1
|
McCall B, Rana K, Sugden K, Junaid S. In-vitro external fixation pin-site model proof of concept: A novel approach to studying wound healing in transcutaneous implants. Proc Inst Mech Eng H 2024; 238:403-411. [PMID: 38602217 PMCID: PMC11010558 DOI: 10.1177/09544119241234154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/05/2024] [Indexed: 04/12/2024]
Abstract
External fixation is an essential surgical technique for treating trauma, limb lengthening and deformity correction, however infection is common, with infection rates ranging from 4.5 to 100% of cases. Throughout the literature researchers and clinicians have highlighted a relationship between excessive movement of the pin and skin and an increase in the patient's risk of infection, however, currently no studies have addressed this role of pin-movement on pin-site wounds. This preliminary study describes a novel in vitro pin-site model, developed using a full-thickness human skin equivalent (HSE) model in conjunction with a bespoke mechanical system which simulates pin-movement. The effect of pin-movement on the wound healing response of the skin equivalents was assessed by measuring the expression of pro-inflammatory cytokines. Six human skin equivalent models were divided into three test groups: no pin as the control, static pin-site wound and dynamic pin-site wound (n = 3). On day 3 concentrations of IL-1α and IL-8 showed a significant increase compared to the control when a static fixation pin was implanted into the skin equivalent (p < 0.05) and (p < 0.005) respectively. Levels of IL-1α and IL-8 increased further in the dynamic sample compared to the static sample (p < 0.05) and (p < 0.0005). This study demonstrates for the first time the application of HSE model to study external-fixation pin-movement in vitro. The results of this study demonstrated pin-movement has a negative effect on soft-tissue wound-healing, supporting the anecdotal evidence reported in the literature, however further analysis of wound heading would be required to verify this hypothesis.
Collapse
Affiliation(s)
- Blake McCall
- Biomedical Engineering Research Group, School of Engineering and Applied Science, Aston University, Birmingham, UK
| | - Karan Rana
- Aston Research Centre for Healthy Ageing, School of Life and Health Science, Aston University, Birmingham, UK
| | - Kate Sugden
- Aston Institute of Photonics Technology, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Sarah Junaid
- Biomedical Engineering Research Group, School of Engineering and Applied Science, Aston University, Birmingham, UK
| |
Collapse
|
2
|
Nakano T, Yamanaka H, Sakamoto M, Tsuge I, Katayama Y, Saito S, Ono J, Yamaoka T, Morimoto N. Development of a Self-Assembled Dermal Substitute from Human Fibroblasts Using Long-term Three-Dimensional Culture. Tissue Eng Part A 2023; 29:569-578. [PMID: 37606914 DOI: 10.1089/ten.tea.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Skin substitutes have emerged as an alternative to autografts for the treatment of skin defects. Among them, scaffold-based dermal substitutes have been extensively studied; however, they have certain limitations, such as delayed vascularization, limited elasticity, and the inability to achieve permanent engraftment. Self-assembled, cell-based dermal substitutes are a promising alternative that may overcome these shortcomings but have not yet been developed. In this study, we successfully developed a cell-based dermal substitute (cultured dermis) through the long-term culture of human dermal fibroblasts using the net-mold method, which enables three-dimensional cell culture without the use of a scaffold. Spheroids prepared from human dermal fibroblasts were poured into a net-shaped mold and cultured for 2, 4, or 6 months. The dry weight, tensile strength, collagen and glycosaminoglycan levels, and cell proliferation capacity were assessed and compared among the 2-, 4-, and 6-month culture periods. We found that collagen and glycosaminoglycan levels decreased over time, while the dry weight remained unchanged. Tensile strength increased at 4 months, suggesting that remodeling had progressed. In addition, the cell proliferation capacity was maintained, even after a 6-month culture period. Unexpectedly, the internal part of the cultured dermis became fragile, resulting in the division of the cultured dermis into two collagen-rich tissues, each of which had a thickness of 400 μm and sufficient strength to be sutured during in vivo analysis. The divided 4-month cultured dermis was transplanted to skin defects of immunocompromised mice and its wound healing effects were compared to those of a clinically available collagen-based artificial dermis. The cultured dermis promoted epithelialization and angiogenesis more effectively than the collagen-based artificial dermis. Although further improvements are needed, such as the shortening of the culture period and increasing the size of the cultured dermis, we believe that the cultured dermis presented in this study has the potential to be an innovative material for permanent skin coverage.
