 other subjects (seven ADS patients and seven nondegenerative lumbar trauma patients), respectively. Results: A total of 1,651 upregulated and 1,524 downregulated mRNAs and 147 upregulated and 83 downregulated lncRNAs were screened out from the RNA-Seq data, which constructed coexpression networks to investigate their regulatory interactions further. GO gene function prediction revealed that lncRNA-targeted genes might play a vital role in ADS via participation in multiple biological processes such as the AMPK signaling pathway, lysosomes, and ubiquitin-mediated proteolysis, as well as cellular metabolic processes. Moreover, the expression levels of three selected lncRNAs and mRNAs were validated by qRT-PCR, respectively, demonstrating that the relative expression levels were consistent with the RNA-seq data. Notably, the dysregulated RNAs, AKT1, UBA52, PTPN12, and CLEC16A, were significantly differentially expressed in ADS WB samples and might serve as potentially regulated genes for research in the future. Conclusions: This study provides the first insight into the altered transcriptome profile of long-stranded noncoding RNAs associated with ADS, which paves the way for further exploration of the clinical biomarkers and molecular regulatory mechanisms for this poorly understood degenerative disease. However, the detailed biological mechanisms underlying these candidate lncRNAs in ADS necessitate further elucidation in future studies.
Collapse
Affiliation(s)
- Xin Shi
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Panpan Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Panpan Li, , Jun Shu,
| | - Xiang Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Zhihua Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Gang Zhao
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jun Shu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- *Correspondence: Panpan Li, , Jun Shu,
| |
Collapse
|
12
|
Cui Y, Zhao X, Wu Y. Circ_0005918 Sponges miR-622 to Aggravate Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 10:905213. [PMID: 35874804 PMCID: PMC9304550 DOI: 10.3389/fcell.2022.905213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral discdegeneration (IDD) is the most common cause of lower back pain, but the exact molecular mechanism of IDD is still unknown. Recently, studies have shown that circular RNAs (circRNAs) regulate diverse biological procedures such as cell metastasis, growth, metabolism, migration, apoptosis, and invasion. We demonstrated that IL-1β and TNF-α induced circ_0005918 expression in the NP cell, and circ_0005918 was overexpressed in the IDD group compared with the control group. Moreover, the upregulated expression of circ_0005918 was associated with disc degeneration degree. The elevated expression of circ_0005918 promoted cell growth and ECM degradation, and it induced secretion of inflammatory cytokines including IL-1β, IL-6, and TNF-α. Moreover, we found that circ_0005918 sponged miR-622 in the NP cell. In addition, the exposure to IL-1β and TNF-α suppressed the expression of miR-622, which was downregulated in the IDD group compared with the control group. Furthermore, the downregulated expression of miR-622 was associated with disc degeneration degree. The expression level of miR-622 was negatively associated with circ_0005918 expression in the IDD group. In conclusion, circ_0005918 regulated cell growth, ECM degradation, and secretion of inflammatory cytokines by regulating miR-622 expression. These data suggested that circ_0005918 played important roles in the development of IDD via sponging miR-622.
Collapse
|
13
|
Lan T, Yan B, Guo W, Shen Z, Chen J. VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury. Free Radic Res 2022; 56:316-327. [PMID: 35786375 DOI: 10.1080/10715762.2022.2094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Intervertebral disk degeneration (IDD) is a common aging disease. Excessive apoptosis of nucleus pulposus (NP) cells has been widely considered a main contributor to IDD. Emerging science has shown that autophagy plays a protective role against apoptosis under oxidative stress. Vitamin D receptor (VDR) is a steroid hormone receptor that can regulate autophagy. The purpose of this study was to clarify whether VDR alleviates IDD by promoting autophagy. H2O2 stimulation was used to establish oxidative stress conditions. Initially, the expression level of VDR in human degenerative NP tissues was measured by immunohistochemistry. In addition, the CRISPR-dCas9-VPR system and siRNA were utilized to upregulate or downregulate VDR and Parkin expression, respectively. Autophagic and apoptotic markers were determined by Western blotting and RT-qPCR. Transmission electron microscopy was used to monitor the occurrence of autophagy in rat NP cells. VDR expression was downregulated in human degenerative NP tissues and H2O2-stimulated rat NP cells, indicating a negative correlation between VDR expression and IDD. VDR overexpression promoted mitophagy and prevented apoptosis and mitochondrial injury under oxidative stress. Additionally, mitophagy inhibition by 3-MA abolished the protective effect of VDR activation in vitro. Furthermore, VDR activation promoted mitophagy via the PINK1/Parkin pathway in H2O2-treated NP cells. This study demonstrates that VDR activation ameliorates oxidative damage and decreases NP cell apoptosis by promoting PINK1/Parkin-dependent mitophagy, indicating that VDR may serve as a promising therapeutic target in the management of IDD.
