1
|
Zhang Y, He SY, Wang P, Gu J, Jiang Q, Liu M, Wen C. Impacts of permeability and effective diffusivity of porous scaffolds on bone ingrowth: In silico and in vivo analyses. BIOMATERIALS ADVANCES 2024; 161:213901. [PMID: 38776602 DOI: 10.1016/j.bioadv.2024.213901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The permeability and the effective diffusivity of a porous scaffold are critical in the bone-ingrowth process. However, design guidelines for porous structures are still lacking due to inadequate understanding of the complex physiological processes involved. In this study, a model integrating the fundamental biological processes of bone regeneration was constructed to investigate the roles of permeability and effective diffusivity in regulating bone deposition in scaffolds. The in silico analysis results were confirmed in vivo by examining bone depositions in three diamond lattice scaffolds manufactured using selective laser melting. The findings show that the scaffolds with better permeability and effective diffusivity had deeper bone ingrowth and greater bone volume. Compared to permeability, effective diffusivity exhibited greater sensitivity to the orientation of porous structures, and bone ingrowth was deeper in the directions with higher effective diffusivity in spite of identical pore size. A 4.8-fold increase in permeability and a 1.6-fold increase in effective diffusivity by changing the porous structure led to a 1.5-fold increase in newly formed bone. The effective diffusivity of the porous scaffold affects the distribution of osteogenic growth factor, which in turn impacts cell migration and bone deposition through chemotaxis effects. Therefore, effective diffusivity may be a more suitable indicator for porous scaffolds because our study shows changes in this parameter determine changes in bone distribution and bone volume.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 211189, China
| | - Si-Yuan He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China; Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Jiayu Gu
- Jiangsu Institute of Metrology, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China; Institute of Medical 3D Printing, Nanjing University, Nanjing, China.
| | - Mengxing Liu
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China; Wuhan Mindray Scientific Co., Ltd, Wuhan, China
| | - Cuie Wen
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
2
|
Entezari A, Wu Q, Mirkhalaf M, Lu Z, Roohani I, Li Q, Dunstan CR, Jiang X, Zreiqat H. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis. Acta Biomater 2024; 180:115-127. [PMID: 38642786 DOI: 10.1016/j.actbio.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
Bone has the capacity to regenerate itself for relatively small defects; however, this regenerative capacity is diminished in critical-size bone defects. The development of synthetic materials has risen as a distinct strategy to address this challenge. Effective synthetic materials to have emerged in recent years are bioceramic implants, which are biocompatible and highly bioactive. Yet nothing suitable for the repair of large bone defects has made the transition from laboratory to clinic. The clinical success of bioceramics has been shown to depend not only on the scaffold's intrinsic material properties but also on its internal porous geometry. This study aimed to systematically explore the implications of varying channel size, shape, and curvature in tissue scaffolds on in vivo bone regeneration outcomes. 3D printed bioceramic scaffolds with varying channel sizes (0.3 mm to 1.5 mm), shapes (circular vs rectangular), and curvatures (concave vs convex) were implanted in rabbit femoral defects for 8 weeks, followed by histological evaluation. We demonstrated that circular channel sizes of around 0.9 mm diameter significantly enhanced bone formation, compared to channel with diameters of 0.3 mm and 1.5 mm. Interestingly, varying channel shapes (rectangular vs circular) had no significant effect on the volume of newly formed bone. Furthermore, the present study systematically demonstrated the beneficial effect of concave surfaces on bone tissue growth in vivo, reinforcing previous in silico and in vitro findings. This study demonstrates that optimizing architectural configurations within ceramic scaffolds is crucial in enhancing bone regeneration outcomes. STATEMENT OF SIGNIFICANCE: Despite the explosion of work on developing synthetic scaffolds to repair bone defects, the amount of new bone formed by scaffolds in vivo remains suboptimal. Recent studies have illuminated the pivotal role of scaffolds' internal architecture in osteogenesis. However, these investigations have mostly remained confined to in silico and in vitro experiments. Among the in vivo studies conducted, there has been a lack of systematic analysis of individual architectural features. Herein, we utilized bioceramic 3D printing to conduct a systematic exploration of the effects of channel size, shape, and curvature on bone formation in vivo. Our results demonstrate the significant influence of channel size and curvature on in vivo outcomes. These findings provide invaluable insights into the design of more effective bone scaffolds.
Collapse
Affiliation(s)
- Ali Entezari
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Qianju Wu
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China; Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian, China
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Zufu Lu
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Iman Roohani
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Colin R Dunstan
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Hala Zreiqat
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Dewey MJ, Chang RSH, Nosatov AV, Janssen K, Crotts SJ, Hollister SJ, Harley BAC. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomater 2023; 172:249-259. [PMID: 37806375 PMCID: PMC10827241 DOI: 10.1016/j.actbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.
Collapse
Affiliation(s)
- Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Raul Sun Han Chang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Andrey V Nosatov
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Katherine Janssen
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Dewey MJ, Chang RSH, Nosatov AV, Janssen K, Crotts SJ, Hollister SJ, Harley BAC. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556448. [PMID: 37732275 PMCID: PMC10508746 DOI: 10.1101/2023.09.05.556448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. We are developing biomaterials for craniomaxillofacial bone defects that are often large and irregularly shaped. These require close conformal contact between implant and defect margins to aid healing. While we have identified a mineralized collagen scaffold that promotes mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, its mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients.
Collapse
|
5
|
Su Q, Qiao Y, Xiao Y, Yang S, Wu H, Li J, He X, Hu X, Yang H, Yong X. Research progress of 3D printed poly (ether ether ketone) in the reconstruction of craniomaxillofacial bone defects. Front Bioeng Biotechnol 2023; 11:1259696. [PMID: 37662437 PMCID: PMC10469012 DOI: 10.3389/fbioe.2023.1259696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
The clinical challenge of bone defects in the craniomaxillofacial region, which can lead to significant physiological dysfunction and psychological distress, persists due to the complex and unique anatomy of craniomaxillofacial bones. These critical-sized defects require the use of bone grafts or substitutes for effective reconstruction. However, current biomaterials and methods have specific limitations in meeting the clinical demands for structural reinforcement, mechanical support, exceptional biological performance, and aesthetically pleasing reconstruction of the facial structure. These drawbacks have led to a growing need for novel materials and technologies. The growing development of 3D printing can offer significant advantages to address these issues, as demonstrated by the fabrication of patient-specific bioactive constructs with controlled structural design for complex bone defects in medical applications using this technology. Poly (ether ether ketone) (PEEK), among a number of materials used, is gaining recognition as a feasible substitute for a customized structure that closely resembles natural bone. It has proven to be an excellent, conformable, and 3D-printable material with the potential to replace traditional autografts and titanium implants. However, its biological inertness poses certain limitations. Therefore, this review summarizes the distinctive features of craniomaxillofacial bones and current methods for bone reconstruction, and then focuses on the increasingly applied 3D printed PEEK constructs in this field and an update on the advanced modifications for improved mechanical properties, biological performance, and antibacterial capacity. Exploring the potential of 3D printed PEEK is expected to lead to more cost-effective, biocompatible, and personalized treatment of craniomaxillofacial bone defects in clinical applications.