Collapse
Affiliation(s)
- Takashi Nakano
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Yamanaka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Katayama
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Ono
- Tissue By Net Corporation, Saitama, Japan
| | - Tetsuji Yamaoka
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Motter Catarino C, Kaiser K, Baltazar T, Motter Catarino L, Brewer JR, Karande P. Evaluation of native and non-native biomaterials for engineering human skin tissue. Bioeng Transl Med 2022; 7:e10297. [PMID: 36176598 PMCID: PMC9472026 DOI: 10.1002/btm2.10297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
A variety of human skin models have been developed for applications in regenerative medicine and efficacy studies. Typically, these employ matrix molecules that are derived from non-human sources along with human cells. Key limitations of such models include a lack of cellular and tissue microenvironment that is representative of human physiology for efficacy studies, as well as the potential for adverse immune responses to animal products for regenerative medicine applications. The use of recombinant extracellular matrix proteins to fabricate tissues can overcome these limitations. We evaluated animal- and non-animal-derived scaffold proteins and glycosaminoglycans for the design of biomaterials for skin reconstruction in vitro. Screening of proteins from the dermal-epidermal junction (collagen IV, laminin 5, and fibronectin) demonstrated that certain protein combinations when used as substrates increase the proliferation and migration of keratinocytes compared to the control (no protein). In the investigation of the effect of components from the dermal layer (collagen types I and III, elastin, hyaluronic acid, and dermatan sulfate), the primary influence on the viability of fibroblasts was attributed to the source of type I collagen (rat tail, human, or bovine) used as scaffold. Furthermore, incorporation of dermatan sulfate in the dermal layer led to a reduction in the contraction of tissues compared to the control where the dermal scaffold was composed primarily of collagen type I. This work highlights the influence of the composition of biomaterials on the development of complex reconstructed skin models that are suitable for clinical translation and in vitro safety assessment.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Katharina Kaiser
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Tânia Baltazar
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Present address:
Department of ImmunobiologyYale School of MedicineNew HavenConnecticutUSA
| | - Luiza Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Department of BiomedicinePositivo UniversityCuritibaBrazil
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
4
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
5
|
Goonoo N, Gimié F, Ait-Arsa I, Cordonin C, Andries J, Jhurry D, Bhaw-Luximon A. Piezoelectric core-shell PHBV/PDX blend scaffolds for reduced superficial wound contraction and scarless tissue regeneration. Biomater Sci 2021; 9:5259-5274. [PMID: 34164641 DOI: 10.1039/d1bm00379h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of non-invasive scaffold materials which can mimic the innate piezoelectric properties of biological tissues is a promising strategy to promote native tissue regeneration. Piezoelectric and cell instructive electrospun core-shell PDX/PHBV mats have been engineered to promote native tissue and skin regeneration. In depth physicochemical characterisation, in vitro and in vivo studies of a rat model showed that the 20/80 PDX/PHBV composition possessed the right balance of physicochemical and piezoelectric properties leading to enhanced fibroblast stimulation, proliferation and migration, reduced fibroblast-mediated contraction and macrophage-induced inflammation, improved keratinocyte proliferation, proper balance between endothelial cell phenotypes, decreased in vivo fibrosis and accelerated in vivo scarless wound regeneration. Overall, this study highlights the importance of exploiting cell-material interactions to match tissue biological needs to sustain the wound healing cascade.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius.
| | - Fanny Gimié
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile de La Réunion, France
| | - Imade Ait-Arsa
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile de La Réunion, France
| | - Colette Cordonin
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile de La Réunion, France
| | - Jessica Andries
- RIPA, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile de La Réunion, France
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius.
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius.
| |
Collapse
|
6
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater Sci Eng 2021; 7:2803-2813. [PMID: 33905240 DOI: 10.1021/acsbiomaterials.0c01775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of microfabrication techniques for the development of innovative constructs for tissue regeneration is a growing area of research. This area comprises both manufacturing and biological approaches for the development of smart materials aiming to control and direct cell behavior to enhance tissue healing. Many groups have focused their efforts on introducing complexity within these innovative constructs via the inclusion of nano- and microtopographical cues mimicking physical and biological aspects of the native stem cell niche. Specifically, in the area of skin tissue engineering, seminal work has reported replicating the microenvironments located in the dermal-epithelial junction, which are known as rete ridges. The rete ridges are key for both stem cell control and the physiological performance of the skin. In this work, we have introduced complexity within electrospun membranes to mimic the morphology of the rete ridges in the skin. We designed and tested three different patterns, characterized them, and explored their performance in vitro, using 3D skin models. One of the studied patterns (pattern B) was shown to aid in the development of an in vitro rite-ridgelike skin model that resulted in the expression of relevant epithelial markers such as collagen IV and integrin β1. In summary, we have developed a new skin model including synthetic rete-ridgelike structures that replicate both morphology and function of the native dermal-epidermal junction and that offer new insights for the development of smart skin tissue engineering constructs.
Collapse
Affiliation(s)
- David H Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
| |
Collapse
|
7
|
Mutlu HS, Erdoğan A, Tapul L. Autologously transplanted dermal fibroblasts improved diabetic wound in rat model. Acta Histochem 2020; 122:151552. [PMID: 32622425 DOI: 10.1016/j.acthis.2020.151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023]
Abstract
Healing of diabetic wounds are delayed due to late initiation and prolongation of the inflammatory phase, and inadequate growth factor synthesis, which may lead to chronic ulcers that may cause limb amputation, besides making the patients vulnerable to infections. In recent years, it has been extensively discussed whether different cell types transplanted to diabetic wound models accelerate wound healing. In this study, the effect of dermis-derived cells on Streptozotocin (STZ) induced experimental diabetic Sprague-Dawley rats were investigated. Animals were divided into 3 groups. First group was control, second group included diabetic animals with wounds. In the third group, firstly, skin specimens were obtained from animal's back, and then primary explant culture was performed. STZ induced experimental diabetes was applied to these animals and then wound was opened. The cells grown in primary culture were transplanted autologously. In all three groups, the samples taken from the wound areas on the 5th and 15th days of the wound were examined at the level of histochemical and immunohistochemical and electron microscopy. In the study, it was observed that the decreasing α-SMA and KGF (FGF-7) expression in the early period especially in the case of experimental diabetes increased as a result of cell transplantation, and in the sections belonging to the experimental diabetic group, a large number of inflammatory cells in the wound area were removed from the environment. In the cell transplanted group, the collagen fiber bundles as if in the control group. As a result, healthy cells of dermis can act as mesenchymal stem cells under certain conditions and have a positive effect on diabetic wound healing.
