1
|
De Gaudemaris I, Hannoun A, Gauthier R, Attik N, Brizuela L, Mebarek S, Hassler M, Bougault C, Trunfio-Sfarghiu AM. Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process. J Biosci Bioeng 2025; 139:53-59. [PMID: 39395870 DOI: 10.1016/j.jbiosc.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
Aiming to build a tissue analogue engineered cartilage from differentiated chondrocytes, we investigated the potential of a pyrocarbon (PyC)-based and scaffold-free process, under mechanical stimulation. PyC biomaterial has shown promise in arthroplasty and implant strategies, and mechanical stimulation is recognized as an improvement in regeneration strategies. The objective was to maintain the cell phenotype to produce constructs with cartilage-like matrix composition and mechanical properties. Primary murine chondrocytes were deposited in drop form between two biomaterial surfaces expanded to 500 μm and a uniaxial cyclic compression was applied thanks to a handmade tribo-bioreactor (0.5 Hz, 100 μm of amplitude, 17 days). Histology and immunohistochemistry analysis showed that PyC biomaterial promoted expression of cartilage-like matrix components (glycosaminoglycans, type II collagen, aggrecan). Importantly, constructs obtained in dynamic conditions were denser and showed a cohesive and compact shape. The most promising condition was the combined use of PyC and dynamic stimulation, resulting in constructs of low elasticity and high viscosity, thus with an increased damping factor. We verified that no calcium deposits were detectable and that type X collagen was not expressed, suggesting that the cells had not undergone hypertrophic maturation. While most studies focus on the comparison of different biomaterials or on the effect of different mechanical stimuli separately, we demonstrated the value of combining the two approaches to get as close as possible to the biological and mechanical qualities of natural hyaline articular cartilage.
Collapse
Affiliation(s)
| | - Amira Hannoun
- Univ Lyon, CNRS, INSA Lyon, UMR5259, LaMCoS, F-69621, Villeurbanne, France
| | - Rémy Gauthier
- Univ Lyon, CNRS, INSA Lyon, UCBL, UMR5510, MATEIS, F-69621, Villeurbanne, France
| | - Nina Attik
- Universite Claude Bernard Lyon 1, CNRS UMR5615, LMI, F-69622, Lyon, France; Universite Claude Bernard Lyon 1, Faculté d'odontologie, F-69372, Lyon, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS UMR5246, ICBMS, F-69622, Lyon, France
| | - Saida Mebarek
- Universite Claude Bernard Lyon 1, CNRS UMR5246, ICBMS, F-69622, Lyon, France
| | - Michel Hassler
- Tornier SAS, 161 rue Lavoisier, F-38330, Montbonnot Saint-Martin, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS UMR5246, ICBMS, F-69622, Lyon, France.
| | | |
Collapse
|
2
|
Bhujel B, Yang SS, Kim HR, Kim SB, Min BH, Choi BH, Han I. An Injectable Engineered Cartilage Gel Improves Intervertebral Disc Repair in a Rat Nucleotomy Model. Int J Mol Sci 2023; 24:3146. [PMID: 36834559 PMCID: PMC9966384 DOI: 10.3390/ijms24043146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Lower back pain is a major problem caused by intervertebral disc degeneration. A common surgical procedure is lumbar partial discectomy (excision of the herniated disc causing nerve root compression), which results in further disc degeneration, severe lower back pain, and disability after discectomy. Thus, the development of disc regenerative therapies for patients who require lumbar partial discectomy is crucial. Here, we investigated the effectiveness of an engineered cartilage gel utilizing human fetal cartilage-derived progenitor cells (hFCPCs) on intervertebral disc repair in a rat tail nucleotomy model. Eight-week-old female Sprague-Dawley rats were randomized into three groups to undergo intradiscal injection of (1) cartilage gel, (2) hFCPCs, or (3) decellularized extracellular matrix (ECM) (n = 10/each group). The treatment materials were injected immediately after nucleotomy of the coccygeal discs. The coccygeal discs were removed six weeks after implantation for radiologic and histological analysis. Implantation of the cartilage gel promoted degenerative disc repair compared to hFCPCs or hFCPC-derived ECM by increasing the cellularity and matrix integrity, promoting reconstruction of nucleus pulposus, restoring disc hydration, and downregulating inflammatory cytokines and pain. Our results demonstrate that cartilage gel has higher therapeutic potential than its cellular or ECM component alone, and support further translation to large animal models and human subjects.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam 13496, Republic of Korea
| | | | | | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byoung-Hyun Min