Collapse
Affiliation(s)
- Qiao Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Qiao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yile Xiao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jianan Li
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinlong He
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Karaman D, Ghahramanzadeh Asl H. The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis. Med Eng Phys 2023; 118:104024. [PMID: 37536832 DOI: 10.1016/j.medengphy.2023.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Triply periodic minimal surface (TPMS) is known mathematically as a surface with mean curvature of zero and replicated in three directions infinitely. Providing the pore combination in porous structures with surface connections, they provide large surface areas. This study aims to determine the effects of the network solid and sheet solid structures in the three different TPMS architectures on bone regeneration. Evaluation is made for Diamond, Gyroid, and I-WP structures, which are widely preferred architectures in terms of mechanical strength. Scaffolds are modeled as both network solid and sheet solid unit cells with similar porosities (60%, 70%, and 80%). Flow analyses are performed with the Computational Fluid Dynamics method to determine of potential for bone cell development of scaffolds. The permeability, wall shear stress on the surfaces, and the flow velocity distribution of the scaffolds are obtained with these analyses. The permeability value of 18 scaffolds is between the permeability values determined for trabecular bone. The permeability of network solid TPMS scaffolds for the same architectures is higher than sheet solid TPMS scaffolds due to the low pressures generated. The maximum wall shear stress in scaffolds decreases as porosity increases. Since the maximum wall shear stresses occur in less than 0.1% area on the scaffold surfaces, it is more appropriate to examine distribution of these stresses on the scaffold surfaces. Sheet solid structures within TPMS are more advantageous for biomechanical environments due to their greater surface area at similar porosities, wall shear stress, and permeability values.
Collapse
Affiliation(s)
- Derya Karaman
- Department of Mechanical Engineering, Karadeniz Technical University, Trabzon, Turkey.
| | | |
Collapse
|
7
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
8
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
9
|
Galefi A, Nourany M, Hosseini S, Alipour A, Azari S, Jahanfar M, Farrokhi N, Homaeigohar S, Shahsavarani H. Enhanced osteogenesis on proantocyanidin-loaded date palm endocarp cellulosic matrices: A novel sustainable approach for guided bone regeneration. Int J Biol Macromol 2023; 242:124857. [PMID: 37187421 DOI: 10.1016/j.ijbiomac.2023.124857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mohammad Nourany
- Amirkabir University of Technology, Polymer Engineering and Color Technology, Tehran, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran.
| |
Collapse
|
10
|
Entezari A, Liu NC, Zhang Z, Fang J, Wu C, Wan B, Swain M, Li Q. Nondeterministic multiobjective optimization of 3D printed ceramic tissue scaffolds. J Mech Behav Biomed Mater 2023; 138:105580. [PMID: 36509011 DOI: 10.1016/j.jmbbm.2022.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Despite significant advances in the design optimization of bone scaffolds for enhancing their biomechanical properties, the functionality of these synthetic constructs remains suboptimal. One of the main challenges in the structural optimization of bone scaffolds is associated with the large uncertainties caused by the manufacturing process, such as variations in scaffolds' geometric features and constitutive material properties after fabrication. Unfortunately, such non-deterministic issues have not been considered in the existing optimization frameworks, thereby limiting their reliability. To address this challenge, a novel multiobjective robust optimization approach is proposed here such that the effects of uncertainties on the optimized design can be minimized. This study first conducted computational analyses of a parameterized ceramic scaffold model to determine its effective modulus, structural strength, and permeability. Then, surrogate models were constructed to formulate explicit mathematical relationships between the geometrical parameters (design variables) and mechanical and fluidic properties. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was adopted to generate the robust Pareto solutions for an optimal set of trade-offs between the competing objective functions while ensuring the effects of the noise parameters to be minimal. Note that the nondeterministic optimization of tissue scaffold presented here is the first of its kind in open literature, which is expected to shed some light on this significant topic of scaffold design and additive manufacturing in a more realistic way.
Collapse
Affiliation(s)
- Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Nai-Chun Liu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Michael Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia.
| |
Collapse
|
11
|
Yan L, Entezari A, Zhang Z, Zhong J, Liang J, Li Q, Qi J. An experimental and numerical study of the microstructural and biomechanical properties of human peripheral nerve endoneurium for the design of tissue scaffolds. Front Bioeng Biotechnol 2022; 10:1029416. [PMID: 36545684 PMCID: PMC9762494 DOI: 10.3389/fbioe.2022.1029416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Biomimetic design of scaffold architectures represents a promising strategy to enable the repair of tissue defects. Natural endoneurium extracellular matrix (eECM) exhibits a sophisticated microstructure and remarkable microenvironments conducive for guiding neurite regeneration. Therefore, the analysis of eECM is helpful to the design of bionic scaffold. Unfortunately, a fundamental lack of understanding of the microstructural characteristics and biomechanical properties of the human peripheral nerve eECM exists. In this study, we used microscopic computed tomography (micro-CT) to reconstruct a three-dimensional (3D) eECM model sourced from mixed nerves. The tensile strength and effective modulus of human fresh nerve fascicles were characterized experimentally. Permeability was calculated from a computational fluid dynamic (CFD) simulation of the 3D eECM model. Fluid flow of acellular nerve fascicles was tested experimentally to validate the permeability results obtained from CFD simulations. The key microstructural parameters, such as porosity is 35.5 ± 1.7%, tortuosity in endoneurium (X axis is 1.26 ± 0.028, Y axis is 1.26 ± 0.020 and Z axis is 1.17 ± 0.03, respectively), tortuosity in pore (X axis is 1.50 ± 0.09, Y axis is 1.44 ± 0.06 and Z axis is 1.13 ± 0.04, respectively), surface area-to-volume ratio (SAVR) is 0.165 ± 0.007 μm-1 and pore size is 11.8 ± 2.8 μm, respectively. These were characterized from the 3D eECM model and may exert different effects on the stiffness and permeability. The 3D microstructure of natural peripheral nerve eECM exhibits relatively lower permeability (3.10 m2 × 10-12 m2) than other soft tissues. These key microstructural and biomechanical parameters may play an important role in the design and fabrication of intraluminal guidance scaffolds to replace natural eECM. Our findings can aid the development of regenerative therapies and help improve scaffold design.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, Australia,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Jing Liang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia,*Correspondence: Jian Qi, ; Qing Li,
| | - Jian Qi
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China,Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou, China,*Correspondence: Jian Qi, ; Qing Li,
| |
Collapse
|
12
|
Jaber M, Poh PSP, Duda GN, Checa S. PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study. Front Bioeng Biotechnol 2022; 10:995266. [PMID: 36213070 PMCID: PMC9540363 DOI: 10.3389/fbioe.2022.995266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of large bone defects represents a major clinical challenge. 3D printed scaffolds appear as a promising strategy to support bone defect regeneration. The 3D design of such scaffolds impacts the healing path and thus defect regeneration potential. Among others, scaffold architecture has been shown to influence the healing outcome. Gyroid architecture, characterized by a zero mean surface curvature, has been discussed as a promising scaffold design for bone regeneration. However, whether gyroid scaffolds are favourable for bone regeneration in large bone defects over traditional strut-like architecture scaffolds remains unknown. Therefore, the aim of this study was to investigate whether gyroid scaffolds present advantages over more traditional strut-like scaffolds in terms of their bone regeneration potential. Validated bone defect regeneration principles were applied in an in silico modeling approach that allows to predict bone formation in defect regeneration. Towards this aim, the mechano-biological bone regeneration principles were adapted to allow simulating bone regeneration within both gyroid and strut-like scaffolds. We found that the large surface curvatures of the gyroid scaffold led to a slower tissue formation dynamic and conclusively reduced bone regeneration. The initial claim, that an overall reduced zero mean surface curvature would enhance bone formation, could not be confirmed. The here presented approach illustrates the potential of in silico tools to evaluate in pre-clinical studies scaffold designs and eventually lead to optimized architectures of 3D printed implants for bone regeneration.