Collapse
Affiliation(s)
- Hasan Serdar Mutlu
- İstanbul University, İstanbul Medicine Faculty, Histology and Embryology Department, Fatih, İstanbul, Turkey; İstanbul University, Graduate School of Health Sciences, İstanbul, Turkey.
| | - Aslı Erdoğan
- İstanbul University, İstanbul Medicine Faculty, Histology and Embryology Department, Fatih, İstanbul, Turkey; İstanbul University, Graduate School of Health Sciences, İstanbul, Turkey
| | - Leyla Tapul
- İstanbul University, İstanbul Medicine Faculty, Histology and Embryology Department, Fatih, İstanbul, Turkey
| |
Collapse
|
8
|
Ionescu AM, Chato-Astrain J, Cardona JDLC, Campos F, Pérez MM, Alaminos M, Garzón I. Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32383372 PMCID: PMC7203517 DOI: 10.1117/1.jbo.25.5.055002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recent generation of bioengineered human skin allowed the efficient treatment of patients with severe skin defects. However, the optical and biomechanical properties of these models are not known. AIM Three models of bioengineered human skin based on fibrin-agarose biomaterials (acellular, dermal skin substitutes, and complete dermoepidermal skin substitutes) were generated and analyzed. APPROACH Optical and biomechanical properties of these artificial human skin substitutes were investigated using the inverse adding-doubling method and tensile tests, respectively. RESULTS The analysis of the optical properties revealed that the model that most resembled the optical behavior of the native human skin in terms of absorption and scattering properties was the dermoepidermal human skin substitutes after 7 to 14 days in culture. The time-course evaluation of the biomechanical parameters showed that the dermoepidermal substitutes displayed significant higher values than acellular and dermal skin substitutes for all parameters analyzed and did not differ from the control skin for traction deformation, stress, and strain at fracture break. CONCLUSIONS We demonstrate the crucial role of the cells from a physical point of view, confirming that a bioengineered dermoepidermal human skin substitute based on fibrin-agarose biomaterials is able to fulfill the minimal requirements for skin transplants for future clinical use at early stages of in vitro development.
Collapse
Affiliation(s)
- Ana Maria Ionescu
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Juan de la Cruz Cardona
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Maria M. Pérez
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Ingrid Garzón
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| |
Collapse
|
9
|
Meng Q, Shen C. Construction of low contracted 3D skin equivalents by genipin cross-linking. Exp Dermatol 2018; 27:1098-1103. [PMID: 29957867 DOI: 10.1111/exd.13725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Continuous contraction of 3D skin equivalents in construction and use restricts their applications in clinical and pharmaceutical practices. So far, no effective method has been developed to inhibit such contraction. Hence, low cytotoxic cross-linkers, 1-ethyl-3-3-dimethylaminopropylcarbodiimide hydrochloride (EDC) and genipin, are investigated to reduce the contraction in this study. As found, both genipin and EDC at 0.2 and 0.4 mmol/L are nontoxic to collagen-entrapped fibroblasts and upregulate the extracellular matrix expression of fibroblasts in cross-linked collagen. Particularly, collagen cross-linking by intermediate concentrations of genipin, specifically 0.4 mmol/L, greatly reduces the contraction of 3D skin equivalents from 87% to 28% (n = 9, P < 0.05), while the collagen after EDC cross-linking at 0.4 mmol/L still presented severe contraction of 64% over a 21-day follow-up period. The inhibited contraction might relate to the increased gel stiffness and slowed collagen degradation. Moreover, the genipin cross-linking does not impair the formation of epidermal layers and improves the epidermal-dermal junction of skin equivalents as well. In this regard, genipin cross-linking might facilitate the applications of 3D skin equivalents in clinical practices and pharmacology testing.
Collapse
Affiliation(s)
- Qin Meng
- Key Laboratory of Biomass Chemical Engineering, Zhejiang University, Hangzhou, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Simsek A, Bullock AJ, Roman S, Chapple CR, MacNeil S. Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction. Can Urol Assoc J 2018; 12:E234-E242. [PMID: 29405909 PMCID: PMC5966936 DOI: 10.5489/cuaj.4826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We aimed to compare alternative synthetic scaffolds suitable for future implantation and to examine the use of an inhibitor of lysyl oxidase (beta-amino-propionitrile [β-APN]) to reduce contraction in these implants. METHODS Three synthetic scaffolds were compared to natural dermis as substrates for the production of tissue-engineered skin. For natural dermis, Euroskin was used to provide a cell-free cadaveric dermis. Synthetic scaffolds consisted of microfibrous poly-L-lactic acid (PLA), nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and a micro-/nanofibrous trilayer of PLA-PHBV-PLA. The latter were all electrospun and then all four scaffolds (three synthetic, one natural) were placed in six well plates. A culture well was formed on the scaffold using a 1 cm diameter stainless steel ring and 1.5×105 oral fibroblasts were seeded one side; after two days of culture, the ring was placed on the other side of the scaffolds and 3×105 oral keratinocytes were seeded on to the scaffolds and cultured with keratinocytes uppermost. After a further two days of culture, scaffolds were cut to 1 cm2 and raised to an air-liquid interface on stainless steel grids; some were treated with 200 μg/mL β-APN throughout the culture period (28 days). Contraction in vitro was assessed by serial digital photography of cell-seeded scaffolds and cell-free scaffolds three times a week for 28 days. All cell-seeded scaffolds were assessed for cell metabolic activity, mechanical properties, histology, and morphology by scanning electron microscopy (SEM). RESULTS