1
|
Park KH, Truong TT, Park JH, Park Y, Kim H, Hyun SA, Shim HE, Mallick S, Park HJ, Huh KM, Kang SW. Robust and customizable spheroid culture system for regenerative medicine. Biofabrication 2024; 16:045016. [PMID: 39053497 DOI: 10.1088/1758-5090/ad6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Three-dimensional cell spheroids show promise for the reconstruction of native tissues. Herein, we report a sophisticated, uniform, and highly reproducible spheroid culture system for tissue reconstruction. A mesh-integrated culture system was designed to precisely control the uniformity and reproducibility of spheroid formation. Furthermore, we synthesized hexanoyl glycol chitosan, a material with ultralow cell adhesion properties, to further improve spheroid formation efficiency and biological function. Our results demonstrate improved biological function in various types of cells and ability to generate spheroids with complex structures composed of multiple cell types. In conclusion, our spheroid culture system offers a highly effective and widely applicable approach to generating customized spheroids with desired structural and biological features for a variety of biomedical applications.
Collapse
Affiliation(s)
- Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thuy Trang Truong
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Yujin Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejoen 34114, Republic of Korea
| | - Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sudipta Mallick
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Ferretti L, Moccia V, Centelleghe C, Venerando A, Dettin M, Sieni E, Zamuner A, Caicci F, Castagnaro M, Zappulli V, Mazzariol S. Bottlenose dolphin (Tursiops truncatus) immortalized fibroblasts on novel 3D in vitro collagen-free scaffolds. PLoS One 2024; 19:e0304992. [PMID: 38861523 PMCID: PMC11166351 DOI: 10.1371/journal.pone.0304992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Dolphins, as apex predators, can be considered relevant sentinels of the health of marine ecosystems. The creation of 3D cell models to assess in vitro cell-to-cell and cell-to-matrix interactions in environmental-mimicking conditions, is of considerable interest. However, to date the establishment of cetacean 3D culture systems has not yet been accomplished. Thus, in this study, different 3D systems of bottlenose dolphin (Tursiops truncatus) skin fibroblasts have been analyzed. Particularly, novel scaffolds based on hyaluronic acid and ionic-complementary self-assembling peptides such as RGD-EAbuK and EAbuK-IKVAV have been compared to Matrigel. Histological and fluorescent staining, electron microscopy (TEM) analyses and viability assays have been performed and RT-PCR has been used to detect extracellular matrix (ECM) components produced by cells. Results showed that Matrigel induced cells to form aggregates with lower viability and no ECM production compared to the novel scaffolds. Moreover, scaffolds allowed dispersed cells to produce a collagenous ECM containing collagen1a1, laminin B1 and elastin. The HA-EAbuK-IKVAV scaffold resulted in the most suitable 3D model in terms of cell quantity and viability. The development of this innovative approach is the first step towards the possibility to create 3D in vitro models for this protected species.
Collapse
Affiliation(s)
- Lucrezia Ferretti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Andrea Venerando
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, Italy
| | | | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
3
|
Singh A, Kumar V, Singh SK, Gupta J, Kumar M, Sarma DK, Verma V. Recent advances in bioengineered scaffold for in vitro meat production. Cell Tissue Res 2023; 391:235-247. [PMID: 36526810 PMCID: PMC9758038 DOI: 10.1007/s00441-022-03718-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In vitro meat production via stem cell technology and tissue engineering provides hypothetically elevated resource efficiency which involves the differentiation of muscle cells from pluripotent stem cells. By applying the tissue engineering technique, muscle cells are cultivated and grown onto a scaffold, resulting in the development of muscle tissue. The studies related to in vitro meat production are advancing with a seamless pace, and scientists are trying to develop various approaches to mimic the natural meat. The formulation and fabrication of biodegradable and cost-effective edible scaffold is the key to the successful development of downstream culture and meat production. Non-mammalian biopolymers such as gelatin and alginate or plant-derived proteins namely soy protein and decellularized leaves have been suggested as potential scaffold materials for in vitro meat production. Thus, this article is aimed to furnish recent updates on bioengineered scaffolds, covering their formulation, fabrication, features, and the mode of utilization.
