1
|
Toloue EB, Mohammadalipour M, Mukherjee S, Karbasi S. Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications. Int J Biol Macromol 2024; 254:127860. [PMID: 37939755 DOI: 10.1016/j.ijbiomac.2023.127860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Bioglass is widely used in skeletal tissue engineering due to its outstanding bioactive properties. In the present study, magnetic mesoporous bioglass (MMBG) synthesized through the sol-gel method was incorporated into poly(3-hydroxybutyrate)-chitosan (PHB-Cs) solution and the resulting electrospun nanocomposite scaffolds were investigated and compared with MMBG free scaffold. The addition of 10 wt% MMBG has an outstanding effect on producing ultra-thin electrospun nanocomposite fibers due to its magnetic content (diameter of ≃128 nm). This improvement led to better mechanical properties, including an increase in both tensile modulus (up to ≃229 MPa) and tensile strength (to ≃4.95 MPa). Although the inclusion of MMBG slightly decreased the surface roughness of the nanofibrous scaffold (RMS from ≃197 to 154 nm), it could improve the wettability (WCA from ≃54 to 44°). This achievement has the potential to bring an enhancement in biomineralization and biological response. These outputs, combined with the observed increase in human osteoblast MG-63 cell viability (≃53 % improvement) as measured by MTT assay, DAPI, and SEM indicate prefer cell behavior of this nanocomposite structure. Additionally, the qualitative improvement in Alizarin Red staining and the quantitative enhancement of ALP secretion, serve as further evidence of the PHB-Cs/MMBG ultrathin nanofibers potential in bone tissue engineering.
Collapse
Affiliation(s)
- Elahe Bahremandi Toloue
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Australia
| | - Mohammad Mohammadalipour
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Australia
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
4
|
Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/6404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.
Collapse
|
5
|
Karacan I, Ben-Nissan B, Santos J, Yiu S, Bradbury P, Valenzuela SM, Chou J. In vitro testing and efficacy of poly-lactic acid coating incorporating antibiotic loaded coralline bioceramic on Ti6Al4V implant against Staphylococcus aureus. J Tissue Eng Regen Med 2022; 16:1149-1162. [PMID: 36205495 DOI: 10.1002/term.3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
Biofilm formation on an implant surface is most commonly caused by the human pathogenic bacteria Staphylococcus aureus, which can lead to implant related infections and failure. It is a major problem for both implantable orthopedic and maxillofacial devices. The current antibiotic treatments are typically delivered orally or in an injectable form. They are not highly effective in preventing or removing biofilms, and they increase the risk of antibiotic resistance of bacteria and have a dose-dependent negative biological effect on human cells. Our aim was to improve current treatments via a localized and controlled antibiotic delivery-based implant coating system to deliver the antibiotic, gentamicin (Gm). The coating contains coral skeleton derived hydroxyapatite powders (HAp) that act as antibiotic carrier particles and have a biodegradable poly-lactic acid (PLA) thin film matrix. The system is designed to prevent implant related infections while avoiding the deleterious effects of high concentration antibiotics in implants on local cells including primary human adipose derived stem cells (ADSCs). Testing undertaken in this study measured the rate of S. aureus biofilm formation and determined the growth rate and proliferation of ADSCs. After 24 h, S. aureus biofilm formation and the percentage of live cells found on the surfaces of all 5%-30% (w/w) PLA-Gm-(HAp-Gm) coated Ti6Al4V implants was lower than the control samples. Furthermore, Ti6Al4V implants coated with up to 10% (w/w) PLA-Gm-(HAp-Gm) did not have noticeable Gm related adverse effect on ADSCs, as assessed by morphological and surface attachment analyses. These results support the use and application of the antibacterial PLA-Gm-(HAp-Gm) thin film coating design for implants, as an antibiotic release control mechanism to prevent implant-related infections.
Collapse
Affiliation(s)
- Ipek Karacan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Besim Ben-Nissan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Stanley Yiu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Stella M Valenzuela
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, Broadway, Australia
| |
Collapse
|
6
|
Canales DA, Reyes F, Saavedra M, Peponi L, Leonés A, Palza H, Boccaccini AR, Grünewald A, Zapata PA. Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. Int J Biol Macromol 2022; 210:324-336. [PMID: 35545139 DOI: 10.1016/j.ijbiomac.2022.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Electrospun fibers of poly (lactic acid) (PLA) containing 10 and 20 wt% of bioactive glass (n-BG) and magnesium oxide (n-MgO) nanoparticles of ca. 27 and 23 nm respectively, were prepared toward to application in bone tissue engineering. The addition of both nanoparticles into the PLA will produce a synergic effect increasing its bioactivity and antimicrobial behavior. Neat PLA scaffold and the composites with MgO showed an average fiber diameter of 1.7 ± 0.6 μm, PLA/n-BG and PLA/n-BG/n-MgO fibers presented a significant diameter increase reaching values of ca. 3.1 ± 0.8 μm. Young's modulus of the electrospun scaffolds was affected by the direct presence of the particle and scaffold morphologies. All the composites having n-BG presented bioactivity through the precipitation of hydroxyapatite structures on the surface. Although n-MgO did not add bioactivity to the PLA fibers, they were able to render antimicrobial characteristics reducing the S. aureus viability around 30%, although an effect on E. coli strain was not observed. PLA/n-BG nanocomposites did not display any significant antimicrobial behavior. The different composites increased the alkaline phosphatase (ALP) expression as compared with pure PLA barely affecting the cell viability, meaning a good osteoblastic phenotype expression capacity, with PLA/n-BG presenting the highest osteoblastic expression.