The mean fibre diameters and pore sizes of PLA and PHBV scaffolds were 2.4±0.77, 0.85±0.21 μm (p<0.001), and 10.8±2.3, 4.3±1.1 μm (p<0.001), respectively. Oral fibroblasts and keratinocytes were tightly adhered and grew well on both surfaces of trilayer. The ultimate tensile strength (UTS) and Young's modulus (YM) of PLA samples were significantly lower than Euroskin (p<0.001 and p<0.05, respectively); only the UTS of the trilayer samples was slightly significantly lower (p<0.05). Metabolic activity was significantly increased for cells on all scaffolds, without significant differences between them from Day 0 to Day 28. There were no adverse effects of β-APN on cell viability. With respect to contraction, cells on trilayer and PHBV monolayers did not undergo any significant contraction; however, cells on PLA monolayer and Euroskin contracted 25.3% and 56.4%, respectively, over 28 days. The addition of 200 μg/ml β-APN significantly reduced contraction of Euroskin compared with the control (p<0.01); however, β-APN did not affect PLA contraction during this culture period (p>0.05). CONCLUSIONS This study shows that a trilayer micro-nano-3D porous synthetic scaffold is suitable for oral keratinocyte and fibroblast growth with good cell viability and minimal contraction. This material also has good mechanical properties and histological analyses showed its ability to mimic normal human oral mucosal morphology. Furthermore, synthetic trilayer scaffolds have advantages over biological scaffolds - there is no risk of disease transmission or immunological rejection and they appear resistant to contraction. We suggest they present a good alternative to allodermis for future use in urethral reconstruction.
Collapse
Affiliation(s)
- Abdulmuttalip Simsek
- Royal Hallamshire Hospital, Department of Female and Reconstructive Urology, Sheffield; United Kingdom
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Anthony J. Bullock
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Sabi Roman
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Chirstoper R. Chapple
- Royal Hallamshire Hospital, Department of Female and Reconstructive Urology, Sheffield; United Kingdom
| | - Sheila MacNeil
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| |
Collapse
|
11
|
Simsek A, Aldamanhori R, Chapple CR, MacNeil S. Overcoming scarring in the urethra: Challenges for tissue engineering. Asian J Urol 2018; 5:69-77. [PMID: 29736368 PMCID: PMC5934514 DOI: 10.1016/j.ajur.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
Urethral stricture disease is increasingly common occurring in about 1% of males over the age of 55. The stricture tissue is rich in myofibroblasts and multi-nucleated giant cells which are thought to be related to stricture formation and collagen synthesis. An increase in collagen is associated with the loss of the normal vasculature of the normal urethra. The actual incidence differs based on worldwide populations, geography, and income. The stricture aetiology, location, length and patient's age and comorbidity are important in deciding the course of treatment. In this review we aim to summarise the existing knowledge of the aetiology of urethral strictures, review current treatment regimens, and present the challenges of using tissue-engineered buccal mucosa (TEBM) to repair scarring of the urethra. In asking this question we are also mindful that recurrent fibrosis occurs in other tissues-how can we learn from these other pathologies?
Collapse
Affiliation(s)
- Abdulmuttalip Simsek
- Department of Urology, Royal Hallamshire Hospital, Sheffield, UK.,Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Reem Aldamanhori
- Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Lombardi B, Casale C, Imparato G, Urciuolo F, Netti PA. Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent. Adv Healthc Mater 2017; 6. [PMID: 28407433 DOI: 10.1002/adhm.201601422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing.
Collapse
Affiliation(s)
- Bernadette Lombardi
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| |
Collapse
|
13
|
Cai L, Xiong X, Kong X, Xie J. The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review. Tissue Eng Regen Med 2017; 14:15-30. [PMID: 30603458 DOI: 10.1007/s13770-016-0007-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 02/05/2023] Open
Abstract
Tissue injury provokes a series of events containing inflammation, new tissue formation and tissue remodeling which are regulated by the spatially and temporally coordinated organization. It is an evolutionarily conserved, multi-cellular, multi-molecular process via complex signalling network. Tissue injury disorders present grievous clinical problems and are likely to increase since they are generally associated with the prevailing diseases such as diabetes, hypertension and obesity. Although these dynamic responses vary not only for the different types of trauma but also for the different organs, a balancing act between the tissue degradation and tissue synthesis is the same. In this process, the degradation of old extracellular matrix (ECM) elements and new ones' synthesis and deposition play an essential role, especially collagens. Lysyl oxidase (LOX) and four lysyl oxidase-like proteins are a group of enzymes capable of catalyzing cross-linking reaction of collagen and elastin, thus initiating the formation of covalent cross-links that insolubilize ECM proteins. In this way, LOX facilitates ECM stabilization through ECM formation, development, maturation and remodeling. This ability determines its potential role in tissue repair and regeneration. In this review, based on the current in vitro, animal and human in vivo studies which have shown the significant role of the LOXs in tissue repair, e.g., tendon regeneration, ligament healing, cutaneous wound healing, and cartilage remodeling, we focused on the role of the LOXs in inflammation phase, proliferation phase, and tissue remodeling phase of the repair process. By summarizing its healing role, we hope to shed light on the understanding of its potential in tissue repair and provide up to date therapeutic strategies towards related injuries.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Xiangli Kong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| |