- ATEMs Inc., Seoul 02447, Republic of Korea
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA
| | - Byung Hyune Choi
- ATEMs Inc., Seoul 02447, Republic of Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
3
|
Effects of Induction Culture on Osteogenesis of Scaffold-Free Engineered Tissue for Bone Regeneration Applications. Tissue Eng Regen Med 2022; 19:417-429. [PMID: 35122585 PMCID: PMC8971264 DOI: 10.1007/s13770-021-00418-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Restoration of the bone defects caused by infection or disease remains a challenge in orthopedic surgery. In recent studies, scaffold-free engineered tissue with a self-secreted extracellular matrix has been proposed as an alternative strategy for tissue regeneration and reconstruction. Our study aimed to engineer and fabricate self-assembled osteogenic and scaffold-free tissue for bone regeneration. METHODS Osteogenic scaffold-free tissue was engineered and fabricated using fetal cartilage-derived progenitor cells, which are capable of osteogenic differentiation. They were cultured in osteogenic induction environments or using demineralized bone powder for differentiation. The fabricated tissue was subjected to real-time qPCR, biochemical, and histological analyses to estimate the degree of in vitro osteogenic differentiation. To demonstrate bone formation in an in vivo environment, scaffold-free tissue was transplanted into the dorsal subcutaneous site of nude mice. Bone development was monitored postoperatively over 8 weeks by the observation of calcium deposition in the matrix. RESULTS In the in vitro experiments, engineered osteogenically induced scaffold-free tissue demonstrated three-dimensional morphological characteristics, and sufficient osteogenic differentiation was confirmed through the quantification of specific osteogenic gene markers expressed and calcium accumulation within the matrix. Following the evaluation of differentiation efficacy, in vivo experiments revealed distinct bone formation, and that blood vessels had penetrated the fabricated tissue. CONCLUSION The novel engineering of scaffold-free tissue with osteogenic potential can be used as an optimal bone graft substitute for bone regeneration.
Collapse
|
4
|
Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci Rep 2020; 10:5722. [PMID: 32235934 PMCID: PMC7109068 DOI: 10.1038/s41598-020-62580-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.
Collapse
|
5
|
Abstract
PURPOSE The significant shortcomings associated with current autologous reconstructive options for auricular deformities have inspired great interest in a tissue engineering solution. A major obstacle in the engineering of human auricular cartilage is the availability of sufficient autologous human chondrocytes. A clinically obtainable amount of auricular cartilage tissue (ie, 1 g) only yields approximately 10 million cells, where 25 times this amount is needed for the fabrication of a full-scale pediatric ear. It is thought that repeated passaging of chondrocytes leads to dedifferentiation and loss of the chondrogenic potential. However, little to no data exist regarding the ideal number of times that human auricular chondrocytes (HAuCs) can be passaged in a manner that maximizes the cellular expansion while minimizing dedifferentiation. METHODS Human auricular chondrocytes were isolated from discarded otoplasty specimens. The HAuCs were then expanded, and cells from passages 3, 4, and 5 were encapsulated into discs 8 mm in diameter made from type I collagen hydrogels with a cell density of 25 million cells/mL. The constructs were implanted subcutaneously in the dorsa of nude mice and harvested after 1 and 3 months for analysis. RESULTS Constructs containing passages 3, 4, and 5 chondrocytes all maintained their original cylindrical geometry. After 3 months in vivo, the diameters of the P3, P4, and P5 discs were 69 ± 9%, 67 ± 10%, and 73 ± 15% of their initial diameter, respectively. Regardless of the passage number, all constructs developed a glossy white cartilaginous appearance, similar to native auricular cartilage. Histologic analysis demonstrated development of an organized perichondrium composed of collagen, a rich proteoglycan matrix, cellular lacunae, and a dense elastin fibrin network by Safranin-O and Verhoeff stain. Biochemical analysis confirmed similar amounts of proteoglycan and hydroxyproline content in late passage constructs when compared with native auricular cartilage. CONCLUSIONS These data indicate that late passage HAuCs (up to passage 5) form elastic cartilage that is histologically, biochemically, and biomechanically similar to native human elastic cartilage and have the potential to be used for auricular cartilage engineering.