Collapse
Affiliation(s)
- Tao Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Bin Yan
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Weizhuang Guo
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Mechanisms and functions of long noncoding RNAs in intervertebral disc degeneration. Pathol Res Pract 2022; 235:153959. [DOI: 10.1016/j.prp.2022.153959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
|
15
|
Wang Z, Zhang J, Zheng W, He Y. Long Non-Coding RNAs H19 and HOTAIR Implicated in Intervertebral Disc Degeneration. Front Genet 2022; 13:843599. [PMID: 35309146 PMCID: PMC8927764 DOI: 10.3389/fgene.2022.843599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Intervertebral disc degeneration (IDD) is the major cause of low back pain. We aimed to identify the key genes for IDD pathogenesis. Methods: An integrated analysis of microarray datasets of IDD archived in public Gene Expression Omnibus was performed. Bioinformatics analyses including identification of differentially expressed mRNAs/microRNAs/long non-coding RNAs (DEMs/DEMis/DELs), pathway enrichment, and competitive endogenous RNA (ceRNA) network construction were performed to give insights into the potential functions of differentially expressed genes (DEGs, including DEMs, DEMis, and DELs). The diagnostic value of DEMis in distinguishing IDD from normal controls was evaluated through receiver operating characteristic (ROC) analysis. Results: DEGs were identified in IDD, including H19 and HOTAIR. In the DEMis–DEMs network of IDD, miR-1291, miR-4270, and miR-320b had high connectivity with targeted DEMs. Cell death biological processes and the JAK–STAT pathway were significantly enriched from targeted DEMs. The area under the curve (AUC) of 10 DEMs including miR-1273e, miR-623, miR-518b, and miR-1291 in ROC analysis was more than 0.8, which indicated that those 10 DEMs had diagnostic value in distinguishing IDD from normal individuals. Conclusions: DELs H19 and HOTAIR were related to IDD pathogenesis. Cell death biological processes and the JAK–STAT pathway might play key roles in IDD development.