Collapse
Affiliation(s)
- Daniel A Canales
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Felipe Reyes
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Marcela Saavedra
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Bavarian Polymer Institute, 91058 Erlangen, Germany
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Paula A Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
7
|
Perier-Metz C, Cipitria A, Hutmacher DW, Duda GN, Checa S. An in silico model predicts the impact of scaffold design in large bone defect regeneration. Acta Biomater 2022; 145:329-341. [PMID: 35417799 DOI: 10.1016/j.actbio.2022.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 12/27/2022]
Abstract
Large bone defects represent a clinical challenge for which the implantation of scaffolds appears as a promising strategy. However, their use in clinical routine is limited, in part due to a lack of understanding of how scaffolds should be designed to support regeneration. Here, we use the power of computer modeling to investigate mechano-biological principles behind scaffold-guided bone regeneration and the influence of scaffold design on the regeneration process. Computer model predictions are compared to experimental data of large bone defect regeneration in sheep. We identified two main key players in scaffold-guided regeneration: (1) the scaffold surface guidance of cellular migration and tissue formation processes and (2) the stimulation of progenitor cell activity by the scaffold material composition. In addition, lower scaffold surface-area-to-volume ratio was found to be beneficial for bone regeneration due to enhanced cellular migration. To a lesser extent, a reduced scaffold Young's modulus favored bone formation. STATEMENT OF SIGNIFICANCE: 3D-printed scaffolds offer promising treatment strategies for large bone defects but their broader clinical use requires a more thorough understanding of their interaction with the bone regeneration process. The predictions of our in silico model compared to two experimental set-ups highlighted the importance of (1) the scaffold surface guidance of cellular migration and tissue formation processes and (2) the scaffold material stimulation of progenitor cell activity. In addition, the model was used to investigate the effect on the bone regeneration process of (1) the scaffold surface-area-to-volume ratio, with lower ratios favoring more bone growth, and (2) the scaffold material properties, with stiffer scaffold materials yielding a lower bone growth.
Collapse
Affiliation(s)
- Camille Perier-Metz
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, Berlin 13353, Germany; MINES ParisTech - PSL Research University, 60 Boulevard Saint-Michel, Paris 75272, France; Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, Berlin 13353, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany; Biodonostia Health Research Institute, Pº Dr. Beguiristain s/n, San Sebastian 20014, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Dietmar W Hutmacher
- Center in Regenerative Medicine, Queensland University of Technology (QUT), 60 Musk Avenue, Brisbane, Kelvin Grove QLD 4059, Australia; Science and Engineering Faculty (SEF), School of Mechanical, Medical and Process Engineering (MMPE), QUT, Brisbane QLD 4000, Australia; ARC Training Center for Multiscale 3D Imaging, Modeling, and Manufacturing, Queensland University of Technology, Brisbane QLD 4059, Australia; Center for Biomedical Technologies, Queensland University of Technology, Brisbane QLD 4059, Australia
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, Berlin 13353, Germany; Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, Berlin 13353, Germany; BIH Center for Regenerative Therapies at Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, Berlin 13353, Germany; Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, Berlin 13353, Germany.
| |
Collapse
|
8
|
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:3825. [PMID: 34771382 PMCID: PMC8588077 DOI: 10.3390/polym13213825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
Collapse
Affiliation(s)
- Mauro Petretta
- REGENHU Ltd., Z.I. Le Vivier 22, 1690 Villaz-St-Pierre, Switzerland;
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Alessandro Gambardella
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Giovanna Desando
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Carola Cavallo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Isabella Bartolotti
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Tatiana Shelyakova
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Vitaly Goranov
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
- BioDevice Systems, Bulharská, 10-Vršovice, 996/20, 10100 Praha, Czech Republic
| | - Marco Brucale
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Milena Fini
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Brunella Grigolo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| |
Collapse
|
9
|
Dhinasekaran D, Kaliaraj GS, Jagannathan M, Rajendran AR, Prakasarao A, Ganesan S, Subramanian B. Pulsed laser deposition of nanostructured bioactive glass and hydroxyapatite coatings: Microstructural and electrochemical characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112459. [PMID: 34702534 DOI: 10.1016/j.msec.2021.112459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Bioactive coatings on metallic implants promote osseointegration between bone and implant interfaces. A suitable coating enhances the life span of the implant and reduces the requirement of revision surgery. The coating process needs to be optimized such that it does not alter the bioactivity of the material. To understand this, the biocompatibility of nanostructured bioactive glass and hydroxyapatite-coated Titanium substrate by pulsed laser deposition method is evaluated. Raman and IR spectroscopic techniques based on silica and phosphate functional groups mapping have confirmed homogeneity in coatings by pulse laser deposition method. Comparative studies on nanostructured bioactive glass and hydroxyapatite on titanium surface elaborated the significance of bioactivity, hemocompatibility, and cytocompatibility of the coated surface. Notably, both hydroxyapatite and bioactive glass show good hemocompatibility in powder form. Hemocompatibility and cytocompatibility results validate the enhanced sustenance for hydroxyapatite coating. These results signify the importance of the choice of coating methodology of bioceramics towards implant applications.