Collapse
Affiliation(s)
- Mahdi Jaber
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Patrina S. P. Poh
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- *Correspondence: Sara Checa,
| |
Collapse
|
13
|
Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. Int J Mol Sci 2022; 23:ijms23147768. [PMID: 35887115 PMCID: PMC9316061 DOI: 10.3390/ijms23147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide, OP3-4, is known to stimulate bone morphogenetic protein (BMP)-2-induced bone formation, but peptides tend to aggregate and lose their bioactivity. Cholesterol-bearing pullulan (CHP) nanogel scaffold has been shown to prevent aggregation of peptides and to allow their sustained release and activity; however, the appropriate design of CHP nanogels to conduct local bone formation needs to be developed. In the present study, we investigated the osteoconductive capacity of a newly synthesized CHP nanogel, CHPA using OP3-4 and BMP-2. We also clarified the difference between perforated and nonperforated CHPA impregnated with the two signaling molecules. Thirty-six, five-week-old male BALB/c mice were used for the calvarial defect model. The mice were euthanized at 6 weeks postoperatively. A higher cortical bone mineral content and bone formation rate were observed in the perforated scaffold in comparison to the nonperforated scaffold, especially in the OP3-4/BMP-2 combination group. The degradation rate of scaffold material in the perforated OP3-4/BMP-2 combination group was lower than that in the nonperforated group. These data suggest that perforated CHPA nanogel could lead to local bone formation induced by OP3-4 and BMP–2 and clarified the appropriate degradation rate for inducing local bone formation when CHPA nanogels are designed to be perforated.
Collapse
|
14
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
15
|
Schröder M, Reseland JE, Haugen HJ. Osteoblasts in a Perfusion Flow Bioreactor-Tissue Engineered Constructs of TiO 2 Scaffolds and Cells for Improved Clinical Performance. Cells 2022; 11:1995. [PMID: 35805079 PMCID: PMC9265932 DOI: 10.3390/cells11131995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Combining biomaterial scaffolds with cells serves as a promising strategy for engineering critical size defects; however, homogenous cellular growth within large scaffolds is challenging. Mechanical stimuli can enhance bone regeneration by modulating cellular growth and differentiation. Here, we compare dynamic seeding in a perfusion flow bioreactor with static seeding for a synthetic bone scaffold for up to 21 days using the cell line MC3T3-E1 and primary human osteoblast, confocal laser scanning microscopy, and real-time reverse transcriptase-polymerase chain reaction. The secretion of bone-related proteins was quantified using multiplex immunoassays. Dynamic culture improved cellular distribution through the TiO2 scaffold and induced a five-fold increase in cell number after 21 days. The relative mRNA expression of osteopontin of MC3T3-E1 was 40-fold enhanced after 7 and 21 days at a flow rate of 0.08 mL/min, and that of collagen type I alpha I expression was 18-fold after 21 days. A flow rate of 0.16 mL/min was 10-fold less effective. Dynamic culture increased the levels of dickkopf-related protein 1 (60-fold), osteoprotegrin (29-fold), interleukin-6 (23-fold), interleukin-8 (36-fold), monocyte chemoattractant protein 1 (28-fold) and vascular endothelial growth factor (6-fold) in the medium of primary human osteoblasts after 21 days compared to static seeding. The proposed method may have clinical potential for bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, NO-0317 P.O. Box 1109 Blindern Oslo, Norway; (M.S.); (J.E.R.)
| |
Collapse
|
16
|
Lv J, Jin W, Liu W, Qin X, Feng Y, Bai J, Wu Z, Li J. Selective Laser Melting Fabrication of Porous Ti6Al4V Scaffolds With Triply Periodic Minimal Surface Architectures: Structural Features, Cytocompatibility, and Osteogenesis. Front Bioeng Biotechnol 2022; 10:899531. [PMID: 35694229 PMCID: PMC9178116 DOI: 10.3389/fbioe.2022.899531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
The relationship between pore architecture and structure performance needs to be explored, as well as confirm the optimized porous structure. Because of the linear correlation between constant C and pore architecture, triply periodic minimal surface (TPMS) based porous structures could be a controllable model for the investigation of the optimized porous structure. In the present work, three types of TPMS porous scaffolds (S, D and G) combined with four constants (0.0, 0.2, 0.4 and 0.6) were designed, and built successfully via the selective laser melting (SLM) technology. The designed feature and mechanical property of porous scaffolds were investigated through mathematical method and compression test. And the manufactured samples were co-cultured with rMSCs for the compatibility study. The results indicated that the whole manufacturing procedure was good in controllability, repeatability, and accuracy. The linear correlation between the porosity of TPMS porous scaffolds and the constant C in equations was established. The different TPMS porous scaffolds possess the disparate feature in structure, mechanical property and cell compatibility. Comprehensive consideration of the structure features, mechanical property and biology performance, different TPMS structures should be applied in appropriate field. The results could guide the feasibility of apply the different TPMS architectures into the different part of orthopedic implants.
Collapse
Affiliation(s)
- Jia Lv
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jia Lv,
| | - Wenxuan Jin
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenhao Liu
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuyu Qin
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Feng
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junjun Bai
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuangzhuang Wu
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Abstract
Ti-6Al-4V (Ti64) alloy is one of the most widely used orthopedic implant materials due to its mechanical properties, corrosion resistance, and biocompatibility nature. Porous Ti64 structures are gaining more research interest as bone implants as they can help in reducing the stress-shielding effect when compared to their solid counterpart. The literature shows that porous Ti64 implants fabricated using different additive manufacturing (AM) process routes, such as laser powder bed fusion (L-PBF) and electron beam melting (EBM) can be tailored to mimic the mechanical properties of natural bone. This review paper categorizes porous implant designs into non-gradient (uniform) and gradient (non-uniform) porous structures. Gradient porous design appears to be more promising for orthopedic applications due to its closeness towards natural bone morphology and improved mechanical properties. In addition, this paper outlines the details on bone structure and its properties, mechanical properties, fatigue behavior, multifunctional porous implant designs, current challenges, and literature gaps in the research studies on porous Ti64 bone implants.