Collapse
|
6
|
Anti-Inflammatory and Healing Effects of Pulsed Ultrasound Therapy on Fibroblasts. Am J Phys Med Rehabil 2019; 99:19-25. [DOI: 10.1097/phm.0000000000001265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Park IS, Jin RL, Oh HJ, Truong MD, Choi BH, Park SH, Park DY, Min BH. Sizable Scaffold-Free Tissue-Engineered Articular Cartilage Construct for Cartilage Defect Repair. Artif Organs 2018; 43:278-287. [PMID: 30374978 DOI: 10.1111/aor.13329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Ri Long Jin
- Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Hyun Ju Oh
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical Sciences, Inha University, Incheon, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
8
|
Jin LH, Choi BH, Kim YJ, Oh HJ, Kim BJ, Yin XY, Min BH. Nondestructive Assessment of Glycosaminoglycans in Engineered Cartilages Using Hexabrix-Enhanced Micro-Computed Tomography. Tissue Eng Regen Med 2018; 15:311-319. [PMID: 30603556 PMCID: PMC6171677 DOI: 10.1007/s13770-018-0117-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022] Open
Abstract
It is very useful to evaluate the content and 3D distribution of extracellular matrix non-destructively in tissue engineering. This study evaluated the feasibility of using micro-computed tomography (µCT) with Hexabrix to measure quantitatively sulfated glycosaminoglycans (GAGs) of engineered cartilage. Rabbit chondrocytes at passage 2 were used to produce artificial cartilages in polyglycolic acid scaffolds in vitro. Engineered cartilages were incubated with Hexabrix 320 for 20 min and analyzed via µCT scanning. The number of voxels in the 2D and 3D scanning images were counted to estimate the amount of sulfated GAGs. The optimal threshold value for quantification was determined by regression analysis. The 2D µCT images of an engineered cartilage showed positive correlation with the histological image of Safranin-O staining. Quantitative data obtained with the 3D µCT images of 14 engineered cartilages showed strong correlation with sulfated GAGs contents obtained by biochemical analysis (R2 = 0.883, p < 0.001). Repeated exposure of engineered cartilages to Hexabrix 320 and µCT scanning did not significantly affect cell viability, total DNA content, or the total content of sulfated GAGs. We conclude that µCT imaging using Hexabrix 320 provides high spatial resolution and sensitivity to assess the content and 3D distribution of sulfated GAGs in engineered cartilages. It is expected to be a valuable tool to evaluate the quality of engineered cartilage for commercial development in the future.
Collapse
Affiliation(s)
- Long Hao Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Present Address: Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, China
| | - Byung Hyune Choi
- Department of Biomedical Sciences, College of Medicine, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212 Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Hyun Ju Oh
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Byoung Ju Kim
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| |
Collapse
|
9
|
Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 2017; 166:31-44. [PMID: 28385238 DOI: 10.1016/j.carbpol.2017.02.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022]
Abstract
In the present study, we developed a biomimetic injectable hydrogel system based on hyaluronic acid-adipic dihydrazide and the oligopeptide G4RGDS-grafted oxidized pectin, in which their hydrazide and aldehyde-derivatives enable covalent hydrazone crosslinking of polysaccharides. The hydrazone crosslinking strategy is simple, while circumventing toxicity, making this injectable system feasible, minimally invasive and easily translatable for regenerative purposes. By varying their weight ratios, the physicochemical properties of the mechanically stable hydrogel system were easily adjustable. Additionally, the preliminary studies demonstrated that chondrocyte behavior was dependent on HA/pectin composition and the presence of integrin binding moieties. Specifically, the incorporation of a certain amount of G4RGDS oligopeptide into HA/pectin-based hydrogels could serve as a biologically active microenvironment that supported chondrocyte phenotype and facilitated chondrogenesis. Furthermore, the hydrogel system exhibited acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable multicomponent hydrogel presented here is expected to be useful biomaterial scaffold for cartilage tissue regeneration.