Collapse
|
14
|
Casale C, Imparato G, Urciuolo F, Netti PA. Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials 2016; 101:86-95. [DOI: 10.1016/j.biomaterials.2016.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
|
15
|
Abaci HE, Guo Z, Coffman A, Gillette B, Lee WH, Sia SK, Christiano AM. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells. Adv Healthc Mater 2016; 5:1800-7. [PMID: 27333469 PMCID: PMC5031081 DOI: 10.1002/adhm.201500936] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/03/2016] [Indexed: 12/28/2022]
Abstract
Vascularization of engineered human skin constructs is crucial for recapitulation of systemic drug delivery and for their long-term survival, functionality, and viable engraftment. In this study, the latest microfabrication techniques are used and a novel bioengineering approach is established to micropattern spatially controlled and perfusable vascular networks in 3D human skin equivalents using both primary and induced pluripotent stem cell (iPSC)-derived endothelial cells. Using 3D printing technology makes it possible to control the geometry of the micropatterned vascular networks. It is verified that vascularized human skin equivalents (vHSEs) can form a robust epidermis and establish an endothelial barrier function, which allows for the recapitulation of both topical and systemic delivery of drugs. In addition, the therapeutic potential of vHSEs for cutaneous wounds on immunodeficient mice is examined and it is demonstrated that vHSEs can both promote and guide neovascularization during wound healing. Overall, this innovative bioengineering approach can enable in vitro evaluation of topical and systemic drug delivery as well as improve the potential of engineered skin constructs to be used as a potential therapeutic option for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Hasan E. Abaci
- Department of Dermatology, Columbia University Medical Center, New York
| | - Zongyou Guo
- Department of Dermatology, Columbia University Medical Center, New York
| | - Abigail Coffman
- Department of Dermatology, Columbia University Medical Center, New York
| | - Brian Gillette
- Department of Biomedical Engineering, Columbia University, New York
| | - Wen-han Lee
- Department of Biomedical Engineering, Columbia University, New York
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Medical Center, New York
- Department of Genetics and Development, Columbia University Medical Center, New York
| |
Collapse
|
16
|
Keratinocyte Microvesicles Regulate the Expression of Multiple Genes in Dermal Fibroblasts. J Invest Dermatol 2015; 135:3051-3059. [DOI: 10.1038/jid.2015.320] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
|
17
|
Pereira Filho GDA, de Muñoz GAO, Ely PB, Zettler CG. Effect of botulinum toxin type A in the contraction of lesions treated with full-thickness grafts. EUROPEAN JOURNAL OF PLASTIC SURGERY 2015. [DOI: 10.1007/s00238-015-1126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ding JP, Fang L, Wang LZ. The use of micro-plasma radiofrequency technology in secondary skin graft contraction: 2 case reports. J COSMET LASER THER 2015; 17:301-3. [DOI: 10.3109/14764172.2015.1027230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 2015; 10:e0122359. [PMID: 25793720 PMCID: PMC4368828 DOI: 10.1371/journal.pone.0122359] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these results suggest that microporous electrospun scaffolds pre-seeded with fibroblasts promote greater wound-healing than acellular scaffolds.
Collapse
Affiliation(s)
- Paul P. Bonvallet
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew J. Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth H. Mitchell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer L. Bain
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bonnie K. Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven J. Thomas
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Susan L. Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rakar J, Krammer MP, Kratz G. Human melanocytes mitigate keratinocyte-dependent contraction in an in vitro collagen contraction assay. Burns 2014; 41:1035-42. [PMID: 25466959 DOI: 10.1016/j.burns.2014.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 01/30/2023]
Abstract
Scarring is an extensive problem in burn care, and treatment can be especially complicated in cases of hypertrophic scarring. Contraction is an important factor in scarring but the contribution of different cell types remains unclear. We have investigated the contractile behavior of keratinocytes, melanocytes and fibroblasts by using an in vitro collagen gel assay aimed at identifying a modulating role of melanocytes in keratinocyte-mediated contraction. Cells were seeded on a collagen type I gel substrate and the change in gel dimensions were measured over time. Hematoxylin & Eosin-staining and immunohistochemistry against pan-cytokeratin and microphthalmia-associated transcription factor showed that melanocytes integrated between keratinocytes and remained there throughout the experiments. Keratinocyte- and fibroblast-seeded gels contracted significantly over time, whereas melanocyte-seeded gels did not. Co-culture assays showed that melanocytes mitigate the keratinocyte-dependent contraction (significantly slower and 18-32% less). Fibroblasts augmented the contraction in most assays (approximately 6% more). Non-contact co-cultures showed some influence on the keratinocyte-dependent contraction. Results show that mechanisms attributable to melanocytes, but not fibroblasts, can mitigate keratinocyte contractile behavior. Contact-dependent mechanisms are stronger modulators than non-contact dependent mechanisms, but both modes carry significance to the contraction modulation of keratinocytes. Further investigations are required to determine the mechanisms involved and to determine the utility of melanocytes beyond hypopigmentation in improved clinical regimes of burn wounds and wound healing.