Collapse
|
18
|
Surmenev RA, Ivanov AN, Saveleva MS, Kiriiazi TS, Fedonnikov AS, Surmeneva MA. The effect of different sizes of cross‐linked fibers of biodegradable electrospun poly(ε‐caprolactone) scaffolds on osteogenic behavior in a rat model in vivo. J Appl Polym Sci 2022. [DOI: 10.1002/app.52244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman A. Surmenev
- Research Center Physical Materials Science and Composite Materials, Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Alexey N. Ivanov
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Mariia S. Saveleva
- Remote Controlled Systems for Theranostics Laboratory, Science Medical Center Saratov State University Saratov Russian Federation
| | - Tatiana S. Kiriiazi
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Alexander S. Fedonnikov
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Maria A. Surmeneva
- Research Center Physical Materials Science and Composite Materials, Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk Russian Federation
| |
Collapse
|
19
|
Dewey MJ, Milner DJ, Weisgerber D, Flanagan CL, Rubessa M, Lotti S, Polkoff KM, Crotts S, Hollister SJ, Wheeler MB, Harley BAC. Repair of critical-size porcine craniofacial bone defects using a collagen-polycaprolactone composite biomaterial. Biofabrication 2021; 14. [PMID: 34663761 DOI: 10.1088/1758-5090/ac30d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Regenerative medicine approaches for massive craniomaxillofacial (CMF) bone defects face challenges associated with the scale of missing bone, the need for rapid graft-defect integration, and challenges related to inflammation and infection. Mineralized collagen scaffolds have been shown to promote mesenchymal stem cell osteogenesis due to their porous nature and material properties, but are mechanically weak, limiting surgical practicality. Previously, these scaffolds were combined with 3D-printed polycaprolactone (PCL) mesh to form a scaffold-mesh composite to increase strength and promote bone formation in sub-critical sized porcine ramus defects. Here, we compare the performance of mineralized collagen-PCL composites to the PCL mesh in a critical-sized porcine ramus defect model. While there were no differences in overall healing response between groups, our data demonstrated broadly variable metrics of healing regarding new bone infiltration and fibrous tissue formation. Abscesses were present surrounding some implants and PCL polymer was still present after 9-10 months of implantation. Overall, while there was limited successful healing, with 2 of 22 implants showed substantial levels of bone regeneration, and others demonstrating some form of new bone formation, the results suggest targeted improvements to improve repair of large animal models to more accurately represent CMF bone healing. Notably, strategies to increase osteogenesis throughout the implant, modulate the immune system to support repair, and employ shape-fitting tactics to avoid implant micromotion and resultant fibrosis. Improvements to the mineralized collagen scaffolds involve changes in pore size and shape to increase cell migration and osteogenesis and inclusion or delivery of factors to aid vascular ingrowth and bone regeneration.
Collapse
Affiliation(s)
- Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Daniel Weisgerber
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Colleen L Flanagan
- Department of Bioengineering, University of Michigan, Ann Arbor, MI, 30332, United States of America
| | - Marcello Rubessa
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Sammi Lotti
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Kathryn M Polkoff
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Sarah Crotts
- Center for 3D Medical Fabrication, Wallace A. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States of America
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Wallace A. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States of America
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Brendan A C Harley
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
20
|
Ruppert DS, Mohammed MM, Ibrahim MM, Bachtiar EO, Erning K, Ansari K, Everitt JI, Brown D, Klitzman B, Koshut W, Gall K, Levinson H. Poly(lactide-co-ε-caprolactone) scaffold promotes equivalent tissue integration and supports skin grafts compared to a predicate collagen scaffold. Wound Repair Regen 2021; 29:1035-1050. [PMID: 34129714 DOI: 10.1111/wrr.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
Dermal scarring from motor vehicle accidents, severe burns, military blasts, etc. is a major problem affecting over 80 million people worldwide annually, many of whom suffer from debilitating hypertrophic scar contractures. These stiff, shrunken scars limit mobility, impact quality of life, and cost millions of dollars each year in surgical treatment and physical therapy. Current tissue engineered scaffolds have mechanical properties akin to unwounded skin, but these collagen-based scaffolds rapidly degrade over 2 months, premature to dampen contracture occurring 6-12 months after injury. This study demonstrates a tissue engineered scaffold can be manufactured from a slow-degrading viscoelastic copolymer, poly(ι-lactide-co-ε-caprolactone), with physical and mechanical characteristics to promote tissue ingrowth and support skin-grafts. Copolymers were synthesized via ring-opening polymerization. Solvent casting/particulate leaching was used to manufacture 3D porous scaffolds by mixing copolymers with particles in an organic solvent followed by casting into molds and subsequent particle leaching with water. Scaffolds characterized through SEM, micro-CT, and tensile testing confirmed the required thickness, pore size, porosity, modulus, and strength for promoting skin-graft bioincorporation and dampening fibrosis in vivo. Scaffolds were Oxygen Plasma Treatment and collagen coated to encourage cellular proliferation. Porosity ranging from 70% to 90% was investigated in a subcutaneous murine model and found to have no clinical effect on tissue ingrowth. A swine full-thickness skin wound model confirmed through histology and Computer Planimetry that scaffolds promote skin-graft survival, with or without collagen coating, with equal safety and efficacy as a commercially available tissue engineered scaffold. This study validates a scalable method to create poly(ι-lactide-co-ε-caprolactone) scaffolds with appropriate characteristics and confirms in mouse and swine wound models that the scaffolds are safe and effective at supporting skin-grafts. The results of this study have brought us closer towards developing an alternative technology that supports skin grafts with the potential to investigate long-term hypertrophic scar contractures.
Collapse
Affiliation(s)
- David S Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Mahmoud M Mohammed
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Mohamed M Ibrahim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Emilio O Bachtiar
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering, Duke University, Durham, North Carolina, USA
| | - Kevin Erning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Kayvan Ansari
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Brown
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Bruce Klitzman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - William Koshut
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering, Duke University, Durham, North Carolina, USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering, Duke University, Durham, North Carolina, USA
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
21
|
Davoodi E, Montazerian H, Esmaeilizadeh R, Darabi AC, Rashidi A, Kadkhodapour J, Jahed H, Hoorfar M, Milani AS, Weiss PS, Khademhosseini A, Toyserkani E. Additively Manufactured Gradient Porous Ti-6Al-4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22110-22123. [PMID: 33945249 DOI: 10.1021/acsami.0c20751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Laser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated. High local porosity is defined at the implant/tissue interface aiming to improve the biological response. Gradually decreasing porosity from the surface to the center of the porous constructs provides mechanical strength in selective laser melted Ti-6Al-4V implants. The effect of unit cell size is studied to discover the printability limit where the specific surface area is maximized. Furthermore, mechanical studies on the unit cell topology effects suggest that the bending-dominated architectures can provide significantly enhanced strength and deformability, compared to stretching-dominated architectures. A finite element (FE) model developed also showed great predictability (within ∼13%) of the mechanical responses of implants to physical activities. Finally, in vitro biocompatibility studies were conducted for two-dimensional (2D) and three-dimensional (3D) cases. The results of the 2D in conjunction with surface roughness show favored physical cell attachment on the implant surface. Also, the results of the 3D biocompatibility study for the scaffolds incorporated with a cell-laden gelatin methacryloyl (GelMA) hydrogel show excellent viability. The design procedure proposed here provides new insights into the development of porous hip implants with simultaneous high mechanical and biological responses.