Collapse
|
16
|
Li T, Peng Y, Chen Y, Huang X, Li X, Zhang Z, Du J. Long intergenic non-coding RNA -00917 regulates the proliferation, inflammation, and pyroptosis of nucleus pulposus cells via targeting miR-149-5p/NOD-like receptor protein 1 axis. Bioengineered 2022; 13:6036-6047. [PMID: 35184666 PMCID: PMC8974084 DOI: 10.1080/21655979.2022.2043100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tengfei Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Ye Peng
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Yufei Chen
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Zhenyu Zhang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| |
Collapse
|
17
|
Yan P, Sun C, Luan L, Han J, Qu Y, Zhou C, Xu D. Hsa_circ_0134111 promotes intervertebral disc degeneration via sponging miR-578. Cell Death Dis 2022; 8:55. [PMID: 35136049 PMCID: PMC8827076 DOI: 10.1038/s41420-022-00856-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Intervertebral disc degeneration (IDD) is a chronic degenerative and age-dependent process characterized by aberrant apoptosis, proliferation, synthesis, and catabolism of the extracellular matrix of the nucleus pulposus (NP) cells. Recently, studies showed that circular RNAs play important roles in the development of many diseases. However, the role of circRNAs in IDD development remains unknown. We showed that circ_0134111 level was overexpressed in IDD tissue samples as compar-ed to control tissues. The upregulation of circ_0134111 was more drastic in the moderate and severe IDD cases than in those with mild IDD. In addition, we showed that interleukin-1β and tumor necrosis factor-α exposure significantly enhanced circ_0134111 expression in NP cells. Furthermore, ectopic expression of circ_0134111 induced proliferation, pro-inflammatory cytokine secretion, and ECM degradation in the NP cells. We also showed that circ_0134111 directly interacted with microRNA (miR)-578 in NP cells where elevated expression of circ_0134111 enhanced the ADAMTS-5 and MMP-9 expression. Moreover, miR-578 expression was significantly decreased in IDD patients and the miR-578 expression was negatively correlated with circ_0134111 expression in the IDD samples. Interleukin-1β and tumor necrosis factor-α exposure significantly decreased miR-578 levels in NP cells, in which ectopic miR-578 expression inhibited cell growth, pro-inflammatory cytokine expression, and ECM degradation. Finally, we showed that circ_0134111 overexpression induced the IDD-related phenotypic changes through inhibiting miR-578. These data suggested that circ_0134111 could promote the progression of IDD through enhancing aberrant NP cell growth, inflammation, and ECM degradation partly via regulating miR-578.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Chong Sun
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Liangrui Luan
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Yang Qu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Derong Xu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Exosomes-derived miR-125-5p from cartilage endplate stem cells regulates autophagy and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp Cell Res 2022; 414:113066. [DOI: 10.1016/j.yexcr.2022.113066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
|
19
|
Chen WK, Zhang HJ, Zou MX, Wang C, Yan YG, Zhan XL, Li XL, Wang WJ. LncRNA HOTAIR influences cell proliferation via miR-130b/PTEN/AKT axis in IDD. Cell Cycle 2022; 21:323-339. [PMID: 34974804 PMCID: PMC8855842 DOI: 10.1080/15384101.2021.2020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intervertebral disc degeneration (IDD) constitutes the pathological foundation of most musculoskeletal disorders of the spine. Previous studies have noted that cell proliferation is a common feature of IDD. Bioinformatics indicated that aberrantly expressed long non-coding RNAs (lncRNAs) were involved in the development of IDD. In this study, we aimed to investigate the function of lncRNA HOTAIR in the proliferation of human nucleus pulposus (NP) cells of IDD in vitro and further clarified its mechanism. The expression of HOTAIR and miR-130b was quantified by qRT-PCR in nucleus pulposus (NP) tissues. Furthermore, NP cells proliferation were assayed by CCK8 and Immunostaining. Dual-luciferase reporter and RIP assay were used to examine the expression of HOTAIR, PTEN, and their co-target gene miR-130b. Western blotting was used to test AKT expression. Our in vitro experiments on human normal NP cells observed that HOTAIR was significantly dysregulated in IDD. Further, HOTAIR can suppress proliferation by directly targeting miR-130b. In addition, Both HOTAIR and PTEN were confirmed to target miR-130b, and miR-130b upregulation reversed the phenomenon of ectopic expression of HOTAIR. More importantly, HOTAIR upregulation significantly reduced CyclinD1 protein expression by PTEN/AKT signaling pathway. Our findings suggest that HOTAIR may bind to miR-130b and subsequently increased CyclinD1 expression via PTEN/Akt pathway. Thereby, HOTAIR could become a potential target for the treatment of IDD.Abbreviations : IDD; intervertebral disc degeneration ncRNAs; non-coding RNAs lncRNAs; long non-coding RNAs miRNAs; microRNAs NP; nucleus pulposus qRT-PCR; quantitative reverse transcription-PCR LBP; Low back pain ORF; open reading frame HOTAIR; Hox transcript antisense intergenic RNA FAF1; Fas-associated protein factor-1 Erk; extracellular signal-regulated kinase TUG1; Taurine Up-regulated Gene 1 HIF1A hypoxia-inducible factor 1-alpha PI3K; phosphoinositide-3 kinase AIS; adolescent idiopathic scoliosis ECM; extracellular matrix LN;lupus nephritis CT;computed tomography MRI; magnetic resonance imaging PBS; phosphate-buffered salin PBS; phosphate-buffered salin PVDF; polyvinylidene fluoride TBST; Tris-buffered saline Tween ECL; enhanced chemiluminescence RIP; RNA immunoprecipitation.
