1
|
Jordao A, Cléret D, Dhayer M, Le Rest M, Cao S, Rech A, Azaroual N, Drucbert AS, Maboudou P, Dekiouk S, Germain N, Payen J, Guerreschi P, Marchetti P. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines 2023; 11:3337. [PMID: 38137558 PMCID: PMC10741522 DOI: 10.3390/biomedicines11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.
Collapse
Affiliation(s)
- Amélia Jordao
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Damien Cléret
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Mélanie Dhayer
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
| | - Mégann Le Rest
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Shengheng Cao
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Alexandre Rech
- University of Lille, Faculté de Pharmacie, Plateau RMN, UFR3S, F-59000 Lille, France
| | - Nathalie Azaroual
- University of Lille, ULR 7365–GRITA–Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées, F-59000 Lille, France;
| | - Anne-Sophie Drucbert
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
| | | | - Salim Dekiouk
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Nicolas Germain
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Julien Payen
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Pierre Guerreschi
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
- Service de Chirurgie Plastique, CHU Lille, F-59000 Lille, France
| | - Philippe Marchetti
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
3
|
Bachmann J, Ehlert E, Becker M, Otto C, Radeloff K, Blunk T, Bauer-Kreisel P. Ischemia-Like Stress Conditions Stimulate Trophic Activities of Adipose-Derived Stromal/Stem Cells. Cells 2020; 9:cells9091935. [PMID: 32825678 PMCID: PMC7566001 DOI: 10.3390/cells9091935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) have been shown to exert regenerative functions, which are mainly attributed to the secretion of trophic factors. Upon transplantation, ASCs are facing an ischemic environment characterized by oxygen and nutrient deprivation. However, current knowledge on the secretion capacity of ASCs under such conditions is limited. Thus, the present study focused on the secretory function of ASCs under glucose and oxygen deprivation as major components of ischemia. After exposure to glucose/oxygen deprivation, ASCs maintained distinct viability, but the metabolic activity was greatly reduced by glucose limitation. ASCs were able to secrete a broad panel of factors under glucose/oxygen deprivation as revealed by a cytokine antibody array. Quantification of selected factors by ELISA demonstrated that glucose deprivation in combination with hypoxia led to markedly higher secretion levels of the angiogenic and anti-apoptotic factors IL-6, VEGF, and stanniocalcin-1 as compared to the hypoxic condition alone. A conditioned medium of glucose/oxygen-deprived ASCs promoted the viability and tube formation of endothelial cells, and the proliferation and migration of fibroblasts. These findings indicate that ASCs are stimulated by ischemia-like stress conditions to secrete trophic factors and would be able to exert their beneficial function in an ischemic environment.
Collapse
Affiliation(s)
- Julia Bachmann
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Elias Ehlert
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Matthias Becker
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl von Ossietzky-University of Oldenburg, 26133 Oldenburg, Germany;
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (J.B.); (E.E.); (T.B.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
4
|
Budak K, Sogut O, Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02187-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Hoefner C, Muhr C, Horder H, Wiesner M, Wittmann K, Lukaszyk D, Radeloff K, Winnefeld M, Becker M, Blunk T, Bauer-Kreisel P. Human Adipose-Derived Mesenchymal Stromal/Stem Cell Spheroids Possess High Adipogenic Capacity and Acquire an Adipose Tissue-like Extracellular Matrix Pattern. Tissue Eng Part A 2020; 26:915-926. [PMID: 32070231 DOI: 10.1089/ten.tea.2019.0206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering. In this context, ASCs have routinely been cultured in conventional 2D culture and applied as single cell suspension for seeding onto scaffold materials or direct injection. However, this approach is associated with the loss of their intrinsic 3D microenvironment and leads to impaired regenerative capacity of the cells. Thus, the application of ASCs as self-assembled 3D spheroids with cells residing in their own matrix is an attractive alternative. However, characterization of the structural features and differentiation capacity of the spheroids is necessary to effectively apply them as building blocks in adipose tissue engineering. In this study, we focus on extracellular matrix (ECM) development in ASC spheroids, as well as adipogenic differentiation in comparison to conventional 2D culture using different induction protocols. Reproducible assembly of ASCs into spheroids was achieved within 24 h using the liquid overlay technique. Undifferentiated spheroids displayed a stromal ECM pattern, with fibronectin, collagen V, and VI as the main components. In the course of adipogenesis, a dynamic shift in the ECM composition toward an adipogenic phenotype was observed, associated with enhanced expression of laminin, collagen I, IV, V, and VI, similar to native fat. Furthermore, adipogenic differentiation was enhanced in spheroids as compared with 2D cultured cells, with the spheroids needing a distinctly shorter adipogenic stimulus to sustain adipogenesis, which was demonstrated based on analysis of triglyceride content and adipogenic marker gene expression. In summary, culturing ASCs as spheroids can enhance their adipogenic capacity and generate adipose-like microtissues, which may be a promising cell