1
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
Evaluation of Paste-Type Micronized Acellular Dermal Matrix for Soft Tissue Augmentation: Volumetric and Histological Assessment in a Mouse Model. Aesthetic Plast Surg 2022; 47:852-861. [PMID: 36042026 DOI: 10.1007/s00266-022-03051-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND A biological injectable material, paste-type micronized acellular dermal matrix (ADM), has been proven effective in wound healing by filling defects through tissue replacement. This study aimed to compare the efficacy of paste-type micronized ADM on soft tissue augmentation with that of the conventional fillers in animal experiments. METHODS Two distinct paste-type micronized ADMs, which were mixed with distilled water (mADM) and gelatin (mADM+GEL), respectively, were compared with conventional fillers, hyaluronic acid (HA) and polymethyl methacrylate (COL+PMMA). Thus, four different types of fillers were each injected into the dorsum of nude mice to compare the volume retention and biocompatibility. During the 8-week experimental period, ultrasound and computed tomography (CT) images were obtained for volumetric analysis. Histological evaluation was performed using hematoxylin and eosin and CD 31 staining. RESULTS According to the CT images at week 8, the mADM and mADM+GEL showed a higher volume persistence rate of 113.54% and 51.12%, compared with 85.09% and 17.65% for HA and COL+PMMA, respectively. The 2-week interval ultrasound images revealed that the mADM showed a volume increase in width rather than in height, and an increase in height for HA did not vary much. Histological analysis showed marked fibrous invasion and neovascularization with the mADM and mADM+GEL compared to that of the conventional fillers. CONCLUSIONS Paste-type micronized ADM showed soft tissue augmentation with similar effectiveness to that of conventional fillers. Therefore, paste-type micronized ADM has potential as an alternative material for a soft tissue filler in tissue replacement. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
3
|
Nakano T, Yamanaka H, Sakamoto M, Aiki Y, Yanase N, Hori R, Katayama Y, Tsuge I, Saito S, Morimoto N. Adjustable biodegradability of low-swelling hydrogels prepared from recombinant peptides based on human collagen type 1. J Biomater Appl 2022; 37:881-890. [PMID: 36007126 DOI: 10.1177/08853282221123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An ideal hydrogel for tissue engineering and regenerative therapy is cytocompatible, biocompatible, and has low-swelling characteristics. Recently, a novel low-swelling hydrogel with a homogenous structure was developed by crosslinking a recombinant peptide, modeled on human collagen type 1 (RCPhC1), with a four-arm polyethylene glycol (tetra-PEG). Here, we hypothesized that the biodegradability of the RCPhC1 hydrogel was adjustable by altering its initial polymer concentration. Three types of RCPhC1 hydrogels were prepared using the initial polymer at different concentrations, and their morphology, swelling ratio, collagenase degradability, cytocompatibility, biocompatibility, and biodegradability were compared. The results revealed a low swelling ratio. The higher the concentration of the initial polymer, the longer it took for it to be degraded by collagenase. The average cell viability ratio was over 92% when using the direct contact method, which suggests that the hydrogels have excellent cytocompatibility. No death, tumorigenesis, exposure of the implants, or skin necrosis associated with the subcutaneous implantation of the hydrogels was found in mice in vivo. Moreover, histological evaluation revealed the formation of a thin fibrous capsule, which suggests an acceptable biocompatibility. Furthermore, as hypothesized, it was confirmed that the biodegradability can be adjusted by changing the initial polymer concentration. Collectively, the ability to fine-tune the biodegradability of RCPhC1 hydrogels demonstrates their potential for use in various clinical applications.
