1
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Bicer M. Revolutionizing dermatology: harnessing mesenchymal stem/stromal cells and exosomes in 3D platform for skin regeneration. Arch Dermatol Res 2024; 316:242. [PMID: 38795200 PMCID: PMC11127839 DOI: 10.1007/s00403-024-03055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Contemporary trends reveal an escalating interest in regenerative medicine-based interventions for addressing refractory skin defects. Conventional wound healing treatments, characterized by high costs and limited efficacy, necessitate a more efficient therapeutic paradigm to alleviate the economic and psychological burdens associated with chronic wounds. Mesenchymal stem/stromal cells (MSCs) constitute cell-based therapies, whereas cell-free approaches predominantly involve the utilization of MSC-derived extracellular vesicles or exosomes, both purportedly safe and effective. Exploiting the impact of MSCs by paracrine signaling, exosomes have emerged as a novel avenue capable of positively impacting wound healing and skin regeneration. MSC-exosomes confer several advantages, including the facilitation of angiogenesis, augmentation of cell proliferation, elevation of collagen production, and enhancement of tissue regenerative capacity. Despite these merits, challenges persist in clinical applications due to issues such as poor targeting and facile removal of MSC-derived exosomes from skin wounds. Addressing these concerns, a three-dimensional (3D) platform has been implemented to emend exosomes, allowing for elevated levels, and constructing more stable granules possessing distinct therapeutic capabilities. Incorporating biomaterials to encapsulate MSC-exosomes emerges as a favorable approach, concentrating doses, achieving intended therapeutic effectiveness, and ensuring continual release. While the therapeutic potential of MSC-exosomes in skin repair is broadly recognized, their application with 3D biomaterial scenarios remains underexplored. This review synthesizes the therapeutic purposes of MSCs and exosomes in 3D for the skin restoration, underscoring their promising role in diverse dermatological conditions. Further research may establish MSCs and their exosomes in 3D as a viable therapeutic option for various skin conditions.
Collapse
Affiliation(s)
- Mesude Bicer
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey.
| |
Collapse
|
3
|
Motchon YD, Sack KL, Sirry MS, Nchejane NJ, Abdalrahman T, Nagawa J, Kruger M, Pauwels E, Van Loo D, De Muynck A, Van Hoorebeke L, Davies NH, Franz T. In silico Mechanics of Stem Cells Intramyocardially Transplanted with a Biomaterial Injectate for Treatment of Myocardial Infarction. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00734-1. [PMID: 38782879 DOI: 10.1007/s13239-024-00734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Biomaterial and stem cell delivery are promising approaches to treating myocardial infarction. However, the mechanical and biochemical mechanisms underlying the therapeutic benefits require further clarification. This study aimed to assess the deformation of stem cells injected with the biomaterial into the infarcted heart. METHODS A microstructural finite element model of a mid-wall infarcted myocardial region was developed from ex vivo microcomputed tomography data of a rat heart with left ventricular infarct and intramyocardial biomaterial injectate. Nine cells were numerically seeded in the injectate of the microstructural model. The microstructural and a previously developed biventricular finite element model of the same rat heart were used to quantify the deformation of the cells during a cardiac cycle for a biomaterial elastic modulus (Einj) ranging between 4.1 and 405,900 kPa. RESULTS The transplanted cells' deformation was largest for Einj = 7.4 kPa, matching that of the cells, and decreased for an increase and decrease in Einj. The cell deformation was more sensitive to Einj changes for softer (Einj ≤ 738 kPa) than stiffer biomaterials. CONCLUSIONS Combining the microstructural and biventricular finite element models enables quantifying micromechanics of transplanted cells in the heart. The approach offers a broader scope for in silico investigations of biomaterial and cell therapies for myocardial infarction and other cardiac pathologies.