delivery strategy for adipose tissue engineering approaches. Impact statement Adipose-derived mesenchymal stromal/stem cells (ASCs) as a widely used cell source for adipose tissue engineering have been shown to be limited in their regenerative capacity when applied as single cells. As an alternative approach, the delivery as spheroids, consisting of cells in a 3D context, may be favorable. However, insights into extracellular matrix (ECM) development and efficient adipogenic differentiation are required for their effective application. In this study, we show that differentiated ASC spheroids develop an ECM, resembling native adipose tissue. Furthermore, the ASC spheroids exhibited a superior differentiation capacity as compared with conventional 2D culture, and required only a short adipogenic induction stimulus. Our results identify ASC-derived spheroids as an attractive cell delivery method for adipose tissue engineering approaches.
Collapse
Affiliation(s)
- Christiane Hoefner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Christian Muhr
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Miriam Wiesner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Katharina Wittmann
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Daniel Lukaszyk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Katrin Radeloff
- Department of Otorhinolaryngology, University of Würzburg, Würzburg, Germany
| | | | - Matthias Becker
- Institute for Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F, Dalton PD, Blunk T, Flynn LE, Groll J. Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform. ACS Biomater Sci Eng 2019; 5:6655-6666. [DOI: 10.1021/acsbiomaterials.9b00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carina Blum
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Katrin Schlegelmilch
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Tatjana Schilling
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Maximilian Rudert
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Franz Jakob
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Khoo D, Ung O, Blomberger D, Hutmacher DW. Nipple Reconstruction: A Regenerative Medicine Approach Using 3D-Printed Tissue Scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:126-134. [PMID: 30379123 DOI: 10.1089/ten.teb.2018.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IMPACT STATEMENT This work provides a comprehensive overview and critique of nipple reconstruction techniques to date. It then explores different tissue engineering concepts and how these may improve clinical outcomes for patients undergoing nipple reconstruction. A novel technique is proposed, whereby a three-dimensional-printed tissue-engineered construct is used as an autologous graft to assist nipple reconstruction.
Collapse
Affiliation(s)
- Denver Khoo
- 1 Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Owen Ung
- 1 Faculty of Medicine, University of Queensland, Brisbane, Australia.,2 Centre for Breast Health, Unit 1 Surgery-Breast Endocrine Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Daniela Blomberger
- 3 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- 3 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,4 ARC Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
8
|
Contessi Negrini N, Tarsini P, Tanzi MC, Farè S. Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J Appl Polym Sci 2018. [DOI: 10.1002/app.47104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N. Contessi Negrini
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| | - P. Tarsini
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
| | - M. C. Tanzi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| | - S. Farè
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| |
Collapse
|
9
|
Storck K, Fischer R, Buchberger M, Haller B, Regn S. Delivered adipose-derived stromal cells improve host-derived adipose tissue formation in composite constructs in vivo. Laryngoscope 2017; 127:E428-E436. [PMID: 28599055 DOI: 10.1002/lary.26694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS Adipose tissue engineering aims to provide functional tissue surrogates for the restoration of soft tissue defects and contour deformities in the face. Many studies involve the delivery of cells; however, the impact and the exact role of the implanted cells is not yet fully elucidated. STUDY DESIGN Animal research. METHODS In this study, we used a mouse model for the development of volume-stable adipose tissue using polyurethane scaffolds combined with a long-term stable fibrin gel and adipose-derived stromal cells to investigate the influence of cell delivery on tissue development. RESULTS After 12 weeks in vivo, the emerging tissue in these constructs was shown to be exclusively of host origin by human-specific vimentin staining. Comparison of unseeded versus seeded scaffolds revealed a significant effect of the delivered cells on adipose tissue development as shown by histological staining and histomorphometric quantification of adipocytes, whereas blood vessel formation was not affected by delivery of adipose-derived stromal cells at this time point. CONCLUSIONS This is evidence for an indirect action of the implanted cells, providing a proadipogenic microenvironment within constructs, which was further boosted by adipogenic precultivation of the seeded constructs. Especially in peripheral areas of the constructs, the number of adipocytes was significantly elevated in seeded scaffolds compared to nonseeded controls, suggesting that the implanted cells likely triggered the invasion and differentiation of host cells. This is supported by the fact that the provision of a fat rich environment (by coverage of the constructs with a fat flap upon implantation) additionally stimulated adipose tissue formation. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E428-E436, 2017.