Collapse
Affiliation(s)
- Takashi Nakano
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Hiroki Yamanaka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Yasuhiro Aiki
- Bio Science & Engineering Laboratory, 34778FUJIFILM Corporation, Kanagawa, Japan
| | - Naoto Yanase
- Analysis Technology Center, 612992FUJIFILM Corporation, Kanagawa, Japan
| | - Ritsuko Hori
- Analysis Technology Center, 612992FUJIFILM Corporation, Kanagawa, Japan
| | - Yasuhiro Katayama
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Liguori TTA, Liguori GR, van Dongen JA, Moreira LFP, Harmsen MC. Bioactive decellularized cardiac extracellular matrix-based hydrogel as a sustained-release platform for human adipose tissue-derived stromal cell-secreted factors. Biomed Mater 2021; 16:025022. [PMID: 33264764 DOI: 10.1088/1748-605x/abcff9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The administration of trophic factors (TFs) released by mesenchymal stromal cells (MSCs) as therapy for cardiovascular diseases requires a delivery vehicle capable of binding and releasing the TF in a sustained manner. We hypothesized that hydrogels derived from cardiac decellularized extracellular matrix (cardiac dECM) bind MSC secretome-derived TF and release these in a sustained fashion. Pig-derived ventricular tissue was decellularized, milled to powder, digested, and assembled as a hydrogel upon warming at 37 °C. The conditioned medium (CMed) of adipose tissue-derived stromal cells (ASC) was collected, concentrated, and incorporated into the hydrogel at 1×, 10×, and 100× the original concentration. The release of 11 ASC-secreted factors (angiopoietin-1, angiopoietin-2, fibroblast growth factor-1, hepatocyte growth factor, platelet-derived growth factor-AA, vascular endothelial growth factor, interleukin-1β, interleukin-6, interleukin-8, CCL2, and matrix metalloproteinase-1) from hydrogels was immune assessed. Bioactivity was determined by endothelial cell proliferation, function, and assessment of endothelial mesenchymal transition. We showed that dECM hydrogels could be loaded with human ASC-secreted TFs, which are released in a sustained manner for several days subsequently. Different trophic factors had different release kinetics, which correlates with the initial concentration of CMed in the hydrogel. We observed that the more concentrated was the hydrogel, the more inflammation-related cytokines, and the less pro-regenerative TFs were released. Finally, we showed that the factors secreted by the hydrogel are biologically active as these influence cell behavior. The use of dECM hydrogels as a platform to bind and release paracrine factors secreted by (mesenchymal) cells is a potential alternative in the context of cardiovascular regeneration.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands. These authors equally contributed to the manuscript
| | | | | | | | | |
Collapse
|
5
|
Tytgat L, Markovic M, Qazi TH, Vagenende M, Bray F, Martins JC, Rolando C, Thienpont H, Ottevaere H, Ovsianikov A, Dubruel P, Van Vlierberghe S. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J Mater Chem B 2020; 7:3100-3108. [PMID: 31441462 DOI: 10.1039/c8tb03308k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Marica Markovic
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maxime Vagenende
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Fabrice Bray
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - José C Martins
- NMR and Structure Analysis Unit - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
8
|
Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Adipose tissue-derived stromal cells' conditioned medium modulates endothelial-mesenchymal transition induced by IL-1β/TGF-β2 but does not restore endothelial function. Cell Prolif 2019; 52:e12629. [PMID: 31468648 PMCID: PMC6869467 DOI: 10.1111/cpr.12629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Endothelial cells undergo TGF‐β–driven endothelial‐mesenchymal transition (EndMT), representing up to 25% of cardiac myofibroblasts in ischaemic hearts. Previous research showed that conditioned medium of adipose tissue–derived stromal cells (ASC‐CMed) blocks the activation of fibroblasts into fibrotic myofibroblasts. We tested the hypothesis that ASC‐CMed abrogates EndMT and prevents the formation of adverse myofibroblasts. Materials and methods Human umbilical vein endothelial cells (HUVEC) were treated with IL‐1β and TGF‐β2 to induce EndMT, and the influence of ASC‐CMed was assessed. As controls, non‐treated HUVEC or HUVEC treated only with IL‐1β in the absence or presence of ASC‐CMed were used. Gene expression of inflammatory, endothelial, mesenchymal and extracellular matrix markers, transcription factors and cell receptors was analysed by RT‐qPCR. The protein expression of endothelial and mesenchymal markers was evaluated by immunofluorescence microscopy and immunoblotting. Endothelial cell function was measured by sprouting assay. Results IL‐1β/TGF‐β2 treatment induced EndMT, as evidenced by the change in HUVEC morphology and an increase in mesenchymal markers. ASC‐CMed blocked the EndMT‐related fibrotic processes, as observed by reduced expression of mesenchymal markers TAGLN (P = 0.0008) and CNN1 (P = 0.0573), as well as SM22α (P = 0.0501). The angiogenesis potential was impaired in HUVEC undergoing EndMT and could not be restored by ASC‐CMed. Conclusions We demonstrated that ASC‐CMed reduces IL‐1β/TGF‐β2‐induced EndMT as observed by the loss of mesenchymal markers. The present study supports the anti‐fibrotic effects of ASC‐CMed through the modulation of the EndMT process.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gabriel Romero Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Spaans S, Fransen PPKH, Schotman MJG, van der Wulp R, Lafleur RP, Kluijtmans SGJM, Dankers PYW. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules 2019; 20:2360-2371. [PMID: 31050892 PMCID: PMC6560502 DOI: 10.1021/acs.biomac.9b00353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (∼26 kPa) versus "stiff" (∼68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
Collapse
Affiliation(s)
- Sergio Spaans
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter-Paul K. H. Fransen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruben van der Wulp
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René P.