Collapse
Affiliation(s)
- Y D Motchon
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
| | - K L Sack
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
- Cardiac Rhythm Management, Medtronic Inc, Minneapolis, MN, USA
| | - M S Sirry
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
- Department of Biomedical Engineering, School of Engineering and Computing, American International University, Al Jahra, Kuwait
| | - N J Nchejane
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - T Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - J Nagawa
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - M Kruger
- Cardiovascular Research Unit, University of Cape Town, Observatory, South Africa
| | - E Pauwels
- Centre for X-ray Tomography, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - D Van Loo
- Centre for X-ray Tomography, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- XRE nv, Bollebergen 2B box 1, Ghent, 9052, Belgium
| | - A De Muynck
- Centre for X-ray Tomography, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - L Van Hoorebeke
- Centre for X-ray Tomography, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - N H Davies
- Cardiovascular Research Unit, University of Cape Town, Observatory, South Africa
| | - T Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
- Bioengineering Science Research Group, Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
5
|
Siddique AB, Shanmugasundaram A, Kim JY, Roshanzadeh A, Kim ES, Lee BK, Lee DW. The effect of topographical and mechanical stimulation on the structural and functional anisotropy of cardiomyocytes grown on a circular PDMS diaphragm. Biosens Bioelectron 2022; 204:114017. [DOI: 10.1016/j.bios.2022.114017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/22/2021] [Accepted: 01/15/2022] [Indexed: 12/29/2022]
|
6
|
Otero J, Ulldemolins A, Farré R, Almendros I. Oxygen Biosensors and Control in 3D Physiomimetic Experimental Models. Antioxidants (Basel) 2021; 10:1165. [PMID: 34439413 PMCID: PMC8388981 DOI: 10.3390/antiox10081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional cell culture is experiencing a revolution moving toward physiomimetic approaches aiming to reproduce healthy and pathological cell environments as realistically as possible. There is increasing evidence demonstrating that biophysical and biochemical factors determine cell behavior, in some cases considerably. Alongside the explosion of these novel experimental approaches, different bioengineering techniques have been developed and improved. Increased affordability and popularization of 3D bioprinting, fabrication of custom-made lab-on-a chip, development of organoids and the availability of versatile hydrogels are factors facilitating the design of tissue-specific physiomimetic in vitro models. However, lower oxygen diffusion in 3D culture is still a critical limitation in most of these studies, requiring further efforts in the field of physiology and tissue engineering and regenerative medicine. During recent years, novel advanced 3D devices are introducing integrated biosensors capable of monitoring oxygen consumption, pH and cell metabolism. These biosensors seem to be a promising solution to better control the oxygen delivery to cells and to reproduce some disease conditions involving hypoxia. This review discusses the current advances on oxygen biosensors and control in 3D physiomimetic experimental models.
Collapse
Affiliation(s)
- Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| |
Collapse
|
7
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
8
|
Tian S, Liao L, Zhou Q, Huang X, Zheng P, Guo Y, Deng T, Tian X. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol Lett 2021; 21:286. [PMID: 33732362 PMCID: PMC7905673 DOI: 10.3892/ol.2021.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin, one of the active ingredients of Curcuma longa (Jianghuang), has been reported to exert multiple bioactivities, including pro-apoptotic and anti-inflammatory activities. In recent years, curcumin has been extensively studied, and it has been revealed that curcumin inhibits the growth of numerous types of cancer. However, to the best of our knowledge, the inhibitory effects of curcumin on the activation or expansion of myeloid-derived suppressor cells (MDSCs) in liver cancer and the underlying mechanism have not yet been determined. Therefore, the present study aimed to investigate the inhibitory effect of curcumin on MDSC activity and the associated anti-neoplastic mechanism in a HepG2 ×enograft mouse model. The effect of curcumin on the viability of Huh-7, MHCC-97H and HepG2 cells in vitro was analyzed using a Cell Counting Kit-8 assay. The effects of curcumin on tumor growth, numbers of MDSCs, expression levels of proteins involved in the toll-like receptor 4 (TLR4)/NF-κB signaling pathway, levels of related inflammatory factors and angiogenesis were determined in HepG2 ×enograft model mice, which were given different