Collapse
Affiliation(s)
- Katharina Storck
- Ear, Nose, and Throat, Head and Neck Surgery Department, Technical University of Munich, Munich, Germany
| | - Reyk Fischer
- Ear, Nose, and Throat, Head and Neck Surgery Department, Technical University of Munich, Munich, Germany
| | - Maria Buchberger
- Ear, Nose, and Throat, Head and Neck Surgery Department, Technical University of Munich, Munich, Germany
| | - Bernhard Haller
- Institute of Medical Statistics and Epidemiology , Technical University of Munich, Munich, Germany
| | - Sybille Regn
- Ear, Nose, and Throat, Head and Neck Surgery Department, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Zhang S, Lu Q, Cao T, Toh WS. Adipose Tissue and Extracellular Matrix Development by Injectable Decellularized Adipose Matrix Loaded with Basic Fibroblast Growth Factor. Plast Reconstr Surg 2016; 137:1171-1180. [PMID: 27018672 DOI: 10.1097/prs.0000000000002019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is a significant need for soft-tissue replacements in the field of reconstructive surgery. Decellularized adipose tissues were heparin crosslinked and loaded with basic fibroblast growth factor (bFGF). This injectable system was evaluated for its adipogenic and angiogenic capabilities for in vivo adipose tissue regeneration. METHODS Decellularized adipose tissues were harvested from the inguinal fat pads of C57BL/6J mice, minced, and heparinized before being loaded with bFGF. Decellularized adipose tissues without bFGF served as a control. In vivo adipose neotissue formation, neovascularization, and volume stability were evaluated over a period of 12 weeks. After 6 or 12 weeks, mice were killed and the newly formed adipose tissues, together with the contralateral endogenous adipose tissues, were harvested for gross, volumetric, histologic, and immunohistochemical analysis. RESULTS Decellularized adipose tissues that were heparinized and loaded with bFGF induced significant de novo adipose neotissue formation, with progressive tissue growth and neovascularization from 6 to 12 weeks. The adipose neotissues exhibited mature adipose morphology and extracellular matrix that closely resembled that of the endogenous adipose tissue. In contrast, decellularized adipose tissues without bFGF induced limited adipose neotissue formation and were completely resorbed by the end of 12 weeks. CONCLUSION This study demonstrates the high efficiency of heparinized decellularized adipose tissue matrix loaded with bFGF in promoting adipose neotissue formation and neovascularization with long-term volume stability.
Collapse
Affiliation(s)
- Shipin Zhang
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Qiqi Lu
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Tong Cao
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Wei Seong Toh
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| |
Collapse
|
11
|
Wittmann K, Dietl S, Ludwig N, Berberich O, Hoefner C, Storck K, Blunk T, Bauer-Kreisel P. Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels. Tissue Eng Part A 2015; 21:1343-53. [PMID: 25602488 DOI: 10.1089/ten.tea.2014.0299] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The development of vascularized and functional adipose tissue substitutes is required to improve soft tissue augmentation. In this study, vascularized adipose tissue constructs were generated using uncultured cells from the stromal-vascular fraction (SVF) of adipose tissue as an alternative cell source to adipose-derived stem cells. SVF cell behavior and tissue formation were compared in a stable fibrin formulation developed by our group and a commercial fibrin sealant (TissuCol; Baxter) upon direct subcutaneous implantation in a nude mouse model. Further, the effect of in vitro adipogenic induction on SVF cell development was investigated by implanting stable fibrin constructs after 1 week of precultivation (adipogenic vs. noninduced control). Constructs were thoroughly analyzed before implantation regarding adipogenic differentiation status, cell viability, and distribution as well as the presence of endothelial cells. Before implantation, in vitro precultivation strongly promoted adipogenesis (under adipogenic conditions) and the formation of CD31(+) prevascular structures by SVF cells (under nonadipogenic conditions). Tissue development in vivo was determined after 4 weeks by histology (hematoxylin and eosin, human vimentin) and quantified histomorphometrically. In stable fibrin gels, adipogenic precultivation was superior to noninduced conditions, resulting in mature adipocytes and the formation of distinct vascular structures of human origin in vivo. Strong neovascularization by the implanted cells predominated in noninduced constructs. Without pretreatment, the SVF in stable fibrin gels displayed only a weak differentiation capability. In contrast, TissuCol gels strongly supported the formation of coherent and well-vascularized adipose tissue of human origin, displaying large unilocular adipocytes. The developed native-like tissue architecture was highlighted by a whole mount staining technique. Taken together, SVF cells from human adipose tissue were shown to successfully lead to adipose tissue formation in fibrin hydrogels in vivo. The results render the SVF a promising cell source for subsequent studies both in vitro and in vivo with the aim of engineering clinically applicable soft tissue substitutes.