M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Kamata H, Ashikari-Hada S, Mori Y, Azuma A, Hata KI. Extemporaneous Preparation of Injectable and Enzymatically Degradable 3D Cell Culture Matrices from an Animal-Component-Free Recombinant Protein Based on Human Collagen Type I. Macromol Rapid Commun 2019; 40:e1900127. [PMID: 31136037 DOI: 10.1002/marc.201900127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/18/2019] [Indexed: 01/07/2023]
Abstract
Injectable hydrogels are considered important to realize safe and effective minimally invasive therapy. Although animal-derived natural polymers are well studied, they typically lack injectability and fail to eliminate the potential risks of immunogenic reactions or unknown pathogen contamination. Despite extensive research activities to explore ideal injectable hydrogels, such state-of-the-art technology remains inaccessible to non-specialists. In this article, the design of a new injectable hydrogel platform that can be extemporaneously prepared from commercially available animal-component-free materials is described. The hydrogels can be prepared simply by mixing mutually reactive aqueous solutions without necessitating specialized knowledge or equipment. Their solidification time can be adjusted by choosing proper buffer conditions from immediate to an extended period of time, that is, few or several tens of minutes depending on the concentration of polymeric components, which not only provides injectability, but enables 3D encapsulation of cells. Mesenchymal stromal/stem cells can be encapsulated and cultured in the hydrogels at least for 2 weeks by traditional cell culture techniques, and retrieved by collagenase digestion with cell viability of approximately 80%. This hydrogel platform accelerates future cell-related research activities.
Collapse
Affiliation(s)
- Hiroyuki Kamata
- Bioscience & Technology Development Center, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Satoko Ashikari-Hada
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori-shi, Aichi, 443-0022, Japan
| | - Yusuke Mori
- Bioscience & Technology Development Center, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Akihiko Azuma
- Bioscience & Technology Development Center, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Ken-Ichiro Hata
- Bioscience & Technology Development Center, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan.,Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori-shi, Aichi, 443-0022, Japan
| |
Collapse
|
11
|
Yang G, Lu Y, Bomba HN, Gu Z. Cysteine-rich Proteins for Drug Delivery and Diagnosis. Curr Med Chem 2019; 26:1377-1388. [DOI: 10.2174/0929867324666170920163156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/23/2022]
Abstract
An emerging focus in nanomedicine is the exploration of multifunctional nanocomposite materials that integrate stimuli-responsive, therapeutic, and/or diagnostic functions. In this effort, cysteine-rich proteins have drawn considerable attention as a versatile platform due to their good biodegradability, biocompatibility, and ease of chemical modification. This review surveys cysteine-rich protein-based biomedical materials, including protein-metal nanohybrids, gold nanoparticle-protein agglomerates, protein-based nanoparticles, and hydrogels, with an emphasis on their preparation methods, especially those based on the cysteine residue-related reactions. Their applications in tumor-targeted drug delivery and diagnostics are highlighted.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Science & Technology of Eco-Textile, Donghua University, Ministry of Education, Shanghai 201620, China
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep 2018; 8:16633. [PMID: 30413733 PMCID: PMC6226511 DOI: 10.1038/s41598-018-34747-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a potent inducer of fibroblast to myofibroblast differentiation and contributes to the pro-fibrotic microenvironment during cardiac remodeling. Fibroblast growth factor-2 (FGF-2) is a growth factor secreted by adipose tissue-derived stromal cells (ASC) which can antagonize TGF-β1 signaling. We hypothesized that TGF-β1-induced cardiac fibroblast to myofibroblast differentiation is abrogated by FGF-2 and ASC conditioned medium (ASC-CMed). Our experiments demonstrated that TGF-β1 treatment-induced cardiac fibroblast differentiation into myofibroblasts, as evidenced by the formation of contractile stress fibers rich in αSMA. FGF-2 blocked the differentiation, as evidenced by the reduction in gene (TAGLN, p < 0.0001; ACTA2, p = 0.0056) and protein (αSMA, p = 0.0338) expression of mesenchymal markers and extracellular matrix components gene expression (COL1A1, p < 0.0001; COL3A1, p = 0.0029). ASC-CMed did not block myofibroblast differentiation. The treatment with FGF-2 increased matrix metalloproteinases gene expression (MMP1, p < 0.0001; MMP14, p = 0.0027) and decreased the expression of tissue inhibitor of metalloproteinase gene TIMP2 (p = 0.0023). ASC-CMed did not influence these genes. The proliferation of TGF-β1-induced human cardiac fibroblasts was restored by both FGF-2 (p = 0.0002) and ASC-CMed (p = 0.0121). The present study supports the anti-fibrotic effects of FGF-2 through the blockage of cardiac fibroblast differentiation into myofibroblasts. ASC-CMed, however, did not replicate the anti-fibrotic effects of FGF-2 in vitro.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Gabriel Romero Liguori
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Martin Conrad Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.