Collapse
Affiliation(s)
- Elham Davoodi
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Reza Esmaeilizadeh
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Ch Darabi
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Armin Rashidi
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Javad Kadkhodapour
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Hamid Jahed
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Brennan JR, Cornett A, Chang B, Crotts SJ, Nourmohammadi Z, Lombaert I, Hollister SJ, Zopf DA. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J Biomed Mater Res B Appl Biomater 2021; 109:394-400. [PMID: 32830908 PMCID: PMC8130560 DOI: 10.1002/jbm.b.34707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 11/11/2022]
Abstract
Auricular reconstruction is a technically demanding procedure requiring significant surgical expertise, as the current gold standard involves hand carving of the costal cartilage into an auricular framework and re-implantation of the tissue. 3D-printing presents a powerful tool that can reduce technical demands associated with the procedure. Our group compared clinical, radiological, histological, and biomechanical outcomes in single- and two-stage 3D-printed auricular tissue scaffolds in an athymic rodent model. Briefly, an external anatomic envelope of a human auricle was created using DICOM computed tomography (CT) images and modified in design to create a two-stage, lock-in-key base and elevating platform. Single- and two-stage scaffolds were 3D-printed by laser sintering poly-L-caprolactone (PCL) then implanted subcutaneously in five athymic rats each. Rats were monitored for ulcer formation, site infection, and scaffold distortion weekly, and scaffolds were explanted at 8 weeks with analysis using microCT and histologic staining. Nonlinear finite element analysis was performed to determine areas of high strain in relation to ulcer formation. Scaffolds demonstrated precise anatomic appearance and maintenance of integrity of both anterior and posterior auricular surfaces and scaffold projection, with no statistically significant differences in complications noted between the single- and two-staged implantation. While minor superficial ulcers occurred most commonly at the lateral and superior helix coincident with finite element predictions of high skin strains, evidence of robust tissue ingrowth and angiogenesis was visible grossly and histologically. This promising preclinical small animal model supports future initiatives for making clinically viable options for an ear tissue scaffold.
Collapse
Affiliation(s)
- Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Cornett
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian Chang
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zahra Nourmohammadi
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabelle Lombaert
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David A Zopf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Michigan Engineering, Ann & Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Afewerki S, Bassous N, Harb SV, Corat MAF, Maharjan S, Ruiz-Esparza GU, de Paula MMM, Webster TJ, Tim CR, Viana BC, Wang D, Wang X, Marciano FR, Lobo AO. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol 2021; 4:233. [PMID: 33608611 PMCID: PMC7896057 DOI: 10.1038/s42003-021-01758-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems. Herein, through an integrated electrospinning, plasma treatment and direct surface modification strategy, multifunctional bactericidal nanofibers were engineered showing optimal properties for hernia repair. The nanofibers displayed good bactericidal activity, low inflammatory response, good biodegradation, as well as optimal collagen-, stress fiber- and blood vessel formation and associated tissue ingrowth in vivo. The disclosed engineering strategy serves as a prominent platform for the design of other multifunctional materials for various biomedical challenges.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nicole Bassous
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Samarah Vargas Harb
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcus Alexandre F Corat
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirian M M de Paula
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Bartolomeu Cruz Viana
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Danquan Wang
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernanda Roberta Marciano
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Anderson Oliveira Lobo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil.
- Department of Chemistry, Massachusetts Institute of Technology, MIT, Cambridge, MA, USA.
| |
Collapse
|
24
|
Sahvieh S, Oryan A, Hassanajili S, Kamali A. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell Tissue Res 2021; 383:735-750. [PMID: 32924069 DOI: 10.1007/s00441-020-03284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell-loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.
Collapse
Affiliation(s)
- Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
25
|
Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020; 9:jcm9124008. [PMID: 33322447 PMCID: PMC7763147 DOI: 10.3390/jcm9124008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.
Collapse
Affiliation(s)
- Simon Raveau
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
| | - Fabienne Jordana
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
- Correspondence: ; Tel.: +33-24041-2928
| |
Collapse
|
26
|
Diez-Escudero A, Harlin H, Isaksson P, Persson C. Porous polylactic acid scaffolds for bone regeneration: A study of additively manufactured triply periodic minimal surfaces and their osteogenic potential. J Tissue Eng 2020; 11:2041731420956541. [PMID: 33224463 PMCID: PMC7656876 DOI: 10.1177/2041731420956541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Three different triply periodic minimal surfaces (TPMS) with three levels of porosity within those of cancellous bone were investigated as potential bone scaffolds. TPMS have emerged as potential designs to resemble the complex mechanical and mass transport properties of bone. Diamond, Schwarz, and Gyroid structures were 3D printed in polylactic acid, a resorbable medical grade material. The 3D printed structures were investigated for printing feasibility, and assessed by morphometric studies. Mechanical properties and permeability investigations resulted in similar values to cancellous bone. The morphometric analyses showed three different patterns of pore distribution: mono-, bi-, and multimodal pores. Subsequently, biological activity investigated with pre-osteoblastic cell lines showed no signs of cytotoxicity, and the scaffolds supported cell proliferation up to 3 weeks. Cell differentiation investigated by alkaline phosphatase showed an improvement for higher porosities and multimodal pore distributions, suggesting a higher dependency on pore distribution and size than the level of interconnectivity.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Hugo Harlin
- Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Per Isaksson
- Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
28
|
Modeling osteoinduction in titanium bone scaffold with a representative channel structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111347. [PMID: 32919693 DOI: 10.1016/j.msec.2020.111347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/12/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Optimizing scaffold architecture for perfect osteointegration depends on good understanding of bone ingrowth in the porous space of implants. This study developed an immunoregulatory agent-based model to discover the osteoinduction mechanism in porous scaffolds. Immunoreaction, macrophage polarization, and the corresponding growth factors were combined in the model, and all played critical roles in recruiting osteogenic cells that migrated into the scaffolds. Angiogenesis was also considered in this model. The bone ingrowth predicted by the model coincides with results from published in vivo experiments. Simulation results suggested that the pore architecture affected the diffusion process of chemotactic factors in the scaffolds, subsequently influencing the complex reactions of diverse cells and the osteoinduction location. In flexural pore spaces, bone formation spread from the periphery into the center of scaffolds due to larger M2 phenotype macrophage populations colonizing boundary regions and the distribution of corresponding growth factors concentration. In straight channels, osteogenic cells migrated further inward and osteoinduction initiated in deeper position as a result of the deeper distribution of osteogenic cytokines concentration field.