Collapse
Affiliation(s)
- Wen-Kang Chen
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Han-Jing Zhang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Li Zhan
- The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Xue-Lin Li ; Wen-Jun Wang Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Mechanism of Long Noncoding RNA HOTAIR in Nucleus Pulposus Cell Autophagy and Apoptosis in Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8504601. [PMID: 35027936 PMCID: PMC8752263 DOI: 10.1155/2022/8504601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Objective Intervertebral disc degeneration (IDD) contributes to cervical and lumbar diseases. Long noncoding RNAs (lncRNAs) are implicated in IDD. This study explored the mechanism of lncRNA HOTAIR in IDD. Methods Normal and degenerative nucleus pulposus (NP) cells were isolated from NP tissues obtained in intervertebral disc surgery. Cell morphology was observed by immunocytochemistry staining and toluidine blue staining. NP cell markers were detected by RT-qPCR. Proliferation was detected by MTT assay. Autophagy-related proteins were detected by Western blot. Autophagosome was observed by monodansylcadaverine fluorescence staining. Apoptosis was detected by TUNEL staining and flow cytometry. si-HOTAIR and/or miR-148a inhibitor was introduced into degenerative NP cells. Binding relationships among HOTAIR, miR-148a, and PTEN were predicted and verified by dual-luciferase reporter assay and RNA pull-down. Finally, IDD rat models were established. Rat caudal intervertebral discs were assessed by HE staining. Expressions of HOTAIR, miR-148a, and PTEN were determined by RT-qPCR. Results HOTAIR was highly expressed in degenerative NP cells (p < 0.05). si-HOTAIR inhibited degenerative NP cell apoptosis and autophagy (p < 0.05). HOTAIR upregulated PTEN as a sponge of miR-148a. miR-148a was poorly expressed in degenerative NP cells. miR-148a deficiency partially reversed the inhibition of si-HOTAIR on degenerative NP cell autophagy and apoptosis (all p < 0.05). In vivo assay confirmed that si-HOTAIR impeded autophagy and apoptosis in intervertebral disc tissues, thus improving pathological injury in IDD rats (all p < 0.05). Conclusion LncRNA HOTAIR promoted NP cell autophagy and apoptosis via promoting PTEN expression as a ceRNA of miR-148a in IDD.
Collapse
|
21
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Xu Z, Yang H, Hao D. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1081185. [PMID: 36568075 PMCID: PMC9772433 DOI: 10.3389/fendo.2022.1081185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is one of the most common musculoskeletal symptoms and severely affects patient quality of life. The majority of people may suffer from LBP during their life-span, which leading to huge economic burdens to family and society. According to the series of the previous studies, intervertebral disc degeneration (IDD) is considered as the major contributor resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate diverse cellular processes, which have been found to play pivotal roles in the development of IDD. However, the potential mechanisms of action for ncRNAs in the processes of IDD are still completely unrevealed. Therefore, it is challenging to consider ncRNAs to be used as the potential therapeutic targets for IDD. In this paper, we reviewed the current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly participate in the process of IDD through regulating apoptosis of nucleus pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD development, which is similar to the network and can modulate each other; iii). ncRNAs have been attempted to combat the degenerative processes and may be promising as an efficient bio-therapeutic strategy in the future. Hence, this review systematically summarizes the principal pathomechanisms of IDD and shed light on the therapeutic potentials of ncRNAs in IDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| |
Collapse
|