Collapse
Affiliation(s)
- Jonathan Rakar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Center for Integrative Regenerative Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Markus P Krammer
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gunnar Kratz
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Hand and Plastic Surgery and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Winterroth F, Kato H, Kuo S, Feinberg SE, Hollister SJ, Fowlkes JB, Hollman KW. High-frequency ultrasonic imaging of growth and development in manufactured engineered oral mucosal tissue surfaces. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2244-2251. [PMID: 24968758 PMCID: PMC4130788 DOI: 10.1016/j.ultrasmedbio.2014.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
This study uses high-resolution ultrasound to examine the growth and development of engineered oral mucosal tissues manufactured under aseptic conditions. The specimens are a commercially available natural tissue scaffold, AlloDerm, and oral keratinocytes seeded onto AlloDerm to form an ex vivo-produced oral mucosal equivalent (EVPOME) suitable for intra-oral grafting. The seeded cells produce a keratinized protective upper layer that smooths out any remaining surface irregularities on the underlying AlloDerm. Two-dimensional acoustic imaging of unseeded AlloDerm and developing EVPOMEs was performed on each day of their growth and development, each tissue specimen being imaged under aseptic conditions (total time from seeding to maturation: 11 d). Ultrasonic monitoring offers us the ability to determine the constituents of the EVPOME that are responsible for changes in its mechanical behavior during the manufacturing process. Ultrasonic monitoring affords us an opportunity to non-invasively assess, in real time, tissue-engineered constructs before release for use in patient care.
Collapse
Affiliation(s)
- Frank Winterroth
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, Michigan, USA.
| | - Hiroko Kato
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, Michigan, USA; Department of Oral Anatomy, Course for Oral Life Science, Niigata University Postgraduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shiuhyang Kuo
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen E Feinberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Hollister
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle W Hollman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Sound Sight Research, Livonia, Michigan, USA
| |
Collapse
|
22
|
Blackstone BN, Drexler JW, Powell HM. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter. Tissue Eng Part A 2014; 20:2746-55. [PMID: 24712409 DOI: 10.1089/ten.tea.2013.0687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.
Collapse
|
23
|
Bonvallet PP, Culpepper BK, Bain JL, Schultz MJ, Thomas SJ, Bellis SL. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration. Tissue Eng Part A 2014; 20:2434-45. [PMID: 24568584 DOI: 10.1089/ten.tea.2013.0645] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (<19%). Upon implantation, scaffolds should support epidermal regeneration; we, therefore, evaluated keratinocyte growth on fibroblast-embedded scaffolds with matrix-filled pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.
Collapse
Affiliation(s)
- Paul P Bonvallet
- 1 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | | | | | |
Collapse
|
24
|
Boekema BKHL, Vlig M, Olde Damink L, Middelkoop E, Eummelen L, Bühren AV, Ulrich MMW. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:423-433. [PMID: 24178984 DOI: 10.1007/s10856-013-5075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Association of Dutch Burn Centres, PO Box 15, 1991 AJ, Beverwijk, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
25
|
The use of allodermis prepared from Euro skin bank to prepare autologous tissue engineered skin for clinical use. Burns 2013; 39:1170-7. [DOI: 10.1016/j.burns.2013.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 11/18/2022]
|
26
|
Chau DYS, Johnson C, MacNeil S, Haycock JW, Ghaemmaghami AM. The development of a 3D immunocompetent model of human skin. Biofabrication 2013; 5:035011. [PMID: 23880658 DOI: 10.1088/1758-5082/5/3/035011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As the first line of defence, skin is regularly exposed to a variety of biological, physical and chemical insults. Therefore, determining the skin sensitization potential of new chemicals is of paramount importance from the safety assessment and regulatory point of view. Given the questionable biological relevance of animal models to human as well as ethical and regulatory pressure to limit or stop the use of animal models for safety testing, there is a need for developing simple yet physiologically relevant models of human skin. Herein, we describe the construction of a novel immunocompetent 3D human skin model comprising of dendritic cells co-cultured with keratinocytes and fibroblasts. This model culture system is simple to assemble with readily-available components and importantly, can be separated into its constitutive individual layers to allow further insight into cell-cell interactions and detailed studies of the mechanisms of skin sensitization. In this study, using non-degradable microfibre scaffolds and a cell-laden gel, we have engineered a multilayer 3D immunocompetent model comprised of keratinocytes and fibroblasts that are interspersed with dendritic cells. We have characterized this model using a combination of confocal microscopy, immuno-histochemistry and scanning electron microscopy and have shown differentiation of the epidermal layer and formation of an epidermal barrier. Crucially the immune cells in the model are able to migrate and remain responsive to stimulation with skin sensitizers even at low concentrations. We therefore suggest this new biologically relevant skin model will prove valuable in investigating the mechanisms of allergic contact dermatitis and other skin pathologies in human. Once fully optimized, this model can also be used as a platform for testing the allergenic potential of new chemicals and drug leads.
Collapse
Affiliation(s)
- David Y S Chau
- Allergy Research Group, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
27
|
Minimal contraction for tissue-engineered skin substitutes when matured at the air-liquid interface. J Tissue Eng Regen Med 2012; 7:452-60. [DOI: 10.1002/term.543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/01/2011] [Accepted: 11/03/2011] [Indexed: 11/07/2022]
|
28
|
Carriel V, Garzón I, Jiménez JM, Oliveira ACX, Arias-Santiago S, Campos A, Sánchez-Quevedo MC, Alaminos M. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs 2011; 196:1-12. [PMID: 22146480 DOI: 10.1159/000330682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2011] [Indexed: 12/30/2022] Open
Abstract
Development of human skin substitutes by tissue engineering may offer new therapeutic alternatives to the use of autologous tissue grafts. For that reason, it is necessary to investigate and develop new biocompatible biomaterials that support the generation of a proper human skin construct. In this study, we generated a novel model of bioengineered human skin substitute using human cells obtained from skin biopsies and fibrin-agarose biomaterials and we evaluated this model both at the ex vivo and the in vivo levels. Once the dermal fibroblasts and the epithelial keratinocytes were isolated and expanded in culture, we used fibrin-agarose scaffolds for the development of a full-thickness human skin construct, which was evaluated after 1, 2, 3 and 4 weeks of development ex vivo. The skin substitutes were then grafted onto immune-deficient nude mice and analyzed at days 10, 20, 30 and 40 postimplantation using transmission electron microscopy, histochemistry and immunofluorescence. The results demonstrated that the fibrin-agarose artificial skin had adequate biocompatibility and proper biomechanical properties. A proper development of both the bioengineered dermis and epidermis was found after 30 days in vivo, although the tissues kept ex vivo and those implanted in the animal model for 10 or 20 days showed lower levels of differentiation. In summary, our model of fibrin-agarose skin equivalent was able to reproduce the structure and histological architecture of the native human skin, especially after long-term in vivo implantation, suggesting that these tissues could reproduce the native skin.