Collapse
|
29
|
Pan Q, Gao C, Wang Y, Wang Y, Mao C, Wang Q, Economidou SN, Douroumis D, Wen F, Tan LP, Li H. Investigation of bone reconstruction using an attenuated immunogenicity xenogenic composite scaffold fabricated by 3D printing. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110:68-81. [PMID: 32305447 PMCID: PMC7294167 DOI: 10.1016/j.actbio.2020.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Autologous grafts are the current gold standard of care for coronary artery bypass graft surgeries, but are limited by availability and plagued by high failure rates. Similarly, tissue engineering approaches to small diameter vascular grafts using naturally derived and synthetic materials fall short, largely due to inappropriate mechanical properties. Alternatively, decellularized extracellular matrix from tissue is biocompatible and has comparable strength to vessels, while poly(propylene fumarate) (PPF) has shown promising results for vascular grafts. This study investigates the integration of decellularized pericardial extracellular matrix (dECM) and PPF to create a biohybrid scaffold (dECM+PPF) suitable for use as a small diameter vascular graft. Our method to decellularize the ECM was efficient at removing DNA content and donor variability, while preserving protein composition. PPF was characterized and added to dECM, where it acted to preserve dECM against degradative effects of collagenase without disturbing the material's overall mechanics. A transport study showed that diffusion occurs across dECM+PPF without any effect from collagenase. The modulus of dECM+PPF matched that of human coronary arteries and saphenous veins. dECM+PPF demonstrated ample circumferential stress, burst pressure, and suture retention strength to survive in vivo. An in vivo study showed re-endothelialization and tissue growth. Overall, the dECM+PPF biohybrid presents a robust solution to overcome the limitations of the current methods of treatment for small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: In creating a dECM+PPF biohybrid graft, we have observed phenomena that will have a lasting impact within the scientific community. First, we found that we can reduce donor variability through decellularization, a unique use of the decellularization process. Additionally, we coupled a natural material with a synthetic polymer to capitalize on the benefits of each: the cues provided to cells and the ability to easily tune material properties, respectively. This principle can be applied to other materials in a variety of applications. Finally, we created an off-the-shelf alternative to autologous grafts with a newly developed material that has yet to be utilized in any scaffolds. Furthermore, bovine pericardium has not been investigated as a small diameter vascular graft.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jules D Allbritton-King
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Javier Navarro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Takahiro Inoue
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Narutoshi Hibino
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
31
|
Ebrahimi M, Botelho M, Lu W, Monmaturapoj N. Development of nanocomposite collagen/
HA
/
β‐TCP
scaffolds with tailored gradient porosity and permeability using vitamin E. J Biomed Mater Res A 2020; 108:2379-2394. [DOI: 10.1002/jbm.a.36990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mehdi Ebrahimi
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - Michael Botelho
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - William Lu
- Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong
| | | |
Collapse
|
32
|
Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol 2020; 8:609. [PMID: 32626698 PMCID: PMC7311579 DOI: 10.3389/fbioe.2020.00609] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
With the increasing application of orthopedic scaffolds, a dramatically increasing number of requirements for scaffolds are precise. The porous structure has been a fundamental design in the bone tissue engineering or orthopedic clinics because of its low Young's modulus, high compressive strength, and abundant cell accommodation space. The porous structure manufactured by additive manufacturing (AM) technology has controllable pore size, pore shape, and porosity. The single unit can be designed and arrayed with AM, which brings controllable pore characteristics and mechanical properties. This paper presents the current status of porous designs in AM technology. The porous structures are stated from the cellular structure and the whole structure. In the aspect of the cellular structure, non-parametric design and parametric design are discussed here according to whether the algorithm generates the structure or not. The non-parametric design comprises the diamond, the body-centered cubic, and the polyhedral structure, etc. The Voronoi, the Triply Periodic Minimal Surface, and other parametric designs are mainly discussed in parametric design. In the discussion of cellular structures, we emphasize the design, and the resulting biomechanical and biological effects caused by designs. In the aspect of the whole structure, the recent experimental researches are reviewed on uniform design, layered gradient design, and layered gradient design based on topological optimization, etc. These parts are summarized because of the development of technology and the demand for mechanics or bone growth. Finally, the challenges faced by the porous designs and prospects of porous structure in orthopedics are proposed in this paper.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Zhao H, Tang J, Zhou D, Weng Y, Qin W, Liu C, Lv S, Wang W, Zhao X. Electrospun Icariin-Loaded Core-Shell Collagen, Polycaprolactone, Hydroxyapatite Composite Scaffolds for the Repair of Rabbit Tibia Bone Defects. Int J Nanomedicine 2020; 15:3039-3056. [PMID: 32431500 PMCID: PMC7200251 DOI: 10.2147/ijn.s238800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Electrospinning is a widely used technology that can produce scaffolds with high porosity and surface area for bone regeneration. However, the small pore sizes in electrospun scaffolds constrain cell growth and tissue-ingrowth. In this study, novel drug-loading core-shell scaffolds were fabricated via electrospinning and freeze drying to facilitate the repair of tibia bone defects in rabbit models. Materials and Methods The collagen core scaffolds were freeze-dried containing icariin (ICA)-loaded chitosan microspheres. The shell scaffolds were electrospun using collagen, polycaprolactone and hydroxyapatite materials to form CPH composite scaffolds with the ones containing ICA microspheres named CPHI. The core-shell scaffolds were then cross-linked by genipin. The morphology, microstructure, physical and mechanical properties of the scaffolds were assessed. Rat marrow mesenchymal stem cells from the wistar rat were cultured with the scaffolds. The cell adhesion and proliferation were analysed. Adult rabbit models with tibial plateau defects were used to evaluate the performance of these scaffolds in repairing the bone defects over 4 to 12 weeks. Results The results reveal that the novel drug-loading core-shell scaffolds were successfully fabricated, which showed good physical and chemical properties and appropriate mechanical properties. Furthermore, excellent cells attachment was observed on the CPHI scaffolds. The results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPHI scaffolds. Conclusion These new core-shell composite scaffolds have great potential for bone tissue engineering applications and may lead to effective bone regeneration and repair.
Collapse
Affiliation(s)
- Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Junjie Tang
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Dong Zhou
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Yiping Weng
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Wen Qin
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Songwei Lv
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China
| | - Wei Wang
- Medical School, Hexi University, Zhangye 730041, People's Republic of China
| | - Xiubo Zhao
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
34
|
Jørgensen ML, Müller C, Sikkersoq M, Nadzieja M, Zhang Z, Su Y, Just J, Garm Spindler KL, Chen M. A melt-electrowritten filter for capture and culture of circulating colon cancer cells. Mater Today Bio 2020; 6:100052. [PMID: 32490373 PMCID: PMC7256632 DOI: 10.1016/j.mtbio.2020.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Metastasis is the major cause of death in cancer patients accounting for about 90% of the mortality. The detection and analysis of the hallmark of metastasis, circulating tumor cells (CTCs), have significant impact in cancer biology and clinical practice. However, the scarcity of CTCs in blood, particularly in that of colorectal cancer patients, is a serious bottleneck in the development of CTC-based precision medicine. Herein, the melt electrowriting (MEW) technology was used for reproductive fabrication of a biocompatible antibody-presenting polycaprolactone filter with tailored porous structure. It is demonstrated, for the first time, that such filter can be used not only to catch cancer cells spiked in whole blood but also to culture the cancer cells directly on site. Specifically, HT29 colon cancer cells can be captured with an efficiency of 85%, and when spiked into 4 mL of whole blood, 47% were captured on one Ø12mm filter. Furthermore, repeated capture and culture experiments have shown that as few as 20 HT29 colon cancer cells spiked into 4 mL of whole blood can be captured on the filter and within 2 weeks be expanded on site to become tumor bodies that are visible to the untrained eye. This filter allows for downstream analysis, such as flow cytometry, immunocytochemistry, Western blotting, and rt-qPCR. This technology represents a simple and cost-effective platform that potentially enables fast and efficient culture of rare CTCs from patients' blood. This provides non-invasive alternatives for solid biopsy tumor materials for treatment screening, with great potential to realize precision medicine for cancer treatment.