Collapse
Affiliation(s)
- Katharina Wittmann
- 1 Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg , Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Toward reconstruction of the subcutaneous fat layer with the use of adipose-derived stromal cell–seeded collagen matrices. Cytotherapy 2014; 16:1700-8. [DOI: 10.1016/j.jcyt.2014.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 11/23/2022]
|
13
|
Tanzi MC, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2014; 6:533-51. [DOI: 10.1586/erd.09.37] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Wittmann K, Storck K, Muhr C, Mayer H, Regn S, Staudenmaier R, Wiese H, Maier G, Bauer-Kreisel P, Blunk T. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels. J Tissue Eng Regen Med 2013; 10:E409-E418. [PMID: 24170732 DOI: 10.1002/term.1830] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 01/07/2023]
Abstract
Adipose tissue engineering aims at the restoration of soft tissue defects and the correction of contour deformities. It is therefore crucial to provide functional adipose tissue implants with appropriate volume stability. Here, we investigate two different fibrin formulations, alone or in combination with biodegradable polyurethane (PU) scaffolds as additional support structures, with regard to their suitability to generate volume-stable adipose tissue constructs. Human adipose-derived stem cells (ASCs) were incorporated in a commercially available fibrin sealant as well as a stable fibrin hydrogel previously developed by our group. The composite constructs made from the commercially available fibrin and porous poly(ε-caprolactone)-based polyurethane scaffolds exhibited increased volume stability as compared to fibrin gels alone; however, only constructs using the stable fibrin gels completely maintained their size and weight for 21 days. Adipogenesis of ASCs was not impaired by the additional PU scaffold. After induction with a common hormonal cocktail, for constructs with either fibrin formulation, strong adipogenic differentiation of ASCs was observed after 21 days in vitro. Furthermore, upregulation of adipogenic marker genes was demonstrated at mRNA (PPARγ, C/EBPα, GLUT4 and aP2; qRT-PCR) and protein (leptin; ELISA) levels. Stable fibrin/PU constructs were further evaluated in a pilot in vivo study, resulting in areas of well-vascularized adipose tissue within the implants after only 5 weeks. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katharina Wittmann
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Germany
| | - Katharina Storck
- Department of ENT, Head and Neck Surgery, Technical University of Munich, Germany
| | - Christian Muhr
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Germany
| | - Helena Mayer
- Department of ENT, Head and Neck Surgery, Technical University of Munich, Germany
| | - Sybille Regn
- Department of ENT, Head and Neck Surgery, Technical University of Munich, Germany
| | - Rainer Staudenmaier
- Department of ENT, Head and Neck Surgery, Technical University of Munich, Germany
| | | | | | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Germany.