Collapse
Affiliation(s)
- Anshuman Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Vinod Kumar
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Suraj Kumar Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Jalaj Gupta
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| |
Collapse
|
4
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Brun P, Zamuner A, Peretti A, Conti J, Messina GML, Marletta G, Dettin M. 3D Synthetic Peptide-based Architectures for the Engineering of the Enteric Nervous System. Sci Rep 2019; 9:5583. [PMID: 30944410 PMCID: PMC6447567 DOI: 10.1038/s41598-019-42071-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Damage of enteric neurons and partial or total loss of selective neuronal populations are reported in intestinal disorders including inflammatory bowel diseases and necrotizing enterocolitis. To develop three-dimensional scaffolds for enteric neurons we propose the decoration of ionic-complementary self-assembling peptide (SAP) hydrogels, namely EAK or EAbuK, with bioactive motives. Our results showed the ability of EAK in supporting neuronal cell attachment and neurite development. Therefore, EAK was covalently conjugated to: RGD, (GRGDSP)4K (fibronectin), FRHRNRKGY (h-vitronectin, named HVP), IKVAV (laminin), and type 1 Insulin-like Growth Factor (IGF-1). Chemoselective ligation was applied for the SAP conjugation with IGF-1 and the other longer sequences. Freshly isolated murine enteric neurons attached and grew on all functionalized EAK but IGF-1. Cell-cell contact was evident on hydrogels enriched with (GRGDSP)4K and HVP. Moreover (GRGDSP)4K significantly increased mRNA expression of neurotrophin-3 and nerve growth factor, two trophic factors supporting neuronal survival and differentiation, whereas IKVAV decoration specifically increased mRNA expression of acetylcholinesterase and choline acetyltransferase, genes involved in synaptic communication between cholinergic neurons. Thus, decorated hydrogels are proposed as injectable scaffolds to support in loco survival of enteric neurons, foster synaptic communication, or drive the differentiation of neuronal subtypes.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, Padova, 35121, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9, Padova, 35131, Italy
| | - Alessandro Peretti
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9, Padova, 35131, Italy
| | - Jessica Conti
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, Padova, 35121, Italy
| | - Grazia M L Messina
- Department of Chemical Sciences, University of Catania, Via A. Doria, 6, Catania, 95125, Italy
| | - Giovanni Marletta
- Department of Chemical Sciences, University of Catania, Via A. Doria, 6, Catania, 95125, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9, Padova, 35131, Italy.
| |
Collapse
|
6
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
7
|
Zamuner A, Cavo M, Scaglione S, Messina GML, Russo T, Gloria A, Marletta G, Dettin M. Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells. MATERIALS 2016; 9:ma9090727. [PMID: 28773852 PMCID: PMC5457046 DOI: 10.3390/ma9090727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 01/09/2023]
Abstract
Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate.
Collapse
Affiliation(s)
- Annj Zamuner
- Department of Industrial Engineering, University of Padua, Padua 35131, Italy.
| | - Marta Cavo
- National Research Council (CNR)-Institute of Electronics, Computer and Telecommunication Engineering, Genoa 16149, Italy.
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa 16145, Italy.
| | - Silvia Scaglione
- National Research Council (CNR)-Institute of Electronics, Computer and Telecommunication Engineering, Genoa 16149, Italy.
| | - Grazia Maria Lucia Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Catania 95125, Italy.
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials-CNR, Naples 80125, Italy.
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-CNR, Naples 80125, Italy.
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Catania 95125, Italy.
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Padua 35131, Italy.