Collapse
Affiliation(s)
- M L Jørgensen
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - C Müller
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - M Sikkersoq
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - M Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Z Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Y Su
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - J Just
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - K-L Garm Spindler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M Chen
- Department of Engineering, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Lei T, Zhang W, Qian H, Lim PN, Thian ES, Lei P, Hu Y, Wang Z. Silicon-incorporated nanohydroxyapatite-reinforced poly(ε-caprolactone) film to enhance osteogenesis for bone tissue engineering applications. Colloids Surf B Biointerfaces 2020; 187:110714. [DOI: 10.1016/j.colsurfb.2019.110714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
|
36
|
Erickson CB, Newsom JP, Fletcher NA, Feuer ZM, Yu Y, Rodriguez‐Fontan F, Hadley Miller N, Krebs MD, Payne KA. In vivo degradation rate of alginate–chitosan hydrogels influences tissue repair following physeal injury. J Biomed Mater Res B Appl Biomater 2020; 108:2484-2494. [DOI: 10.1002/jbm.b.34580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Christopher B. Erickson
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Department of BioengineeringUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Jake P. Newsom
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Nathan A. Fletcher
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Zachary M. Feuer
- Gates Center for Regenerative MedicineUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Yangyi Yu
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | | | - Nancy Hadley Miller
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| | - Melissa D. Krebs
- Department of Chemical and Biological EngineeringColorado School of Mines Golden Colorado
| | - Karin A. Payne
- Department of OrthopedicsUniversity of Colorado Anschutz Medical Campus Aurora Colorado
- Gates Center for Regenerative MedicineUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| |
Collapse
|
37
|
Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101452] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Petisco-Ferrero S, Cardinaels R, van Breemen L. Miniaturized characterization of polymers: From synthesis to rheological and mechanical properties in 30 mg. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ebrahimi M, Botelho M, Lu W, Monmaturapoj N. Integrated approach in designing biphasic nanocomposite collagen/nBCP scaffolds with controlled porosity and permeability for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:1738-1753. [PMID: 31750983 DOI: 10.1002/jbm.b.34518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
The bone scaffold for tissue engineering should be biomimetic, particularly in simulating the porosity features of natural bony tissue including pore size, pore shape, pore distribution pattern, and porosity percentage. Control of these can impact the scaffold hydrophilicity and permeability, which in turn influence the protein adsorption, cellular functions, and vascularization process. Various methods have been investigated for control of porosity parameters; however, the field still suffers from major challenges, that is, inadequate control of porosity and hydrophilicity at different levels. In this study, we developed an integrated approach for generation and control of porosity within nanocomposite collagen/nanobiphasic calcium phosphate (collagen/nBCP) scaffold. A modified freeze-drying procedure was applied alongside a chemical foaming method exploring the ability of "Tween 20" as a potent biocompatible porogen. Several processing variables were also examined including; quenching rate (-18 and -80°C), collagen/nBCP ratio (92/8% and 85/15%), and Tween ratio (10%, 20%, and 30%). Detailed physicochemical and porosimetry analysis confirmed the ability of Tween to actively modify the scaffold permeability and pore size by increasing the range of pore size while quenching rate mostly influenced the pore shape, and collagen/nBCP ratio affected total porosity and roughness. The collagen/nBCP ratio of 92/8% treated with low Tween ratios (10% and 20%) and exposed to -80°C quenching rate displayed more favorable physicochemical behavior, significantly higher permeability, a gradient porosity, and better in vitro performances. The proposed technique in this study provides an insight into the production of customized scaffolds for various tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Ebrahimi
- Restorative Dental Sciences, Prince Philip Dental Hospital, The University of Hong Kong, Sai Ying Pun, Hong Kong
| | - Michael Botelho
- Restorative Dental Sciences, Prince Philip Dental Hospital, The University of Hong Kong, Sai Ying Pun, Hong Kong
| | - William Lu
- Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Naruporn Monmaturapoj
- National Metal and Materials Technology Center (MTEC), NSTDA, Khlong Nueng, Thailand
| |
Collapse
|
40
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
41
|
Katarivas Levy G, Ong J, Birch MA, Justin AW, Markaki AE. Albumin-Enriched Fibrin Hydrogel Embedded in Active Ferromagnetic Networks Improves Osteoblast Differentiation and Vascular Self-Organisation. Polymers (Basel) 2019; 11:polym11111743. [PMID: 31652977 PMCID: PMC6918167 DOI: 10.3390/polym11111743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Porous coatings on prosthetic implants encourage implant fixation. Enhanced fixation may be achieved using a magneto-active porous coating that can deform elastically in vivo on the application of an external magnetic field, straining in-growing bone. Such a coating, made of 444 ferritic stainless steel fibres, was previously characterised in terms of its mechanical and cellular responses. In this work, co-cultures of human osteoblasts and endothelial cells were seeded into a novel fibrin-based hydrogel embedded in a 444 ferritic stainless steel fibre network. Albumin was successfully incorporated into fibrin hydrogels improving the specific permeability and the diffusion of fluorescently tagged dextrans without affecting their Young’s modulus. The beneficial effect of albumin was demonstrated by the upregulation of osteogenic and angiogenic gene expression. Furthermore, mineralisation, extracellular matrix production, and formation of vessel-like structures were enhanced in albumin-enriched fibrin hydrogels compared to fibrin hydrogels. Collectively, the results indicate that the albumin-enriched fibrin hydrogel is a promising bio-matrix for bone tissue engineering and orthopaedic applications.
Collapse
Affiliation(s)
- Galit Katarivas Levy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - John Ong
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Alexander W Justin
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
42
|
Biodegradable nanocomposite Fe–Ag load-bearing scaffolds for bone healing. J Mech Behav Biomed Mater 2019; 98:246-254. [DOI: 10.1016/j.jmbbm.2019.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/07/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
|
43
|
Hauptmann N, Lian Q, Ludolph J, Rothe H, Hildebrand G, Liefeith K. Biomimetic Designer Scaffolds Made of D,L-Lactide- ɛ-Caprolactone Polymers by 2-Photon Polymerization. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:167-186. [PMID: 30632460 PMCID: PMC6589497 DOI: 10.1089/ten.teb.2018.0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
Abstract
IMPACT STATEMENT In tissue engineering (TE), the establishment of cell targeting materials, which mimic the conditions of the physiological extracellular matrix (ECM), seems to be a mission impossible without advanced materials and fabrication techniques. With this in mind we established a toolbox based on (D,L)-lactide-ɛ-caprolactone methacrylate (LCM) copolymers in combination with a nano-micromaskless lithography technique, the two-photon polymerization (2-PP) to mimic the hierarchical structured and complex milieu of the natural ECM. To demonstrate the versatility of this toolbox, we choose two completely different application scenarios in bone and tumor TE to show the high potential of this concept in therapeutic and diagnostic application.