Collapse
Affiliation(s)
| | | | | | - Ajay Rakkesh Rajendran
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, India
| | | | | | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India
| |
Collapse
|
10
|
Cha M, Jin YZ, Park JW, Lee KM, Han SH, Choi BS, Lee JH. Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration. Biomater Res 2021; 25:35. [PMID: 34706765 PMCID: PMC8554986 DOI: 10.1186/s40824-021-00233-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Critical bone defects remain challenges for clinicians, which cannot heal spontaneously and require medical intervention. Following the development of three-dimensional (3D) printing technology is widely used in bone tissue engineering for its outstanding customizability. The 3D printed scaffolds were usually accompanied with growth factors, such as bone morphometric protein 2 (BMP-2), whose effects have been widely investigated on bone regeneration. We previously fabricated and investigated the effect of a polylactic acid (PLA) cage/Biogel scaffold as a carrier of BMP-2. In this study, we furtherly investigated the effect of another shape of PLA cage/Biogel scaffold as a carrier of BMP-2 in a rat calvaria defect model and an ectopic ossification (EO) model. METHOD The PLA scaffold was printed with a basic commercial 3D printer, and the PLA scaffold was combined with gelatin and alginate-based Biogel and BMP-2 to induce bone regeneration. The experimental groups were divided into PLA scaffold, PLA scaffold with Biogel, PLA scaffold filled with BMP-2, and PLA scaffold with Biogel and BMP-2 and were tested both in vitro and in vivo. One-way ANOVA with Bonferroni post-hoc analysis was used to determine whether statistically significant difference exists between groups. RESULT The in vitro results showed the cage/Biogel scaffold released BMP-2 with an initial burst release and followed by a sustained slow-release pattern. The released BMP-2 maintained its osteoinductivity for at least 14 days. The in vivo results showed the cage/Biogel/BMP-2 group had the highest bone regeneration in the rat calvarial defect model and EO model. Especially, the bone regenerated more regularly in the EO model at the implanted sites, which indicated the cage/Biogel had an outstanding ability to control the shape of regenerated bone. CONCLUSION In conclusion, the 3D printed PLA cage/Biogel scaffold system was proved to be a proper carrier for BMP-2 that induced significant bone regeneration and induced bone formation following the designed shape.
Collapse
Affiliation(s)
- Misun Cha
- Biotechnology Institute, Medifab Co. LTD., 70, Dusan-ro, Doksan-dong, Geumcheon-gu, Seoul, 085-84, South Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Yuan-Zhe Jin
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea.,Spine Department, The First Hospital of Jilin University, Changchun, 130031, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jin Wook Park
- Biotechnology Institute, Medifab Co. LTD., 70, Dusan-ro, Doksan-dong, Geumcheon-gu, Seoul, 085-84, South Korea
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Shi Huan Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea
| | - Byung Sun Choi
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea. .,Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea. .,Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 110-799, South Korea.
| |
Collapse
|
11
|
Fanaee S, Labbaf S, Enayati MH, Karamali F, Esfahani MHN. A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111746. [PMID: 33545888 DOI: 10.1016/j.msec.2020.111746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023]
Abstract
There is a great need for tissue engineering constructs with the ability to modulate stem cell behavior. The initial adhesion, growth and differentiation of stem cell are a key strategy in bone tissue engineering and it can be controlled through biomaterial-cell interface. Here we engineered a polycaprolactone/gelatin/bioactive glass (PCL/GT/BG) nanocomposite scaffold coated with Fibronectin (FN) as a potential candidate to aid the bone regeneration process by giving cells a temporary template to grow into. For this purpose, initially BG nanoparticles (nBG) of 70 ± 15 nm were synthesized, characterized and then impregnated into PCL/GT matrix to create a nanocomposite fibrous mesh. An optimized structure was selected based on fiber uniformity, diameter, and the mechanical properties. Cell adhesion, growth, and the expression of osteogenic-related genes as a result of FN tethering, through specific surface interactions, was evaluated. Furthermore, the potential of optimized nanofiberous structure as a drug delivery vehicle for the local release of therapeutic agents was studied by using amoxicillin as a model drug. The release profile revealed that around 70% of drug was released in an hour for non-crosslinked fibers (burst release) followed by a gradual release up to 72 h. The release profile was steadier for crosslinked fibers. The scaffold also showed an antibacterial effect against ubiquitous gram-positive Staphylococcus aureus. The current study provides an insight for future researchers who aim to create nanocomposite materials as multifunctional scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sajjad Fanaee
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Hossein Enayati
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fereshteh Karamali
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
12
|
Han SH, Cha M, Jin YZ, Lee KM, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater 2020; 16:015019. [DOI: 10.1088/1748-605x/aba879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4008. [PMID: 32927729 PMCID: PMC7559936 DOI: 10.3390/ma13184008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
- Integrative Research Centre for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Thyparambil NJ, Gutgesell LC, Bromet BA, Flowers LE, Greaney S, Day DE, Semon JA. Bioactive borate glass triggers phenotypic changes in adipose stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:35. [PMID: 32206916 DOI: 10.1007/s10856-020-06366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
A bioactive borate glass, 13-93B3 (B3), has been used successfully in the clinic to treat chronic, nonhealing wounds without scarring. However, the mechanism by which B3 stimulates wound healing is poorly understood. Because adipose stem cells (ASCs) have been shown to have multiple roles in wound repair, we hypothesized that B3 triggers ASCs. In this study, we evaluate the effects of B3 on ASC survival, migration, differentiation, and protein secretion in vitro. In concentrations ≤10 mg/ml, B3 did not affect ASC viability under static conditions. B3 promoted the migration of ASCs but did not increase differentiation into bone or fat. B3 also decreased ASCs secretion of collagen I, PAI-1, MCP-1, DR6, DKK-1, angiogenin, IL-1, IGFBP-6, VEGF, and TIMP-2; increased expression of IL-1R and E-selectin; had a transient decrease in IL-6 secretion; and had a transient increase in bFGF secretion. Together, these results show that B3 alters the protein secretion of ASCs.