Collapse
|
10
|
Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering. Adv Healthc Mater 2016; 5:1931-8. [PMID: 27331769 DOI: 10.1002/adhm.201600197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
11
|
Zhu S, Gu Z, Hu Y, Dan W, Xiong S. Evaluation of alginate dialdehyde as a suitable crosslinker on modifying porcine acellular dermal matrix: The aggregation of collagenous fibers. J Appl Polym Sci 2016. [DOI: 10.1002/app.43550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural University; No.1 Shizishan Street, Hongshan District Wuhan Hubei 430070 China
- The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing; Wuhan 430070 China
| | - Zhipeng Gu
- Department of Biomedical Engineering, School of Engineering; Sun Yat-sen University, Xiaoguwei Island, Panyu District; Guangzhou 510006 China
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural University; No.1 Shizishan Street, Hongshan District Wuhan Hubei 430070 China
- The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing; Wuhan 430070 China
| | - Weihua Dan
- Department of Biomass Chemistry and Engineering; Sichuan University; No.24 South Section 1, Yihuan Road Chengdu Sichuan 610065 China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural University; No.1 Shizishan Street, Hongshan District Wuhan Hubei 430070 China
- The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing; Wuhan 430070 China
| |
Collapse
|
12
|
Tseng A, Pomerantseva I, Cronce MJ, Kimura AM, Neville CM, Randolph MA, Vacanti JP, Sundback CA. Extensively Expanded Auricular Chondrocytes Form Neocartilage In Vivo. Cartilage 2014; 5:241-51. [PMID: 26069703 PMCID: PMC4335768 DOI: 10.1177/1947603514546740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice. DESIGN Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF). After 2-week in vitro incubation, seeded scaffolds were implanted subcutaneously in nude mice for 6 weeks. The neocartilage quality was evaluated histologically; DNA and glycosaminoglycans were quantified. Cell proliferation rates and collagen gene expression profiles were assessed. RESULTS Clinically sufficient over 500-fold chondrocyte expansion was achieved at passage 3 (P3); cell dedifferentiation was confirmed by the simultaneous COL1A1/3A1 gene upregulation and COL2A1 downregulation. The chondrogenic phenotype of sheep but not human P3 cells was rescued by addition of cryopreserved P0 chondrocytes. With bFGF supplementation, chondrocytes achieved clinically sufficient expansion at P2; COL2A1 expression was not rescued but COL1A1/3A1genes were downregulated. Although bFGF failed to rescue COL2A1 expression during chondrocyte expansion in vitro, elastic neocartilage with obvious collagen II expression was observed on porous collagen scaffolds after implantation in mice for 6 weeks. CONCLUSIONS Both animal and human auricular chondrocytes expanded with low-concentration bFGF supplementation formed high-quality elastic neocartilage on porous collagen scaffolds in vivo.
Collapse
Affiliation(s)
- Alan Tseng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Irina Pomerantseva
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Michael J. Cronce
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Anya M. Kimura
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Craig M. Neville
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mark A. Randolph
- Harvard Medical School, Boston, MA, USA,Plastic Surgery Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph P. Vacanti
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Cathryn A. Sundback
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Sridhar BV, Doyle NR, Randolph MA, Anseth KS. Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 2014; 102:4464-72. [PMID: 24616326 DOI: 10.1002/jbm.a.35115] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 11/09/2022]
Abstract
Healing articular cartilage defects remains a significant clinical challenge because of its limited capacity for self-repair. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with growth factor delivery that can locally signal cells and promote their function is often advantageous. We have previously shown that PEG thiol-ene hydrogels permit covalent attachment of growth factors. However, it is not well known if embedded chondrocytes respond to tethered signals over a long period. Here, chondrocytes were encapsulated in PEG hydrogels functionalized with transforming growth factor-beta 1 (TGF-β1) with the goal of increasing proliferation and matrix production. Tethered TGF-β1 was found to be distributed homogenously throughout the gel, and its bioactivity was confirmed with a TGF-β1 responsive reporter cell line. Relative to solubly delivered TGF-β1, chondrocytes presented with immobilized TGF-β1 showed significantly increased DNA content, and GAG and collagen production over 28 days, while maintaining markers of articular cartilage. These results indicate the potential of thiol-ene chemistry to covalently conjugate TGF-β1 to PEG to locally influence chondrocyte function over 4 weeks. Scaffolds with other or multiple tethered growth factors may prove broadly useful in the design of chondrocyte delivery vehicles for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Balaji V Sridhar
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado; Biofrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | | | | | | |
Collapse
|
14
|
Hu Y, Liu L, Dan W, Dan N, Gu Z, Yu X. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix. Int J Biol Macromol 2013; 55:221-30. [DOI: 10.1016/j.ijbiomac.2013.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
15
|
Whitney GA, Mera H, Weidenbecher M, Awadallah A, Mansour JM, Dennis JE. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. Biores Open Access 2013; 1:157-65. [PMID: 23514898 PMCID: PMC3559237 DOI: 10.1089/biores.2012.0231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell sources are described in detail, and the resulting constructs are compared for use in a joint resurfacing model. Attachment of cartilage sheets to porous tantalum is also investigated as a potential vehicle for future attachment to subchondral bone. Large scaffold-free cartilage constructs were produced from culture-expanded chondrocytes from skeletally mature rabbits, and redifferentiated in a chemically-defined culture medium. Auricular constructs contained more glycosaminoglycan (39.6±12.7 vs. 9.7±1.9 μg/mg wet weight, mean and standard deviation) and collagen (2.7±0.45 vs. 1.1±0.2 μg/mg wet weight, mean and standard deviation) than articular constructs. Aggregate modulus was also higher for auricular constructs vs. articular constructs (0.23±0.07 vs. 0.12±0.03 MPa, mean and standard deviation). Attachment of constructs to porous tantalum was achieved by neocartilage ingrowth into tantalum pores. These results demonstrate that large scaffold-free neocartilage constructs can be produced from mature culture-expanded chondrocytes in a chemically-defined medium, and that these constructs can be attached to porous tantalum.