Collapse
Affiliation(s)
- Nicole Hauptmann
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Qilin Lian
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Johanna Ludolph
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Holger Rothe
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Gerhard Hildebrand
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Klaus Liefeith
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| |
Collapse
|
44
|
Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. MATERIALS 2019; 12:ma12040613. [PMID: 30781670 PMCID: PMC6416605 DOI: 10.3390/ma12040613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Hybrid constructs represent substantial progress in tissue engineering (TE) towards producing implants of a clinically relevant size that recapitulate the structure and multicellular complexity of the native tissue. They are created by interlacing printed scaffolds, sacrificial materials, and cell-laden hydrogels. A suitable biomaterial is a polycaprolactone (PCL); however, due to the higher viscosity of this biopolymer, three-dimensional (3D) printing of PCL is slow, so reducing PCL print times remains a challenge. We investigated parameters, such as nozzle shape and size, carriage speed, and print temperature, to find a tradeoff that speeds up the creation of hybrid constructs of controlled porosity. We performed experiments with conical, cylindrical, and cylindrical shortened nozzles and numerical simulations to infer a more comprehensive understanding of PCL flow rate. We found that conical nozzles are advised as they exhibited the highest shear rate, which increased the flow rate. When working at a low carriage speed, conical nozzles of a small diameter tended to form-flatten filaments and became highly inefficient. However, raising the carriage speed revealed shortcomings because passing specific values created filaments with a heterogeneous diameter. Small nozzles produced scaffolds with thin strands but at long building times. Using large nozzles and a high carriage speed is recommended. Overall, we demonstrated that hybrid constructs with a clinically relevant size could be much more feasible to print when reaching a tradeoff between temperature, nozzle diameter, and speed.
Collapse
|
46
|
Entezari A, Roohani I, Li G, Dunstan CR, Rognon P, Li Q, Jiang X, Zreiqat H. Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone. Adv Healthc Mater 2019; 8:e1801353. [PMID: 30536610 DOI: 10.1002/adhm.201801353] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Indexed: 02/01/2023]
Abstract
The successful regeneration of functional bone tissue in critical-size defects remains a significant clinical challenge. To address this challenge, synthetic bone scaffolds are widely developed, but remarkably few are translated to the clinic due to poor performance in vivo. Here, it is demonstrated how architectural design of 3D printed scaffolds can improve in vivo outcomes. Ceramic scaffolds with different pore sizes and permeabilities, but with similar porosity and interconnectivity, are implanted in rabbit calvaria for 12 weeks, and then the explants are harvested for microcomputed tomography evaluation of the volume and functionality of newly formed bone. The results indicate that scaffold pores should be larger than 390 µm with an upper limit of 590 µm to enhance bone formation. It is also demonstrated that a bimodal pore topology-alternating large and small pores-enhances the volume and functionality of new bone substantially. Moreover, bone formation results indicate that stiffness of new bone is highly influenced by the scaffold's permeability in the direction concerned. This study demonstrates that manipulating pore size and permeability in a 3D printed scaffold architecture provides a useful strategy for enhancing bone regeneration outcomes.
Collapse
Affiliation(s)
- Ali Entezari
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Iman Roohani
- School of Chemistry University of New South Wales NSW 2052 Australia
| | - Guanglong Li
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
- Department of Prosthodontics Oral Bioengineering and Regenerative Medicine Lab Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Colin R. Dunstan
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Pierre Rognon
- School of Civil Engineering University of Sydney NSW 2006 Australia
| | - Qing Li
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Xinquan Jiang
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
- Department of Prosthodontics Oral Bioengineering and Regenerative Medicine Lab Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Hala Zreiqat
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| |
Collapse
|
47
|
Zopf DA, Flanagan CL, Mitsak AG, Brennan JR, Hollister SJ. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Int J Pediatr Otorhinolaryngol 2018; 114:170-174. [PMID: 30262359 PMCID: PMC6196359 DOI: 10.1016/j.ijporl.2018.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aims to determine the effect of auricular scaffold microarchitecture on chondrogenic potential in an in vivo animal model. METHODS DICOM computed tomography (CT) images of a human auricle were segmented to create an external anatomic envelope. Image-based design was used to generate 1) orthogonally interconnected spherical pores and 2) randomly interspersed pores, and each were repeated in three dimensions to fill the external auricular envelope. These auricular scaffolds were then 3D printed by laser sintering poly-l-caprolactone, seeded with primary porcine auricular chondrocytes in a hyaluronic acid/collagen hydrogel and cultured in a pro-chondrogenic medium. The auricular scaffolds were then implanted subcutaneously in rats and explanted after 4 weeks for analysis with Safranin O and Hematoxylin and Eosin staining. RESULTS Auricular constructs with two micropore architectures were rapidly manufactured with high fidelity anatomic appearance. Subcutaneous implantation of the scaffolds resulted in excellent external appearance of both anterior and posterior auricular surfaces. Analysis on explantation showed that the defined, spherical micropore architecture yielded histologic evidence of more robust chondrogenic tissue formation as demonstrated by Safranin O and Hematoxylin and Eosin staining. CONCLUSIONS Image-based computer-aided design and 3D printing offers an exciting new avenue for the tissue-engineered auricle. In early pilot work, creation of spherical micropores within the scaffold architecture appears to impart greater chondrogenicity of the bioscaffold. This advantage could be related to differences in permeability allowing greater cell migration and nutrient flow, differences in surface area allowing different cell aggregation, or a combination of both factors. The ability to design an anatomically correct scaffold that maintains its structural integrity while also promoting auricular cartilage growth represents an important step towards clinical applicability of this new technology.
Collapse
Affiliation(s)
- David A Zopf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1540 E Hospital Dr., Ann Arbor, MI, 48109, USA.
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, USA
| | - Anna G Mitsak
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, USA
| | - Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1540 E Hospital Dr., Ann Arbor, MI, 48109, USA
| | - Scott J Hollister
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Anandan D, Mary Stella S, Arunai Nambiraj N, Vijayalakshmi U, Jaiswal AK. Development of mechanically compliant 3D composite scaffolds for bone tissue engineering applications. J Biomed Mater Res A 2018; 106:3267-3274. [DOI: 10.1002/jbm.a.36525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Dhivyaa Anandan
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| | - S. Mary Stella
- School of Advanced Sciences (SAS); Vellore Institute of Technology (VIT); Vellore 632014 Tamilnadu India
| | - N. Arunai Nambiraj
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| | - U. Vijayalakshmi
- School of Advanced Sciences (SAS); Vellore Institute of Technology (VIT); Vellore 632014 Tamilnadu India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| |
Collapse
|
49
|
Zhang X, Tiainen H, Haugen HJ. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput 2018; 57:311-324. [DOI: 10.1007/s11517-018-1884-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/05/2018] [Indexed: 01/21/2023]
|
50
|
Bhattarai DP, Aguilar LE, Park CH, Kim CS. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. MEMBRANES 2018; 8:E62. [PMID: 30110968 PMCID: PMC6160934 DOI: 10.3390/membranes8030062] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering is an interdisciplinary field where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. Among many alternatives, electrospinning is a promising and versatile technique that is used to fabricate polymer fibrous scaffolds for bone tissue engineering applications. Copolymerization and polymer blending is a promising strategic way in purpose of getting synergistic and additive effect achieved from either polymer. In this review, we summarize the basic chemistry of bone, principle of electrospinning, and polymers that are used in bone tissue engineering. Particular attention will be given on biomechanical properties and biological activities of these electrospun fibers. This review will cover the fundamental basis of cell adhesion, differentiation, and proliferation of the electrospun fibers in bone tissue scaffolds. In the last section, we offer the current development and future perspectives on the use of electrospun mats in bone tissue engineering.
Collapse
Affiliation(s)
- Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal.
| | - Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| |
Collapse
|