| |
Collapse
|
13
|
Parvizi M, Petersen AH, van Spreuwel-Goossens CAFM, Kluijtmans SGJM, Harmsen MC. Perivascular scaffolds loaded with adipose tissue-derived stromal cells attenuate development and progression of abdominal aortic aneurysm in rats. J Biomed Mater Res A 2018; 106:2494-2506. [DOI: 10.1002/jbm.a.36445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/05/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- M. Parvizi
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - A. H. Petersen
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | | | | | - M. C. Harmsen
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
14
|
Mashiko T, Takada H, Wu SH, Kanayama K, Feng J, Tashiro K, Asahi R, Sunaga A, Hoshi K, Kurisaki A, Takato T, Yoshimura K. Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy. J Tissue Eng Regen Med 2018; 12:1186-1194. [PMID: 29377539 DOI: 10.1002/term.2647] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Abstract
Chronic changes following radiotherapy include alterations in tissue-resident stem cells and vasculatures, which can lead to impaired wound healing. In this study, novel recombinant human collagen peptide (rhCP) scaffolds were evaluated as a biomaterial carrier for cellular regenerative therapy. Human adipose-derived stem cells (hASCs) were successfully cultured on rhCP scaffolds. By hASC culture on rhCP, microarray assay indicated that expression of genes related to cell proliferation and extracellular matrix production was upregulated. Pathway analyses revealed that signaling pathways related to inflammatory suppression and cell growth promotion were activated as well as signaling pathways consistent with some growth factors including vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta, although gene expression of these growth factors was not upregulated. These findings suggest the rhCP scaffold showed similar biological actions to cytokines regulating cell growth and immunity. In subsequent impaired wound healing experiments using a locally irradiated (20 Gray) mouse, wound treatment with rhCP sponges combined with cultured hASCs and human umbilical vein endothelial cells accelerated wound closure compared with wounds treated with rhCP with hASCs alone, rhCP only, and control (dressing alone), with better healing observed according to this order. These results indicating the therapeutic value of rhCP scaffolds as a topical biomaterial dressing and a biocarrier of stem cells and vascular endothelial cells for regenerating therapies. The combination of rhCP and functional cells was suggested to be a potential tool for revitalizing stem cell-depleted conditions such as radiation tissue damage.
Collapse
Affiliation(s)
- Takanobu Mashiko
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Hitomi Takada
- Stem Cell Technologies lab, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Szu-Hsien Wu
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Koji Kanayama
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Jingwei Feng
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Kensuke Tashiro
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Kazuto Hoshi
- Department of Oral Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Akira Kurisaki
- Stem Cell Technologies lab, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tsuyoshi Takato
- Department of Oral Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519439 DOI: 10.1016/j.msec.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (KD: 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles.
Collapse
|
16
|
Confalonieri D, La Marca M, van Dongen EMWM, Walles H, Ehlicke F. An Injectable Recombinant Collagen I Peptide–Based Macroporous Microcarrier Allows Superior Expansion of C2C12 and Human Bone Marrow-Derived Mesenchymal Stromal Cells and Supports Deposition of Mineralized Matrix. Tissue Eng Part A 2017; 23:946-957. [DOI: 10.1089/ten.tea.2016.0436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Davide Confalonieri
- Translational Center Wuerzburg “Regenerative Therapies in Oncology and Musculoskeletal Disease,” Wuerzburg, Germany
| | | | | | - Heike Walles
- Translational Center Wuerzburg “Regenerative Therapies in Oncology and Musculoskeletal Disease,” Wuerzburg, Germany
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Ehlicke
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Recombinant human collagen-based microspheres mitigate cardiac conduction slowing induced by adipose tissue-derived stromal cells. PLoS One 2017; 12:e0183481. [PMID: 28837600 PMCID: PMC5570323 DOI: 10.1371/journal.pone.0183481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