Collapse
Affiliation(s)
- Nathan J Thyparambil
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Lisa C Gutgesell
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Lauren E Flowers
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Samantha Greaney
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Delbert E Day
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA
- Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
- Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| |
Collapse
|
15
|
Kunisch E, Gunnella F, Wagner S, Dees F, Maenz S, Bossert J, Jandt KD, Kinne RW. The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2019; 14:055012. [PMID: 31465298 DOI: 10.1088/1748-605x/ab3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shin DY, Kang MH, Kang IG, Kim HE, Jeong SH. In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J Biomater Appl 2018; 32:1360-1370. [DOI: 10.1177/0885328218763660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A biodegradable polylactic acid composite containing tricalcium phosphate microsphere was fabricated. The composite exhibited enhanced biocompatibility and a well-interconnected porous structure that enabled tissue ingrowth after degradation. The tricalcium phosphate microspheres had an average size of 106 ± 43 μm and were incorporated into the polylactic acid matrix using a high-shear mixer. The resulting bioactivity and hydrophilicity were enhanced to levels comparable to those of a polylactic acid composite containing tricalcium phosphate powder, which is a well-known material used in the medical field. An accelerated 30-day degradation test in HCl revealed successful generation of an open porous structure with ∼98% interconnectivity in the polylactic acid–tricalcium phosphate microsphere composite, demonstrating the potential of this material to induce enhanced osseointegration in the later stage of bone regeneration. The early stage osseointegration was also evaluated by implanting the composite in vivo using a rabbit femoral defect model. After 16 weeks of implantation, the bone-to-implant contact ratio of the polylactic acid–tricalcium phosphate microsphere composite was enhanced owing to tissue ingrowth through the generated pores near the surface.
Collapse
Affiliation(s)
- Da Yong Shin
- Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Min-Ho Kang
- Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - In-Gu Kang
- Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyoun-Ee Kim
- Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seol-Ha Jeong
- Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:163-181. [DOI: 10.1016/j.msec.2017.08.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023]
|
18
|
Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017; 7:a025734. [PMID: 28348176 PMCID: PMC5710100 DOI: 10.1101/cshperspect.a025734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An avenue of tremendous interest and need in health care encompasses the regeneration of bone and cartilage. Over the years, numerous tissue engineering strategies have contributed substantial progress toward the realization of clinically relevant therapies. Cell and tissue culture protocols, however, show many variations that make experimental results among different publications challenging to compare. This collection surveys prevalent cell sources, soluble factors, culture medium formulations, environmental factors, and genetic modification approaches in the literature. The intent of consolidating this information is to provide a starting resource for scientists considering how to optimize the parameters for cell differentiation and tissue culture procedures within the context of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251
| |
Collapse
|
19
|
Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 2017; 110:88-96. [PMID: 28917940 DOI: 10.1016/j.ijbiomac.2017.09.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Bone is a highly integrative and dynamic tissue of the human body. It is continually remodeled by bone cells such as osteoblasts, osteoclasts. When a fraction of a bone is damaged or deformed, stem cells and bone cells under the influence of several signaling pathways regulate bone regeneration at the particular locale. Effective therapies for bone defects can be met via bone tissue engineering which employs drug delivery systems with biomaterials to enhance cellular functions by acting on signaling pathways such as Wnt, BMP, TGF-β, and Notch. This review provides the current understanding of polymers/bioceramics/bioactive compounds as scaffolds in activation of signaling pathways for the formation of bone.
Collapse
|
20
|
Liu H, Li W, Luo B, Chen X, Wen W, Zhou C. Icariin immobilized electrospinning poly(l-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629034 DOI: 10.1016/j.msec.2017.05.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, icariin (ICA), one of the main active ingredients of Herba Epimedii for osteogenesis, was applied to functionalize electrospinning poly(l-lactide) (PLLA) fibrous membrane via an intermediate layer of polydopamine (PDA) to obtain enhanced cytocompatibility and osteogenic activity. For this purpose, an array of PDA-coated PLLA fibrous membranes (PLLA-0.5PDA, PLLA-1PDA, PLLA-2PDA, PLLA-5PDA) and ICA-modified PLLA-2PDA fibrous membranes (PLLA-2PDA-10ICA, PLLA-2PDA-20ICA, PLLA-2PDA-40ICA) were successively prepared. Successful modification of PDA and ICA onto PLLA fibrous membranes was verified by field emission scanning electron microscope (FESEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Besides, the hydrophilicity as well as tensile properties of PLLA fibrous membrane were improved after surface modified with PDA and ICA. In vitro cells culture experiments revealed that the adhesion, proliferation and osteogenic differentiation of MC3T3-E1 cells on the PLLA fibrous membrane were significantly improved by successively immobilized with PDA and ICA. Moreover, the concentration of ICA immobilized on the fibrous membranes has the complicated effects on the MC3T3-E1 cells behavior. The PLLA-2PDA-ICA fibrous membranes with low ICA concentration promoted the cell adhesion and proliferation, but on the contrary, those with high ICA concentration were more beneficial to the enhancement in ALP activity and calcium deposition.
Collapse
Affiliation(s)
- Hua Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wenling Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| | - Xuexing Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| |
Collapse
|
21
|
Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:897-912. [DOI: 10.1016/j.msec.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
|
22
|
Kesireddy V, Kasper FK. Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering. J Mater Chem B 2016; 4:6773-6786. [PMID: 28133536 PMCID: PMC5267491 DOI: 10.1039/c6tb00783j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone tissue engineering (BTE) is emerging as a possible solution for regeneration of bone in a number of applications. For effective utilization, BTE scaffolds often need modifications to impart biological cues that drive diverse cellular functions such as adhesion, migration, survival, proliferation, differentiation, and biomineralization. This review provides an outline of various approaches for building bioactive elements into synthetic scaffolds for BTE and classifies them broadly under two distinct schemes; namely, the top-down approach and the bottom-up approach. Synthetic and natural routes for top-down approaches to production of bioactive constructs for BTE, such as generation of scaffold-extracellular matrix (ECM) hybrid constructs or decellularized and demineralized scaffolds, are provided. Similarly, traditional scaffold-based bottom-up approaches, including growth factor immobilization or peptide-tethered scaffolds, are provided. Finally, a brief overview of emerging bottom-up approaches for generating biologically active constructs for BTE is given. A discussion of the key areas for further investigation, challenges, and opportunities is also presented.