| |
Collapse
|
15
|
Zimmerman HA, Olson KC, Chen G, Lynch CJ. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol Genet Metab 2013; 109:345-53. [PMID: 23800641 PMCID: PMC3955948 DOI: 10.1016/j.ymgme.2013.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
Liver transplantation appears to be quite beneficial for treatment of maple syrup urine disease (MSUD, an inherited disorder of branched chain amino acid metabolism); however, there is a limited availability of donor livers worldwide and the first year costs of liver transplants are quite high. Recent studies have suggested that intact adipose tissue, already widely used in reconstructive surgery, may have an underappreciated high capacity for branched chain amino acid (BCAA) metabolism. Here we examined the potential for adipose tissue transplant to lower circulating BCAAs in two models of defective BCAA metabolism, BCATm and PP2Cm [branched chain keto acid dehydrogenase complex (BCKDC) phosphatase] knockout (KO) mice. After 1-2g fat transplant, BCATm and PP2Cm KO mice gained or maintained body weight 3weeks after surgery and consumed similar or more food/BCAAs the week before phlebotomy. Transplant of fat into the abdominal cavity led to a sterile inflammatory response and nonviable transplanted tissue. However when 1-2g of fat was transplanted subcutaneously into the back, either as small (0.1-0.3g) or finely minced pieces introduced with an 18-ga. needle, plasma BCAAs decreased compared to Sham operated mice. In two studies on BCATm KO mice and one study on PP2Cm KO mice, fat transplant led to 52-81% reductions in plasma BCAAs compared to baseline plasma BCAA concentrations of untreated WT type siblings. In PP2Cm KO mice, individual BCAAs in plasma were also significantly reduced by fat transplant, as were the alloisoleucine/Phe ratios. Therefore, subcutaneous fat transplantation may have merit as an adjunct to dietary treatment of MSUD. Additional studies are needed to further refine this approach.
Collapse
Affiliation(s)
- Heather A. Zimmerman
- Department of Comparative Medicine, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Kristine C. Olson
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Gang Chen
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- The Macromolecular Core Facility, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Christopher J. Lynch
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- Correspondence: Christopher J. Lynch, Ph.D., Dept. of Cellular & Molecular Physiology, Penn State College of Medicine. 500 University Drive, MC-H166, Hershey, PA 17033, USA FAX: +1 717 531 7667,
| |
Collapse
|
16
|
Abstract
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; Department of Molecular Biology; Princeton University; Princeton, NJ USA
| |
Collapse
|
17
|
Chhaya MP, Melchels FP, Wiggenhauser PS, Schantz JT, Hutmacher DW. Breast Reconstruction Using Biofabrication-Based Tissue Engineering Strategies. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00010-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Abstract
Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.
Collapse
|
19
|
Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, Hofer SOP, Hovius SER, van Osch GJVM. Comparing scaffold-free and fibrin-based adipose-derived stromal cell constructs for adipose tissue engineering: an in vitro and in vivo study. Cell Transplant 2012; 21:2283-97. [PMID: 22840523 DOI: 10.3727/096368912x653129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Success of adipose tissue engineering for soft tissue repair has been limited by insufficient adipogenic differentiation, an unfavorable host response, and insufficient vascularization. In this study, we examined how scaffold-free spheroid and fibrin-based environments impact these parameters in human adipose-derived stromal cell (ASC)-based adipose constructs. ASCs were differentiated in spheroids or fibrin-based constructs. After 7 days, conditioned medium was collected and spheroids/fibrin-based constructs were either harvested or implanted subcutaneously in athymic mice. Following 7 days of implantation, the number of blood vessels in fibrin-based constructs was significantly higher than in spheroids (93±45 vs. 23±11 vessels/mm(2)), and the inflammatory response to fibrin-based constructs was less severe. The reasons for these results were investigated further in vitro. We found that ASCs in fibrin-based constructs secreted significantly higher levels of the angiogenic factors VEGF and HGF and lower levels of the inflammatory cytokine IL-8. Furthermore, ASCs in fibrin-based constructs secreted significantly higher levels of leptin and showed a 2.5-fold upregulation of the adipogenic transcription factor PPARG and a fourfold to fivefold upregulation of the adipocyte-specific markers FABP4, perilipin, and leptin. These results indicate that fibrin-based ASC constructs are potentially more suitable for ASC-based adipose tissue reconstruction than scaffold-free spheroids.