Collapse
Affiliation(s)
- Víctor Carriel
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Methods to Reduce the Contraction of Tissue-Engineered Buccal Mucosa for Use in Substitution Urethroplasty. Eur Urol 2011; 60:856-61. [DOI: 10.1016/j.eururo.2011.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022]
|
30
|
Smith LE, Smallwood R, Macneil S. A comparison of imaging methodologies for 3D tissue engineering. Microsc Res Tech 2011; 73:1123-33. [PMID: 20981758 DOI: 10.1002/jemt.20859] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Imaging of cells in two dimensions is routinely performed within cell biology and tissue engineering laboratories. When biology moves into three dimensions imaging becomes more challenging, especially when multiple cell types are used. This review compares imaging techniques used regularly in our laboratory in the culture of cells in both two and three dimensions. The techniques reviewed include phase contrast microscopy, fluorescent microscopy, confocal laser scanning microscopy, electron microscopy, and optical coherence tomography. We compare these techniques to the current "gold standard" for imaging three-dimensional tissue engineered constructs, histology.
Collapse
Affiliation(s)
- Louise E Smith
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, United Kingdom
| | | | | |
Collapse
|
31
|
Potential use of botulinum toxin type A for controlling contraction of skin grafts. Med Hypotheses 2011; 76:303. [DOI: 10.1016/j.mehy.2010.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 11/14/2010] [Indexed: 11/18/2022]
|
32
|
MacNeil S, Shepherd J, Smith L. Production of tissue-engineered skin and oral mucosa for clinical and experimental use. Methods Mol Biol 2011; 695:129-153. [PMID: 21042970 DOI: 10.1007/978-1-60761-984-0_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Since the early 1990s, our understanding of how epithelial and stromal cells interact in 3D tissue-engineered constructs has led to tissue-engineered skin and oral mucosa models, which are beginning to deliver benefit in the clinic (usually in small-scale reconstructive surgery procedures) but have a great deal to offer for in vitro investigations. These 3D tissue-engineered models can be used for a wide variety of purposes such as dermato- and mucotoxicity, wound healing, examination of pigmentation and melanoma biology, and in particular, a recent development from this laboratory, as a model of bacterially infected skin. Models can also be used to investigate specific skin disease processes. In this chapter, we describe the basic methodology for producing 3D tissue-engineered skin and oral mucosa based on de-epidermised acellular human dermis, and we give examples of how these models can be used for a variety of applications.
Collapse
Affiliation(s)
- Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
33
|
Smith LE, Bonesi M, Smallwood R, Matcher SJ, MacNeil S. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J Tissue Eng Regen Med 2010; 4:652-8. [DOI: 10.1002/term.281] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Abstract
Introduction. Human dermal tissue is composed of loose and dense connective
tissue. Main cell populations are fibroblasts and the dominant fibers are
built from collagen type I. The aim of our study was to determine the precise
method and time frame for the in vitro production of human dermal equivalent
and to investigate the effects of ratio of structural elements and vitamin C
on characteristics of the engineered tissue. Material and methods. Primary
isolation of the foreskin fibroblasts was performed by explant method and
enzymatic dissociation. Various collagen gels were obtained by mixing cells
(from 25x103 to 200x103/ml) and neutralized collagen type I (from 2 to 4
mg/ml), with or without vitamin C. The routine histological and
morphometrical examination was performed. Results. Enzymatic dissociation of
the foreskin proved to be a faster method for production of desired number of
fibroblasts (7.5x105 for 4 days). The contraction of collagen-gels started
from day one through day seven and was dependent on cell and collagen
concentration with higher density gels being contracted to a greater extent,
except for the lowest/highest values. The best result was achieved with
100x103 cells and 2 mg/ml collagen. Vitamin C at 50 ?g/ml had no effect on
speed of tissue formation. Conclusion. A precise approach that mimic the in
vivo conditions is needed for the in vitro production of the dermal
equivalent suitable for the possible treatment of tissue defects. Nearly ten
days are necessary from the donor tissue dissociation to the final product.