Collapse
Affiliation(s)
- Venu Kesireddy
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| | - F. Kurtis Kasper
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| |
Collapse
|
23
|
Björninen M, Gilmore K, Pelto J, Seppänen-Kaijansinkko R, Kellomäki M, Miettinen S, Wallace G, Grijpma D, Haimi S. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Ann Biomed Eng 2016; 45:1015-1026. [DOI: 10.1007/s10439-016-1755-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
|
24
|
Li Z, Thompson BC, Hu H, Khor KA. Rapid fabrication of dense 45S5 Bioglass
®
compacts through spark plasma sintering and evaluation of their
in vitro
biological properties. Biomed Mater 2016; 11:065006. [DOI: 10.1088/1748-6041/11/6/065006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Fernandes JS, Gentile P, Martins M, Neves NM, Miller C, Crawford A, Pires RA, Hatton P, Reis RL. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomater 2016; 44:168-77. [PMID: 27554018 DOI: 10.1016/j.actbio.2016.08.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Herein, for the first time, we combined poly-l-lactic acid (PLLA) with a strontium borosilicate bioactive glass (BBG-Sr) using electrospinning to fabricate a composite bioactive PLLA membrane loaded with 10% (w/w) of BBG-Sr glass particles (PLLA-BBG-Sr). The composites were characterised by scanning electron microscopy (SEM) and microcomputer tomography (μ-CT), and the results showed that we successfully fabricated smooth and uniform fibres (1-3μm in width) with a homogeneous distribution of BBG-Sr microparticles (<45μm). Degradation studies (in phosphate buffered saline) demonstrated that the incorporation of BBG-Sr glass particles into the PLLA membranes increased their degradability and water uptake with a continuous release of cations. The addition of BBG-Sr glass particles enhanced the membrane's mechanical properties (69% higher Young modulus and 36% higher tensile strength). Furthermore, cellular in vitro evaluation using bone marrow-derived mesenchymal stem cells (BM-MSCs) demonstrated that PLLA-BBG-Sr membranes promoted the osteogenic differentiation of the cells as demonstrated by increased alkaline phosphatase activity and up-regulated osteogenic gene expression (Alpl, Sp7 and Bglap) in relation to PLLA alone. These results strongly suggest that the composite PLLA membranes reinforced with the BBG-Sr glass particles have potential as an effective biomaterial capable of promoting bone regeneration. STATEMENT OF SIGNIFICANCE PLLA membranes were reinforced with 10% (w/w) of strontium-bioactive borosilicate glass microparticles, and their capacity to induce the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) was evaluated. These membranes presented an increased: degradability, water uptake, Young modulus and tensile strength. We also demonstrated that these membranes are non-cytotoxic and promote the attachment of BM-MSCs. The addition of the glass microparticles into the PLLA membranes promoted the increase of ALP activity (under osteogenic conditions), as well as the BM-MSCs osteogenic differentiation as shown by the upregulation of Alpl, Sp7 and Bglap gene expression. Overall, we demonstrated that the reinforcement of PLLA with glass microparticles results in a biomaterial with the appropriate properties for the regeneration of bone tissue.
Collapse
|
26
|
Lee JW, Yun HS, Nakano T. Induction of Biological Apatite Orientation as a Bone Quality Parameter in Bone Regeneration Using Hydroxyapatite/Poly ɛ-Caprolactone Composite Scaffolds. Tissue Eng Part C Methods 2016; 22:856-63. [PMID: 27474256 DOI: 10.1089/ten.tec.2016.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the biological apatite (BAp) c-axis orientation were investigated as a bone quality parameter in bone regeneration using hydroxyapatite/poly ɛ-caprolactone (HA/PCL) composite scaffolds. Three-dimensional (3D) HA/PCL composite scaffolds were fabricated using a layer manufacturing process in three grid sizes (200-, 600-, and 1000 μm) and grafted into the forearm ulna of New Zealand white rabbits. The cross-sectional areas of the bones regenerated from the scaffolds with 600- and 1000-μm grid sizes were significantly larger than those from the scaffold with 200-μm grid sizes, whereas bone mineral density in the regenerated regions did not differ between the three grid sizes. Moreover, the BAp c-axis orientation in the bones regenerated from the scaffolds with grid sizes of 600- and 1000 μm was not significantly different; however, both scaffolds showed enhanced BAp orientation, although the degree of BAp orientation was lower than that in intact bones. In conclusion, HA/PCL composite 3D scaffolds with 600- and 1000-μm grid sizes induced BAp c-axis orientation and showed good bone regeneration behavior in vivo.
Collapse
Affiliation(s)
- Jee-Wook Lee
- 1 School of Advanced Materials Engineering, Kookmin University , Seoul, Korea
| | - Hui-Suk Yun
- 2 Powder and Ceramics Division, Korea Institute of Materials Science , Changwon, Korea
| | - Takayoshi Nakano
- 3 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University , Suita, Japan
| |
Collapse
|
27
|
Blanquer SB, Gebraad AW, Miettinen S, Poot AA, Grijpma DW, Haimi SP. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography. J Tissue Eng Regen Med 2016; 11:2752-2762. [DOI: 10.1002/term.2170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/06/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sébastien B.G. Blanquer
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| | - Arjen W.H. Gebraad
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Department of Oral and Maxillofacial Sciences, Clinicum; University of Helsinki; Helsinki Finland
| | - Susanna Miettinen
- Institute of Biosciences and Medical Technology (BioMediTech); University of Tampere; Tampere Finland
| | - André A. Poot
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| | - Dirk W. Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute; Department of Biomedical Engineering; Groningen the Netherlands
| | - Suvi P. Haimi
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Department of Oral and Maxillofacial Sciences, Clinicum; University of Helsinki; Helsinki Finland
| |
Collapse
|
28
|
Vuornos K, Björninen M, Talvitie E, Paakinaho K, Kellomäki M, Huhtala H, Miettinen S, Seppänen-Kaijansinkko R, Haimi S. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Tissue Eng Part A 2016; 22:513-23. [PMID: 26919401 DOI: 10.1089/ten.tea.2015.0276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.