Background Stem cell therapy to improve cardiac function after myocardial infarction is hampered by poor cell retention, while it may also increase the risk of arrhythmias by providing an arrhythmogenic substrate. We previously showed that porcine adipose tissue-derived-stromal cells (pASC) induce conduction slowing through paracrine actions, whereas rat ASC (rASC) and human ASC (hASC) induce conduction slowing by direct coupling. We postulate that biomaterial microspheres mitigate the conduction slowing influence of pASC by interacting with paracrine signaling. Aim To investigate the modulation of ASC-loaded recombinant human collagen-based microspheres, on the electrophysiological behavior of neonatal rat ventricular myocytes (NRVM). Method Unipolar extracellular electrograms, derived from microelectrode arrays (8x8 electrodes) containing NRVM, co-cultured with ASC or ASC loaded microspheres, were used to determine conduction velocity (CV) and conduction heterogeneity. Conditioned medium (Cme) of (co)cultures was used to assess paracrine mechanisms. Results Microspheres did not affect CV in control (NRVM) monolayers. In co-cultures of NRVM and rASC, hASC or pASC, CV was lower than in controls (14.4±1.0, 13.0±0.6 and 9.0± 1.0 vs. 19.5±0.5 cm/s respectively, p<0.001). Microspheres loaded with either rASC or hASC still induced conduction slowing compared to controls (13.5±0.4 and 12.6±0.5 cm/s respectively, p<0.001). However, pASC loaded microspheres increased CV of NRVM compared to pASC and NRMV co-cultures (16.3±1.3 cm/s, p< 0.001) and did not differ from controls (p = NS). Cme of pASC reduced CV in control monolayers of NRVM (10.3±1.1 cm/s, p<0.001), similar to Cme derived from pASC-loaded microspheres (11.1±1.7 cm/s, p = 1.0). The presence of microspheres in monolayers of NRVM abolished the CV slowing influence of Cme pASC (15.9±1.0 cm/s, p = NS vs. control). Conclusion The application of recombinant human collagen-based microspheres mitigates indirect paracrine conduction slowing through interference with a secondary autocrine myocardial factor.
Collapse
|
18
|
Parvizi M, Plantinga JA, van Speuwel-Goossens CA, van Dongen EM, Kluijtmans SG, Harmsen MC. Development of recombinant collagen-peptide-based vehicles for delivery of adipose-derived stromal cells. J Biomed Mater Res A 2015; 104:503-16. [DOI: 10.1002/jbm.a.35588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Josée A. Plantinga
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | | | | | | | - Martin C. Harmsen
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
19
|
Georgi N, van Blitterswijk C, Karperien M. Mesenchymal Stromal/Stem Cell–or Chondrocyte-Seeded Microcarriers as Building Blocks for Cartilage Tissue Engineering. Tissue Eng Part A 2014; 20:2513-23. [DOI: 10.1089/ten.tea.2013.0681] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nicole Georgi
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
20
|
Wang H, Leeuwenburgh SCG, Li Y, Jansen JA. The use of micro- and nanospheres as functional components for bone tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:24-39. [PMID: 21806489 DOI: 10.1089/ten.teb.2011.0184] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last decade, the use of micro- and nanospheres as functional components for bone tissue regeneration has drawn increasing interest. Scaffolds comprising micro- and nanospheres display several advantages compared with traditional monolithic scaffolds that are related to (i) an improved control over sustained delivery of therapeutic agents, signaling biomolecules and even pluripotent stem cells, (ii) the introduction of spheres as stimulus-sensitive delivery vehicles for triggered release, (iii) the use of spheres to introduce porosity and/or improve the mechanical properties of bulk scaffolds by acting as porogen or reinforcement phase, (iv) the use of spheres as compartmentalized microreactors for dedicated biochemical processes, (v) the use of spheres as cell delivery vehicle, and, finally, (vi) the possibility of preparing injectable and/or moldable formulations to be applied by using minimally invasive surgery. This article focuses on recent developments with regard to the use of micro- and nanospheres for bone regeneration by categorizing micro-/nanospheres by material class (polymers, ceramics, and composites) as well as summarizing the main strategies that employ these spheres to improve the functionality of scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Urciuolo F, Imparato G, Palmiero C, Trilli A, Netti PA. Effect of Process Conditions on the Growth of Three-Dimensional Dermal-Equivalent Tissue Obtained by Microtissue Precursor Assembly. Tissue Eng Part C Methods 2011; 17:155-64. [DOI: 10.1089/ten.tec.2010.0355] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francesco Urciuolo
- Italian Institute of Technology (IIT), Genoa, Italy
- Institute of Composite and Biomedical Materials (IMCB), National Council Research (CNR), Naples, Italy
| | - Giorgia Imparato
- Italian Institute of Technology (IIT), Genoa, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Carmela Palmiero
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | | | - Paolo A. Netti
- Italian Institute of Technology (IIT), Genoa, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| |
Collapse
|