Collapse
Affiliation(s)
- G Adam Whitney
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio. ; Department of Orthopaedics, Case Western Reserve University , Cleveland, Ohio. ; Hope Heart Matrix Biology Program, Benaroya Research Institute , Seattle, Washington
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
In vitro fabrication of tissues and the regeneration of internal organs are no longer regarded as science fiction but as potential remedies for individuals suffering from chronic degenerative diseases. Tissue engineering has generated much interest from researchers in many fields, including cell and molecular biology, biomedical engineering, transplant medicine, and organic chemistry. Attempts to build tissues or organs in vitro have utilized both scaffold and scaffold-free approaches. Despite considerable progress, fabrication of three-dimensional tissue constructs in vitro remains a challenge. In this chapter, we introduce and discus current concepts of tissue engineering with particular focus on future clinical application.
Collapse
|
17
|
Zhu J, Cai B, Ma Q, Chen F, Wu W. Cell bricks-enriched platelet-rich plasma gel for injectable cartilage engineering - an in vivo experiment in nude mice. J Tissue Eng Regen Med 2012; 7:819-30. [PMID: 22438198 DOI: 10.1002/term.1475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 10/02/2011] [Accepted: 01/13/2012] [Indexed: 11/12/2022]
Abstract
Clinical application of platelet-rich plasma (PRP)-based injectable tissue engineering is limited by weak mechanical properties and a rapid fibrinolytic rate. We proposed a new strategy, a cell bricks-stabilized PRP injectable system, to engineer and regenerate cartilage with stable morphology and structure in vivo. Chondrocytes from the auricular cartilage of rabbits were isolated and cultured to form cell bricks (fragmented cell sheet) or cell expansions. Fifteen nude mice were divided evenly (n = 5) into cells-PRP (C-P), cell bricks-PRP (CB-P) and cell bricks-cells-PRP (CB-C-P) groups. Cells, cell bricks or a cell bricks/cells mixture were suspended in PRP and were injected subcutaneously in animals. After 8 weeks, all the constructs were replaced by white resilient tissue; however, specimens from the CB-P and CB-C-P groups were well maintained in shape, while the C-P group appeared distorted, with a compressed outline. Histologically, all groups presented lacuna-like structures, glycosaminoglycan-enriched matrices and positive immunostaining of collagen type II. Different from the uniform structure presented in CB-C-P samples, CB-P presented interrupted, island-like chondrogenesis and contracted structure; fibrous interruption was shown in the C-P group. The highest percentage of matrix was presented in CB-C-P samples. Collagen and sGAG quantification confirmed that the CB-C-P constructs had statistically higher amounts than the C-P and CB-P groups; statistical differences were also found among the groups in terms of biomechanical properties and gene expression. We concluded that cell bricks-enriched PRP gel sufficiently enhanced the morphological stability of the constructs, maintained chondrocyte phenotypes and favoured chondrogenesis in vivo, which suggests that such an injectable, completely biological system is a suitable cell carrier for cell-based cartilage repair.