Collapse
Affiliation(s)
- Kaisa Vuornos
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Miina Björninen
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Elina Talvitie
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Kaarlo Paakinaho
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Minna Kellomäki
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Heini Huhtala
- 4 Tampere School of Health Sciences, University of Tampere , Tampere, Finland
| | - Susanna Miettinen
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Riitta Seppänen-Kaijansinkko
- 5 Department of Oral and Maxillofacial Sciences, Clinicum, Faculty of Medicine, University of Helsinki , Helsinki, Finland .,6 Department of Oral and Maxillofacial Diseases, Head and Neck Center, Helsinki University Hospital , Helsinki, Finland
| | - Suvi Haimi
- 5 Department of Oral and Maxillofacial Sciences, Clinicum, Faculty of Medicine, University of Helsinki , Helsinki, Finland .,7 Department of Biomaterials Science and Technology, University of Twente , Enschede, The Netherlands
| |
Collapse
|
29
|
Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2015; 73:2408-18. [DOI: 10.1016/j.joms.2015.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 01/07/2023]
|
30
|
Wang L, Zhang YG, Wang XM, Ma LF, Zhang YM. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation. Chem Biol Interact 2015; 242:255-61. [PMID: 26482937 DOI: 10.1016/j.cbi.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 01/22/2023]
Abstract
Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272000, Shandong, China
| | - Yu-Ge Zhang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272000, Shandong, China
| | - Xiu-Mei Wang
- Department of Electroencephalogram, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272000, Shandong, China
| | - Long-Fei Ma
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272000, Shandong, China
| | - Yuan-Min Zhang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272000, Shandong, China.
| |
Collapse
|
31
|
Bergemann C, Cornelsen M, Quade A, Laube T, Schnabelrauch M, Rebl H, Weißmann V, Seitz H, Nebe B. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:514-523. [PMID: 26652403 DOI: 10.1016/j.msec.2015.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.
Collapse
Affiliation(s)
- Claudia Bergemann
- University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock, Germany
| | - Matthias Cornelsen
- University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock, Germany
| | - Antje Quade
- Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Thorsten Laube
- INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena, Germany
| | | | - Henrike Rebl
- University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock, Germany
| | - Volker Weißmann
- Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar, Germany
| | - Hermann Seitz
- University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock, Germany
| | - Barbara Nebe
- University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock, Germany.
| |
Collapse
|
32
|
Hiltunen M, Pelto J, Ellä V, Kellomäki M. Uniform and electrically conductive biopolymer-doped polypyrrole coating for fibrous PLA. J Biomed Mater Res B Appl Biomater 2015; 104:1721-1729. [DOI: 10.1002/jbm.b.33514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/30/2015] [Accepted: 08/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- M. Hiltunen
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| | - J. Pelto
- VTT Technical Research Centre of Finland; Tampere Finland
| | - V. Ellä
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| | - M. Kellomäki
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| |
Collapse
|
33
|
Chen M, Le DQ, Kjems J, Bünger C, Lysdahl H. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro. Biores Open Access 2015; 4:363-73. [PMID: 26487981 PMCID: PMC4599126 DOI: 10.1089/biores.2015.0021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/β-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies.
Collapse
Affiliation(s)
- Muwan Chen
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Dang Q.S. Le
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Cody Bünger
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Helle Lysdahl
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
34
|
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. Int J Mol Sci 2015; 16:15118-35. [PMID: 26151846 PMCID: PMC4519890 DOI: 10.3390/ijms160715118] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/04/2022] Open
Abstract
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
Collapse
|
35
|
Ojansivu M, Vanhatupa S, Björkvik L, Häkkänen H, Kellomäki M, Autio R, Ihalainen JA, Hupa L, Miettinen S. Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater 2015; 21:190-203. [PMID: 25900445 DOI: 10.1016/j.actbio.2015.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mineralization we observed a decrease in the cell amount. Raman and Laser Induced Breakdown Spectroscopy analyses confirmed that the mineral consisted of calcium phosphates. Consistently, the osteogenic medium extracts also increased osteocalcin production and collagen Type-I accumulation in the extracellular matrix at 13 days. Of the four osteogenic medium extracts, 2-06 and 3-06 induced the best responses of osteogenesis. However, regardless of the enhanced mineral formation, alkaline phosphatase activity was not promoted by the extracts. The osteogenic medium extracts could potentially provide a fast and effective way to differentiate human adipose stem cells in vitro.