Collapse
Affiliation(s)
- Femke Verseijden
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Stem cells, mature adipocytes, and extracellular scaffold: what does each contribute to fat graft survival? Aesthetic Plast Surg 2011; 35:1061-72. [PMID: 21590499 DOI: 10.1007/s00266-011-9734-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/06/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Soft tissue engineering offers new perspectives for improving fat graft survival, for which the appropriate association of cells and scaffold seems essential. This study aimed to analyze the survival of free-cell grafts compared with adipose-derived stem cells (ASCs) seeded on collagen scaffolds. METHODS Adipose tissue from a single volunteer was used for the following preparations: purified adipose tissue, isolated mature adipocytes (free-cell graft), cultured ASCs without scaffold (free-cell graft), collagen scaffold only, cultured ASCs in collagen scaffold without and with bioactive factors, and freshly-isolated ASCs in collagen scaffold. These were grafted on 18 nude mice for 2 months, after which specimens were evaluated grossly and histologically using hematoxylin-phloxine-safran (HPS), Oil-Red-O, and antivimentin labeling. Specimens and animals were weighed before implantation and after explantation, and weight values were statistically analyzed. RESULTS Free-cell grafts (mature adipocytes and free ASCs) showed complete resorption in 50 and 60% of the animals (remaining weight fraction was 22.5 and 5.3%, respectively). The survival of purified adipose tissue was 81.8% (statistically greater compared with free-cell grafts; p < 0.05). In the ASCs-scaffold association, the remaining weight fractions (87.3-70.4%) were statistically greater than in free-cell grafts (5.3-22.5%; p < 0.05), but the difference between ASC-scaffolds and fat grafts was not statistically significant. These results were confirmed by clinical and histologic observations. CONCLUSION Three-dimensional collagen scaffolds seem to improve survival of ASCs compared with free-cell grafts (adipocytes and free ASCs).
Collapse
|
21
|
Zhou Y, Yan Z, Zhang H, Lu W, Liu S, Huang X, Luo H, Jin Y. Expansion and Delivery of Adipose-Derived Mesenchymal Stem Cells on Three Microcarriers for Soft Tissue Regeneration. Tissue Eng Part A 2011; 17:2981-97. [DOI: 10.1089/ten.tea.2010.0707] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yalei Zhou
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Zhiwei Yan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Hongmei Zhang
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Wei Lu
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shiyu Liu
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Xinhui Huang
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Hailang Luo
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| | - Yan Jin
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
22
|
Melchels F, Wiggenhauser PS, Warne D, Barry M, Ong FR, Chong WS, Hutmacher DW, Schantz JT. CAD/CAM-assisted breast reconstruction. Biofabrication 2011; 3:034114. [DOI: 10.1088/1758-5082/3/3/034114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Engineering of vascularized adipose constructs. Cell Tissue Res 2011; 347:747-57. [DOI: 10.1007/s00441-011-1226-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
|
24
|
Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL. Adipose tissue engineering for soft tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:413-26. [PMID: 20166810 DOI: 10.1089/ten.teb.2009.0544] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue in both structure and function. Recently, a number of studies have been designed to explore various methods to engineer human adipose tissue. This review will focus on these developments in the area of adipose tissue engineering for soft tissue replacement. The physiology of adipose tissue and current surgical therapies used to replace lost tissue volume, specifically in breast tissue, are introduced, and current biomaterials, cell sources, and tissue culture strategies are discussed. We discuss future areas of study in adipose tissue engineering.
Collapse
Affiliation(s)
- Jennifer H Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi JH, Bellas E, Vunjak-Novakovic G, Kaplan DL. Adipogenic differentiation of human adipose-derived stem cells on 3D silk scaffolds. Methods Mol Biol 2011; 702:319-30. [PMID: 21082412 DOI: 10.1007/978-1-61737-960-4_23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Current treatment modalities for soft tissue defects due to various pathologies and trauma include autologous grafting and the use of commercially available fillers. However, these treatment methods are associated with a number of limitations, such as donor site morbidity and volume loss over time. As such, improved therapeutic options are needed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue with an appropriate structure and function. The recent advances in the derivation and characterization of hASCs have led to numerous studies of soft tissue reconstruction. In this chapter, we discuss methods in which our laboratory has used hASCs and silk scaffolds for adipose tissue engineering. The use of naturally occurring and clinically acceptable materials such as silk protein for tissue-engineering applications poses advantages with respect to biocompatibility and mechanical and biological properties.