Collapse
Affiliation(s)
- Jun Zhu
- Rege Laboratory of Tissue Engineering, College of Life Science, Northwest University, Xi'an, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Zhang B, Yang S, Sun Z, Zhang Y, Xia T, Xu W, Ye S. Human mesenchymal stem cells induced by growth differentiation factor 5: an improved self-assembly tissue engineering method for cartilage repair. Tissue Eng Part C Methods 2011; 17:1189-99. [PMID: 21875359 DOI: 10.1089/ten.tec.2011.0011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that novel scaffold-free self-assembled constructs can be an ideal alternative for cartilage tissue engineered based on scaffolds, which has many limitations. However, many questions remain, including the choice of seeding cells and the role of growth differentiation factor 5 (GDF-5) in constructing self-assembled engineered cartilages. Moreover, whether the optimum construct is effective in human chondral defect repair is still unknown. In this study, we generated self-assembled constructs of human mesenchymal stem cells (hMSCs) using four different approaches: direct self-assembly of hMSCs with or without GDF-5, and predifferentiated hMSCs self-assembly with or without GDF-5. Histological, immunohistochemical, and biochemistry analyses indicated that the constructs generated from predifferentiated hMSCs induced by GDF-5 (Group D2) exhibited up-regulated glycosaminoglycan (GAG) and type II collagen expression and contained higher amounts of GAG and total collagen than any other group. After 3-weeks of in vitro culturing of the constructs in a chondral defects explant culture system, the contructs from Group D2 were stably adhered to the surface of the cartilage matrix. Immunohistochemically, the repair tissue was positive for type II collagen, toluidine blue, and safranin O. These data demonstrated that the generation of self-assembled tissue-engineered cartilage from chondrogenically differentiated hMSCs induced by GDF-5 is a promising therapeutic strategy for cartilage repair.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Tran SC, Cooley AJ, Elder SH. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 2011; 108:1421-9. [PMID: 21274847 DOI: 10.1002/bit.23061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 11/09/2022]
Abstract
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.
Collapse
Affiliation(s)
- Scott C Tran
- Agricultural & Biological Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | | | | |
Collapse
|
20
|
Relation of low-intensity pulsed ultrasound to the cell density of scaffold-free cartilage in a high-density static semi-open culture system. J Orthop Sci 2010; 15:816-24. [PMID: 21116901 DOI: 10.1007/s00776-010-1544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/10/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A scaffold-free cartilage construct, analogous to those found during embryonic precartilage condensation, has received much attention as a novel modality for tissue-engineered cartilage. In the present study, we developed an uncomplicated culture system by which scaffold-free cartilage-like tissues are produced using cell-cell interactions. With this system, we attempted to prevent dedifferentiation and reverse the phenotypic modulations by adjusting the cell density. We investigated whether low-intensity pulsed ultrasound (LIPUS) enhances matrix synthesis of the scaffold-free cartilage construct. METHODS Rat articular chondrocytes multiplied in monolayers were seeded onto the synthetic porous membrane at stepwise cell densities (i.e., 1.0, 2.0, and 4.0 × 10(7) cells/cm(2)) to allow formation of a scaffold-free cartilage construct via cell-cell interaction. The cartilage constructs were then stimulated by LIPUS for 20 min/day. To investigate the effect of LIPUS stimulation on matrix synthesis, expression of mRNA for cartilage matrix molecules was quantified by a real-time reverse transcription-polymerase chain reaction. Synthesis of type II collagen, type I collagen, and proteoglycan was also assessed histologically. RESULTS Only the chondrocytes cultured at high cell densities in the 2.0 × 10(7)cells/cm(2) group became concentrated and formed a plate-like construct similar to native articular cartilage by macroscopic and histological assessments. Statistical analysis on the matrix gene expression demonstrated that the levels of type II collagen and aggrecan mRNA of the 2.0 × 10(7)cells/cm(2) group were significantly higher than with the other two cell-density groups. Interestingly, the LIPUS application led to a statistically significant enhancement of aggrecan gene expression only in the 2.0 × 10(7) cells/cm(2) group. CONCLUSIONS The current study presents a semi-open static culture system that facilitates production of the scaffold-free constructs from monolayer-cultured chondrocytes. It suggests that the LIPUS application enhances matrix production in the construct, and its combination with the scaffold-free construct might become a feasible tool for production of implantable constructs of better quality.
Collapse
|
21
|
Min BH, Lee HJ, Kim YJ. Cartilage Repair Using Mesenchymal Stem Cells. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.11.1077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Byoung-Hyun Min
- Department of Orthopedic Surgery, Ajou University College of Medicine, Korea.
| | - Hyun Jung Lee
- Cell Therapy Center, Ajou University Medical Center, Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University Medical Center, Korea
| |
Collapse
|