Collapse
Affiliation(s)
- Miina Ojansivu
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland
| | - Leena Björkvik
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Heikki Häkkänen
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Kellomäki
- BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Biomaterials and Tissue Engineering Group, Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Tampere, Finland
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
36
|
Larrañaga A, Alonso-Varona A, Palomares T, Rubio-Azpeitia E, Aldazabal P, Martin FJ, Sarasua JR. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. J Biomed Mater Res A 2015; 103:3815-24. [DOI: 10.1002/jbm.a.35525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT; University of the Basque Country (UPV/EHU), School of Engineering; Alameda de Urquijo s/n 480130 Bilbao Spain
| | - Ana Alonso-Varona
- Faculty of Medicine and Odontology; University of the Basque Country (UPV/EHU); Bilbao Spain
| | - Teodoro Palomares
- Faculty of Medicine and Odontology; University of the Basque Country (UPV/EHU); Bilbao Spain
| | - Eva Rubio-Azpeitia
- Faculty of Medicine and Odontology; University of the Basque Country (UPV/EHU); Bilbao Spain
| | - Pablo Aldazabal
- Donostia University Hospital (Osakidetza-Basque Health Service) & BIODONOSTIA; San Sebastián Spain
| | - Francisco Javier Martin
- Donostia University Hospital (Osakidetza-Basque Health Service) & BIODONOSTIA; San Sebastián Spain
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT; University of the Basque Country (UPV/EHU), School of Engineering; Alameda de Urquijo s/n 480130 Bilbao Spain
| |
Collapse
|
37
|
Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ. Targeting Calcium Magnesium Silicates for Polycaprolactone/Ceramic Composite Scaffolds. ACS Biomater Sci Eng 2015. [DOI: 10.1021/ab500011x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Chen
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Pilanda Watkins-Curry
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mollie Smoak
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Katie Hogan
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Steve Deese
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gregory T. McCandless
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Julia Y. Chan
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Daniel J. Hayes
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
38
|
Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials 2014; 35:8514-27. [DOI: 10.1016/j.biomaterials.2014.06.028] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 12/12/2022]
|
39
|
Jamshidi Adegani F, Langroudi L, Ardeshirylajimi A, Dinarvand P, Dodel M, Doostmohammadi A, Rahimian A, Zohrabi P, Seyedjafari E, Soleimani M. Coating of electrospun poly(lactic-co-glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biol Int 2014; 38:1271-9. [PMID: 24905891 DOI: 10.1002/cbin.10318] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/06/2014] [Indexed: 11/07/2022]
Abstract
We have investigated the combination effects of bioceramics and poly(lactide-co-glycolide) (PLGA) on bone reconstruction in calvarial critical size defects using a rat model. Willemite (Zn2SiO4) ceramics were prepared and coated on the surface of electrospun fabricated scaffolds. After scaffolds and nanoparticles characterization, osteoconductivity of the construct was analyzed using digital mammography, multislice spiral-computed tomography (MSCT) imaging, and histological analysis. Eight weeks after implantation, no sign of inflammation was observed at the site of the osseous defect. The results showed that the ceramics supported bone regeneration and highest bone reconstruction were observed in willemite-coated PLGA. This suggests that electrospun PLGA nanofibers coated with BG are potential candidate implants for bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Jamshidi Adegani
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pärssinen J, Hammarén H, Rahikainen R, Sencadas V, Ribeiro C, Vanhatupa S, Miettinen S, Lanceros-Méndez S, Hytönen VP. Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J Biomed Mater Res A 2014; 103:919-28. [DOI: 10.1002/jbm.a.35234] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/14/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jenita Pärssinen
- BioMediTech, University of Tampere; Tampere 33014 Finland
- Fimlab Laboratories Ltd.; Tampere 33520 Finland
| | | | - Rolle Rahikainen
- BioMediTech, University of Tampere; Tampere 33014 Finland
- Fimlab Laboratories Ltd.; Tampere 33520 Finland
| | - Vitor Sencadas
- Center/Department of Physics; University of Minho; Braga 4710-057 Portugal
- Instituto Politécnico do Cávado e do Ave, Campus do IPCA; Barcelos 4750-810 Portugal
| | - Clarisse Ribeiro
- Center/Department of Physics; University of Minho; Braga 4710-057 Portugal
| | - Sari Vanhatupa
- BioMediTech, University of Tampere; Tampere 33014 Finland
| | | | | | - Vesa P. Hytönen
- BioMediTech, University of Tampere; Tampere 33014 Finland
- Fimlab Laboratories Ltd.; Tampere 33520 Finland
| |
Collapse
|
41
|
|
42
|
Requicha JF, Viegas CA, Muñoz F, Azevedo JM, Leonor IB, Reis RL, Gomes ME. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells. Tissue Eng Part A 2014; 20:2483-92. [PMID: 24575867 DOI: 10.1089/ten.tea.2013.0360] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human and canine periodontium are often affected by an inflammatory pathology called periodontitis, which is associated with severe damages across tissues, namely, in the periodontal ligament, cementum, and alveolar bone. However, the therapies used in the routine dental practice, often consisting in a combination of different techniques, do not allow to fully restore the functionality of the periodontium. Tissue Engineering (TE) appears as a valuable alternative approach to regenerate periodontal defects, but for this purpose, it is essential to develop supportive biomaterial and stem cell sourcing/culturing methodologies that address the complexity of the various tissues affected by this condition. The main aim of this work was to study the in vitro functionality of a newly developed double-layer scaffold for periodontal TE. The scaffold design was based on a combination of a three-dimensional (3D) fiber mesh functionalized with silanol groups and a membrane, both made of a blend of starch and poly-ɛ-(caprolactone). Adipose-derived stem cells (canine adipose stem cells [cASCs]) were seeded and cultured onto such scaffolds, and the obtained constructs were evaluated in terms of cellular morphology, metabolic activity, and proliferation. The osteogenic potential of the fiber mesh layer functionalized with silanol groups was further assessed concerning the osteogenic differentiation of the seeded and cultured ASCs. The obtained results showed that the proposed double-layer scaffold supports the proliferation and selectively promotes the osteogenic differentiation of cASCs seeded onto the functionalized mesh. These findings suggest that the 3D structure and asymmetric composition of the scaffold in combination with stem cells may provide the basis for developing alternative therapies to treat periodontal defects more efficiently.