| |
Collapse
|
8
|
Chun YW, Voyles DE, Rath R, Hofmeister LH, Boire TC, Wilcox H, Lee JH, Bellan LM, Hong CC, Sung HJ. Differential responses of induced pluripotent stem cell-derived cardiomyocytes to anisotropic strain depends on disease status. J Biomech 2015; 48:3890-6. [PMID: 26476764 DOI: 10.1016/j.jbiomech.2015.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Primary dilated cardiomyopathy (DCM) is a non-ischemic heart disease with impaired pumping function of the heart. In this study, we used human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a healthy volunteer and a primary DCM patient to investigate the impact of DCM on iPSC-CMs׳ responses to different types of anisotropic strain. A bioreactor system was established that generates cardiac-mimetic forces of 150 kPa at 5% anisotropic cyclic strain and 1 Hz frequency. After confirming cardiac induction of the iPSCs, it was determined that fibronectin was favorable to other extracellular matrix protein coatings (gelatin, laminin, vitronectin) in terms of viable cell area and density, and was therefore selected as the coating for further study. When iPSC-CMs were exposed to three strain conditions (no strain, 5% static strain, and 5% cyclic strain), the static strain elicited significant induction of sarcomere components in comparison to other strain conditions. However, this induction occurred only in iPSC-CMs from a healthy volunteer ("control iPSC-CMs"), not in iPSC-CMs from the DCM patient ("DCM iPSC-CMs"). The donor type also significantly influenced gene expressions of cell-cell and cell-matrix interaction markers in response to the strain conditions. Gene expression of connexin-43 (cell-cell interaction) had a higher fold change in healthy versus diseased iPSC-CMs under static and cyclic strain, as opposed to integrins α-5 and α-10 (cell-matrix interaction). In summary, our iPSC-CM-based study to model the effects of different strain conditions suggests that intrinsic, genetic-based differences in the cardiomyocyte responses to strain may influence disease manifestation in vivo.
Collapse
Affiliation(s)
- Young Wook Chun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - David E Voyles
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Rutwik Rath
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lucas H Hofmeister
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Henry Wilcox
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jae Han Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Leon M Bellan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Charles C Hong
- Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN 37232, USA; Research Medicine, Veterans Affairs TVHS, Nashville, TN 37212, USA.
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Division of Cardiovascular Medicine, Vanderbilt Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12:20150254. [PMID: 26109634 PMCID: PMC4528590 DOI: 10.1098/rsif.2015.0254] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Collapse
Affiliation(s)
- Marwa Tallawi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Guillaume Saint-Pierre
- Inspiralia, Materials Laboratory, C/Faraday 7, Lab 3.02, Campus de Cantoblanco, Madrid 28049, Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Mohamed MA, Hogan MK, Patel NM, Tao ZW, Gutierrez L, Birla RK. Establishing the Framework for Tissue Engineered Heart Pumps. Cardiovasc Eng Technol 2015; 6:220-9. [DOI: 10.1007/s13239-015-0211-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/08/2015] [Indexed: 12/26/2022]
|
11
|
Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, Cha HJ, Kim SY, Kim WS, Jun HW, Yoon YS. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS NANO 2014; 8:10815-25. [PMID: 25210842 PMCID: PMC4212793 DOI: 10.1021/nn504617g] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 05/25/2023]
Abstract
A significant barrier to the therapeutic use of stem cells is poor cell retention in vivo. Here, we evaluate the therapeutic potential and long-term engraftment of cardiomyocytes (CMs) derived from mouse embryonic stem cells (mESCs) encapsulated in an injectable nanomatrix gel consisting of peptide amphiphiles incorporating cell adhesive ligand Arg-Gly-Asp-Ser (PA-RGDS) in experimental myocardial infarction (MI). We cultured rat neonatal CMs in PA-RGDS for 7 days and found that more than 90% of the CMs survived. Next, we intramyocardially injected mouse CM cell line HL-1 CMs with or without PA-RGDS into uninjured hearts. Histologic examination and flow cytometry analysis of digested heart tissues showed approximately 3-fold higher engraftment in the mice that received CMs with PA-RGDS compared to those without PA-RGDS. We further investigated the therapeutic effects and long-term engraftment of mESC-CMs with PA-RGDS on MI in comparison with PBS control, CM-only, and PA-RGDS only. Echocardiography demonstrated that the CM-only and CM+PA-RGDS groups showed higher cardiac function at week 2 compared to other groups. However, from 3 weeks, higher cardiac function was maintained only in the CM+PA-RGDS group; this was sustained for 12 weeks. Confocal microscopic examination of the cardiac tissues harvested at 14 weeks demonstrated sustained engraftment and integration of mESC-CMs into host myocardium in the CM+PA-RGDS group only. This study for the first time demonstrated that PA-RGDS encapsulation can enhance survival of mESC-derived CMs and improve cardiac function post-MI. This nanomatrix gel-mediated stem cell therapy can be a promising option for treating MI.
Collapse
Affiliation(s)
- Kiwon Ban
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hun-Jun Park
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Adinarayana Andukuri
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jung Wook Hwang
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ho Jin Cha
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Sang Yoon Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Woan-Sang Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35203, United States
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|