Collapse
|
26
|
Moioli EK, Chen M, Yang R, Shah B, Wu J, Mao JJ. Hybrid adipogenic implants from adipose stem cells for soft tissue reconstruction in vivo. Tissue Eng Part A 2010; 16:3299-307. [PMID: 20528671 DOI: 10.1089/ten.tea.2010.0157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10 mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipogenic medium for 28 days showed no delamination. Upon 4-week in vivo implantation in athymic rats, hybrid implants well integrated with host subcutaneous tissue and could only be surgically separated. Vascularized adipose tissue regenerated in the thin, painted alginate layer only if ASC-derived adipogenic cells were delivered. Contrastingly, abundant fibrous tissue filled ASC-free alginate layer encapsulating the acellular PEGDA core in control implants. Human-specific peroxisome proliferator-activated receptor-γ (PPAR-γ) was detected in human ASC-seeded implants. Interestingly, rat-specific PPAR-γ was absent in either human ASC-seeded or ASC-free implants. Glycerol content in ASC-delivered implants was significantly greater than that in ASC-free implants. Remarkably, rat-specific platelet/endothelial cell adhesion molecule (PECAM) was detected in both ASC-seeded and ASC-free implants, suggesting anastomosis of vasculature in bioengineered tissue with host blood vessels. Human nuclear staining revealed that a substantial number of adipocytes were of human origin, whereas endothelial cells of vascular wall were of chemaric human and nonhuman (rat host) origins. Together, hybrid implant appears to be a viable scale-up approach with volumetric retention attributable primarily to the acellular biomaterial core, and yet has a biologically viable cellular interface with the host. The present 40-mm soft tissue implant may serve as a biomaterial tissue expander for reconstruction of lumpectomy defects.
Collapse
Affiliation(s)
- Eduardo K Moioli
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
27
|
Brandl FP, Seitz AK, Tessmar JKV, Blunk T, Göpferich AM. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials 2010; 31:3957-66. [PMID: 20170951 DOI: 10.1016/j.biomaterials.2010.01.128] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/21/2010] [Indexed: 12/11/2022]
Abstract
Adipose tissue engineering requires biomaterials that promote the differentiation of seeded adipocytes. Here, we report on the development and characterization of in situ forming, poly(ethylene glycol) (PEG) based hydrogels for soft tissue augmentation. Branched PEG-amines were modified with collagenase-sensitive peptides and cross-linked with branched PEG-succinimidyl propionates without the use of free-radical initiators (enzymatically degradable hydrogels). Alanine-modified PEG-amines were used for the preparation of non-degradable gels. Depending on the used polymer concentration, the strength of degradable gels after swelling ranged from 1708 to 7412 Pa; the strength of non-degradable hydrogels varied between 1496 and 7686 Pa. Enzyme mediated gel degradation occurred within 10, 16, and 19 days (5%, 10%, and 15% initial polymer content). To evaluate their suitability as scaffold materials for adipose tissue engineering, the hydrogels were functionalized with the laminin-derived adhesion peptide YIGSR, and seeded with 3T3-L1 preadipocytes. Compared to a standard two-dimensional cell culture model, the developed hydrogels significantly enhanced the intracellular triglyceride accumulation of encapsulated adipocytes. Functionalization with YIGSR further enhanced lipid synthesis within differentiating adipocytes. Long-term studies suggested that enzymatically degradable hydrogels furthermore promote the formation of coherent adipose tissue-like structures featuring many mature unilocular fat cells.
Collapse
Affiliation(s)
- Ferdinand P Brandl
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Kang JH, Gimble JM, Kaplan DL. In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 2009; 15:2227-36. [PMID: 19207036 DOI: 10.1089/ten.tea.2008.0469] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical need for both three-dimensional (3D) soft tissue replacements and in vitro adipose tissue models continues to grow. In this study, we evaluated structural and functional characteristics of an in vitro 3D coculture model of vascularized adipose tissue. Tomato red-infected human adipose tissue-derived mesenchymal stem cells (hASCs) and green fluorescence protein-infected human umbilical vein endothelial cells were cocultured on 3D aqueous-derived silk scaffolds for 2 weeks. Confocal microscopy images demonstrated viability of cocultures and organization of both cell types over time. Endothelial cells aligned with time, and further histological analyses revealed continuous endothelial lumen formation in both differentiated and undifferentiated cocultures. Differentiated adipose cocultures secreted significantly higher levels of leptin than undifferentiated cocultures at 1 and 2 weeks. Additionally, lipid accumulation was demonstrated with Oil Red O staining, where positive staining was higher in the differentiated cocultures. A promising in vitro approach for the vascularization of tissue-engineered adipose tissue, and the ability to vascularize a construct containing hASCs was demonstrated. The strategy outlined provides a basis for the formation of other in vitro vascularized tissues as well as a path forward for the sustainable formation of soft tissue due to the use of slowly degrading silk scaffolds.