Collapse
Affiliation(s)
- João F Requicha
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Daei-Farshbaf N, Ardeshirylajimi A, Seyedjafari E, Piryaei A, Fadaei Fathabady F, Hedayati M, Salehi M, Soleimani M, Nazarian H, Moradi SL, Norouzian M. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering. Mol Biol Rep 2013; 41:741-9. [PMID: 24363224 DOI: 10.1007/s11033-013-2913-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/16/2013] [Indexed: 12/11/2022]
Abstract
The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Neda Daei-Farshbaf
- Departments of Anatomy and Cell Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Development and characterization of poly(ε-caprolactone) hollow fiber membranes for vascular tissue engineering. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-ε-caprolactone scaffolds. J Biomater Appl 2013; 28:998-1007. [PMID: 23796629 DOI: 10.1177/0885328213490974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study compared the metabolic activity, cell proliferation and osteogenic differentiation of human adipose-derived stromal/stem cells cultured on four different scaffolds (poly-ε-caprolactone, akermanite:poly-ε-caprolactone composites, akermanite and β-tricalcium phosophate) with or without osteogenic media supplementation for up to 21 days. The hypothesis was that human adipose-derived stromal/stem cells osteogenesis in akermanite-containing scaffolds would be greater than the other scaffold types independent of the media supplementation. According to the results, human adipose-derived stromal/stem cells loaded on different scaffolds and cultured in both media conditions displayed significant changes in the metabolic activity and cell proliferation. After 21 days of culture in osteogenic medium, the human adipose-derived stromal/stem cells loaded onto akermanite-based scaffolds had greater calcium deposition and osteocalcin expression relative to human adipose-derived stromal/stem cells loaded onto β-tricalcium phosophate and poly-ε-caprolactone. In vivo investigations are needed to further assess the bone tissue engineering potential of human adipose-derived stromal/stem cells loaded to akermanite:poly-ε-caprolactone composites.
Collapse
Affiliation(s)
- Andrea S Zanetti
- 1Department of Biological Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, LA, USA
| | | | | | | | | |
Collapse
|
46
|
Ahtiainen K, Mauno J, Ellä V, Hagström J, Lindqvist C, Miettinen S, Ylikomi T, Kellomäki M, Seppänen R. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. J R Soc Interface 2013; 10:20130287. [PMID: 23720535 DOI: 10.1098/rsif.2013.0287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement.
Collapse
Affiliation(s)
- Katja Ahtiainen
- Department of Cell Biology, School of Medicine, University of Tampere, 33014 Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pelto JM, Haimi SP, Siljander AS, Miettinen SS, Tappura KM, Higgins MJ, Wallace GG. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6099-6108. [PMID: 23621360 DOI: 10.1021/la4009366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Jani M Pelto
- VTT Technical Research Centre of Finland, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Diban N, Haimi S, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot A, Grijpma D, Stamatialis D. Hollow fibers of poly(lactide-co-glycolide) and poly(ε-caprolactone) blends for vascular tissue engineering applications. Acta Biomater 2013; 9:6450-8. [PMID: 23318815 DOI: 10.1016/j.actbio.2013.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 01/06/2023]
Abstract
At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (HF) membranes have previously been proposed for this application, but as we show in the present work, they have an inhibiting effect on cell proliferation and rather poor mechanical properties. To overcome this we prepared HF membranes via phase inversion using blends of PLGA with poly(ε-caprolactone) (PCL). The influence of polymer composition on the HF physicochemical properties (topography, water transport and mechanical properties) and cell attachment and proliferation were studied. Our results show that only the ratio PCL/PLGA of 85/15 (PCL/PLGA85/15) yielded a miscible blend after processing. A higher PLGA concentration in the blend led to immiscible PCL/PLGA phase-separated HFs with an inhomogeneous morphology and variation in the cell culture results. In fact, the PCL/PLGA85/15 blend, which had the most homogeneous morphology and suitable pore structure, showed better human adipose stem cell (hASC) attachment and proliferation compared with the homopolymers. This, combined with the good mechanical and transport properties, makes them potentially useful for the development of small-caliber vascular grafts.
Collapse
|
49
|
Patrikoski M, Juntunen M, Boucher S, Campbell A, Vemuri MC, Mannerström B, Miettinen S. Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Res Ther 2013; 4:27. [PMID: 23497764 PMCID: PMC3707027 DOI: 10.1186/scrt175] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/04/2013] [Indexed: 01/29/2023] Open
Abstract
Introduction Adipose tissue is an attractive and abundant source of multipotent stem cells. Human adipose stem cells (ASCs) have shown to have therapeutic relevancy in diverse clinical applications. Nevertheless, expansion of ASCs is often necessary before performing clinical studies. Standard in vitro cell-culture techniques use animal-derived reagents that should be avoided in clinical use because of safety issues. Therefore, xeno- and serum-free (XF/SF) reagents are highly desirable for enhancing the safety and quality of the transplanted ASCs. Methods In the current study, animal component-free isolation and cell-expansion protocols were developed for ASCs. StemPro MSC SFM XF medium with either CELLstart™ CTS™ coating or Coating Matrix Kit were tested for their ability to support XF/SF growth. Basic stem-cell characteristics such as immunophenotype (CD3, CD11a, CD14, CD19, CD34, CD45RO, CD54, CD73, CD80, CD86, CD90, CD105, HLA-DR), proliferation, and differentiation potential were assessed in XF/SF conditions and compared with human serum (HS) or traditionally used fetal bovine serum (FBS) cultures. Results ASCs cultured in XF/SF conditions had significantly higher proliferation rates compared with HS/FBS cultures. Characteristic immunophenotypes of ASCs were maintained in every condition; however, cells expanded in XF/SF conditions showed significantly lower expression of CD54 (intercellular adhesion molecule 1, ICAM-1) at low passage number. Further, multilineage differentiation potential of ASCs was maintained in every culture condition. Conclusions Our findings demonstrated that the novel XF/SF conditions maintained the basic stem cell features of ASCs and the animal-free workflow followed in this study has great potential in clinical cell therapies.
Collapse
|
50
|
Kim TH, Oh SH, Kwon EB, Lee JY, Lee JH. In vitro evaluation of osteogenesis and myogenesis from adipose-derived stem cells in a pore size gradient scaffold. Macromol Res 2013. [DOI: 10.1007/s13233-013-1099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|