Collapse
|
35
|
Shepherd J, Douglas I, Rimmer S, Swanson L, MacNeil S. Development of three-dimensional tissue-engineered models of bacterial infected human skin wounds. Tissue Eng Part C Methods 2009; 15:475-84. [PMID: 19292658 DOI: 10.1089/ten.tec.2008.0614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While infected skin wounds are on the increase because of ageing populations, rising incidence of diabetes, and antibiotic resistance, we lack relevant in vivo or in vitro models to study many aspects of bacterial interaction with skin. The aim of this study was to develop three-dimensional models of normal human skin to study bacterial infection. The common dermatological pathogens Staphylococcus aureus and Pseudomonas aeruginosa were used to infect tissue-engineered skin, and the course of infection in the skin was examined over several days. Two forms of model were developed-one in which bacteria were introduced directly to 10 mm wounds in the epidermis, and another in which wounds were created by burning a 4 mm hole in the center of the tissue before inoculation. The bacteria flourished within the engineered skin, and colonized the upper epidermal layers before invasion into the dermis. Infection with P. aeruginosa caused a loss of epidermis and de-keratinization of the skin constructs, as well as partial loss of basement membrane. These novel complex human skin infection models could be used to investigate microbial invasion of normal skin epithelium, basement membrane, and connective tissue, and as a model to study approaches to reduce bacterial burden in skin wounds.
Collapse
Affiliation(s)
- Joanna Shepherd
- Department of Oral Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Powell HM, Boyce ST. Engineered Human Skin Fabricated Using Electrospun Collagen–PCL Blends: Morphogenesis and Mechanical Properties. Tissue Eng Part A 2009; 15:2177-87. [DOI: 10.1089/ten.tea.2008.0473] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Steven T. Boyce
- Research Department, Shriners Burns Hospital, Cincinnati, Ohio
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
37
|
Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 2009; 15:35-44. [PMID: 19111879 PMCID: PMC3050620 DOI: 10.1016/j.ccr.2008.11.012] [Citation(s) in RCA: 921] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/13/2008] [Accepted: 11/14/2008] [Indexed: 11/16/2022]
Abstract
Tumor cell metastasis is facilitated by "premetastatic niches" formed in destination organs by invading bone marrow-derived cells (BMDCs). Lysyl oxidase (LOX) is critical for premetastatic niche formation. LOX secreted by hypoxic breast tumor cells accumulates at premetastatic sites, crosslinks collagen IV in the basement membrane, and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells adhere to crosslinked collagen IV and produce matrix metalloproteinase-2, which cleaves collagen, enhancing the invasion and recruitment of BMDCs and metastasizing tumor cells. LOX inhibition prevents CD11b+ cell recruitment and metastatic growth. CD11b+ cells and LOX also colocalize in biopsies of human metastases. Our findings demonstrate a critical role for LOX in premetastatic niche formation and support targeting LOX for the treatment and prevention of metastatic disease.
Collapse
Affiliation(s)
- Janine T. Erler
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
- Section of Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Kevin L. Bennewith
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medical Biophysics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Thomas R. Cox
- Section of Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Georgina Lang
- Section of Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Demelza Bird
- Section of Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Albert Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
38
|
Blackwood KA, McKean R, Canton I, Freeman CO, Franklin KL, Cole D, Brook I, Farthing P, Rimmer S, Haycock JW, Ryan AJ, MacNeil S. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials 2008; 29:3091-104. [DOI: 10.1016/j.biomaterials.2008.03.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
39
|
Harrison CA, MacNeil S. The mechanism of skin graft contraction: An update on current research and potential future therapies. Burns 2008; 34:153-63. [DOI: 10.1016/j.burns.2007.08.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/14/2007] [Indexed: 12/20/2022]
|
40
|
Inhibition of Keratinocyte-Driven Contraction of Tissue-Engineered Skin In Vitro by Calcium Chelation and Early Restraint But Not Submerged Culture. J Burn Care Res 2008; 29:369-77. [DOI: 10.1097/bcr.0b013e318166da8c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Bhargava S, Patterson JM, Inman RD, MacNeil S, Chapple CR. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol 2008; 53:1263-9. [PMID: 18262717 DOI: 10.1016/j.eururo.2008.01.061] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 01/21/2008] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Whilst buccal mucosa is the most versatile tissue for urethral replacement, the quest continues for an ideal tissue replacement for the urethra when substantial tissue transfer is needed. Previously we described the development of autologous tissue-engineered buccal mucosa (TEBM). Here we report clinical outcomes of the first human series of its use in substitution urethroplasty. METHODOLOGY Five patients with urethral stricture secondary to lichen sclerosus (LS) awaiting substantial substitution urethroplasty elected to undergo urethroplasty using TEBM, with full ethics committee support. Buccal mucosa biopsies (0.5 cm) were obtained from each patient. Keratinocytes and fibroblasts were isolated and cultured, seeded onto sterilised donor de-epidermised dermis, and maintained at air-liquid interface for 7-10 d to obtain full-thickness grafts. These grafts were used for urethroplasty in a one-stage (n=2) or a two-stage procedure (n=3). Follow-up was performed at 2 and 6 wk, at 3, 6, 9, and 12 mo, and every 6 mo thereafter. RESULTS Follow-up ranged from 32 to 37 mo (mean, 33.6). The initial graft take was 100%, as assessed by visual inspection. Subsequently, one patient had complete excision of the grafted urethra and one required partial graft excision, for fibrosis and hyperproliferation of tissue, respectively. Three patients have a patent urethra with the TEBM graft in situ, although all three required some form of instrumentation. CONCLUSIONS Whilst TEBM may in the future offer a clinically useful autologous urethral replacement tissue, in this group of patients with LS urethral strictures, it was not without complications, namely fibrosis and contraction in two of five patients.
Collapse
Affiliation(s)
- Saurabh Bhargava
- Section of Reconstruction, Urodynamics and Female Urology, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | |
Collapse
|
42
|
Abstract
Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.
Collapse
Affiliation(s)
- Sheila MacNeil
- The Tissue Engineering Group, Department of Engineering Materials and Division of Biomedical Sciences and Medicine, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| |
Collapse
|