Collapse
Affiliation(s)
- Jennifer H Kang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
29
|
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment. Osteoarthritis Cartilage 2009; 17:1503-12. [PMID: 19470416 DOI: 10.1016/j.joca.2009.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 03/13/2009] [Accepted: 05/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effects of growth and differentiation factor-5 (GDF-5) alone or in combination with insulin on engineered cartilage from primary or expanded chondrocytes during 3-dimensional in vitro culture. DESIGN Juvenile bovine chondrocytes were seeded either as primary or as expanded (passage 2) cells onto polyglycolic acid fiber meshes and cultured for 3 weeks in vitro. Additionally, adult human chondrocytes were grown in pellet culture after expansion (passage 2). The culture medium was supplemented either with GDF-5 in varying concentrations or insulin alone, or with combinations thereof. RESULTS For primary chondrocytes, the combination of GDF-5 and insulin led to increased proliferation and construct weight, as compared to either factor alone, however, the production of glycosaminoglycans (GAG) and collagen per cell were not affected. With expanded bovine chondrocytes, the use of GDF-5 or insulin alone led to only very small constructs with no type II collagen detectable. However, the combination of GDF-5 (0.01 or 0.1 microg/ml) and insulin (2.5 microg/ml) yielded cartilaginous constructs and, in contrast to the primary cells, the observed redifferentiating effects were elicited on the cellular level independent of proliferation (increased production of GAG and collagen per cell, clear shift in collagen subtype expression with type II collagen observed throughout the construct). The synergistic redifferentiating effects of the GDF-5/insulin combination were confirmed with expanded adult human cells, also exhibiting a clear shift in collagen subtype expression on the mRNA and protein level. CONCLUSIONS In combination with insulin, GDF-5 appears to enable the redifferentiation of expanded chondrocytes and the concurrent generation of cartilaginous constructs. The demonstration of these synergistic effects also for adult human chondrocytes supports the clinical relevance of the findings.
Collapse
|
30
|
Morgan SM, Ainsworth BJ, Kanczler JM, Babister JC, Chaudhuri JB, Oreffo ROC. Formation of a human-derived fat tissue layer in P(DL)LGA hollow fibre scaffolds for adipocyte tissue engineering. Biomaterials 2009; 30:1910-7. [PMID: 19135718 DOI: 10.1016/j.biomaterials.2008.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/14/2008] [Indexed: 10/21/2022]
Abstract
Development of adipose tissue-engineering strategies, where human bone marrow stromal cells (HBMSC) are combined with three-dimensional scaffolds, is likely to prove valuable for soft tissue restoration. In this study, we assessed the function of poly(DL-lactide-co-glycolide) (P(DL)LGA) hollow fibres in facilitating the development of HBMSC-derived adipocytes for advancement of an associated adipocyte layer. The large surface area of 75:25 P(DL)LGA fibres facilitated the rapid generation of extensive adipocyte aggregates from an undifferentiated HBMSC monolayer, where the fat-laden cells stained positive with Oil Red O and expressed the adipocyte marker, fatty acid binding protein 3 (FABP3). Following implantation subcutaneously in severely compromised immunodeficient mice, the adipogenic phenotype of the PLGA-adipocyte graft was maintained for up to 56 days. Confocal microscopy showed associated LipidTOX Deep Red neutral lipid staining in an (FL)P(DL)LGA fibre-adipocyte graft after 56 days, critical evidence demonstrating maintenance of the adipocyte phenotype in the subcutaneous graft. To support adipose tissue advancement in a defined volume, the P(DL)LGA-adipocyte scaffold was encapsulated within alginate/chitosan hydrogel capsules (typical diameters, 4.0 mm). In a 28-day in vivo trial in immunodeficient mice, clusters of the capsules were maintained at the subcutaneous site. An adipocyte tissue layer advancing within the surrounding hydrogel was demonstrated.
Collapse
Affiliation(s)
- Suzanne M Morgan
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO166YD, UK
| | | | | | | | | | | |
Collapse
|
31
|
Luo W, Shitaye H, Friedman M, Bennett CN, Miller J, Macdougald OA, Hankenson KD. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation. Exp Cell Res 2008; 314:3382-91. [PMID: 18674534 DOI: 10.1016/j.yexcr.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0.1 microg/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential.
Collapse
Affiliation(s)
- Weijun Luo
- Department of Biomedical Engineering, Medical School, University of Michigan, USA
| | | | | | | | | | | | | |
Collapse
|