doses of curcumin via intragastrical administration. The results of the present study revealed that curcumin inhibited the viability of Huh-7, MHCC-97H and HepG2 cells and the growth of HepG2 ×enograft tumors in mice. Flow cytometric analysis indicated that curcumin reduced the number of MDSCs in mouse xenograft tumors. In addition, the results demonstrated that curcumin inhibited the TLR4/NF-κB signaling pathway and the expression of inflammatory factors, including IL-6, IL-1β, prostaglandin E2 and cyclooxygenase-2, in mouse xenograft tumors. Furthermore, curcumin suppressed the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF), which are essential factors for MDSCs modulation, in tumor tissues. Additionally, curcumin was revealed to inhibit angiogenesis, which was demonstrated by the downregulation of the expression levels of vascular endothelial growth factor, CD31 and α-smooth muscle actin in western blotting, immunohistochemistry and immunofluorescence experiments. In conclusion, the findings of the present study identified a novel mechanism via which curcumin may suppress the growth of liver cancer by reducing the numbers of MDSCs and subsequently disrupting the process of angiogenesis. These conclusions were supported by the observed inactivation of the TLR4/NF-κB signaling pathway-mediated inflammatory response and the downregulation of GM-CSF and G-CSF secretion in xenograft tissues.
Collapse
Affiliation(s)
- Sha Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Liu Liao
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xiaodi Huang
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Piao Zheng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yinmei Guo
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Tianhao Deng
- Department of Oncology, The Affiliated Hospital of Hunan Institute of Chinese Medicine, Changsha, Hunan 410006, P.R. China
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
9
|
Lee J, Henderson K, Massidda MW, Armenta-Ochoa M, Im BG, Veith A, Lee BK, Kim M, Maceda P, Yoon E, Samarneh L, Wong M, Dunn AK, Kim J, Baker AB. Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nat Biomed Eng 2021; 5:89-102. [PMID: 33483713 PMCID: PMC8875880 DOI: 10.1038/s41551-020-00674-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Using endogenous mesenchymal stem cells for treating myocardial infarction and other cardiovascular conditions typically results in poor efficacy, in part owing to the heterogeneity of the harvested cells and of the patient responses. Here, by means of high-throughput screening of the combinatorial space of mechanical-strain level and of the presence of particular kinase inhibitors, we show that human mesenchymal stem cells can be mechanically and pharmacologically conditioned to enhance vascular regeneration in vivo. Mesenchymal stem cells conditioned to increase the activation of signalling pathways mediated by Smad2/3 (mothers against decapentaplegic homolog 2/3) and YAP (Yes-associated protein) expressed markers that are associated with pericytes and endothelial cells, displayed increased angiogenic activity in vitro, and enhanced the formation of vasculature in mice after subcutaneous implantation and after implantation in ischaemic hindlimbs. These effects were mediated by the crosstalk of endothelial-growth-factor receptors, transforming-growth-factor-beta receptor type 1 and vascular-endothelial-growth-factor receptor 2. Mechanical and pharmacological conditioning can significantly enhance the regenerative properties of mesenchymal stem cells.
Collapse
Affiliation(s)
- Jason Lee
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Kayla Henderson
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Miles W. Massidda
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | | | - Byung Gee Im
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Bum-Kyu Lee
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Mijeong Kim
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Pablo Maceda
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Eun Yoon
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lara Samarneh
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Mitchell Wong
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jonghwan Kim
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX,The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX,Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
| |
Collapse
|
10
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
11
|
Sun G, Liu F, Xiu C. High thoracic sympathetic block improves coronary microcirculation disturbance in rats with chronic heart failure. Microvasc Res 2019; 122:94-100. [DOI: 10.1016/j.mvr.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
|
12
|
Rodriguez ML, Beussman KM, Chun KS, Walzer MS, Yang X, Murry CE, Sniadecki NJ. Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomater Sci Eng 2019; 5:3876-3888. [PMID: 33438427 DOI: 10.1021/acsbiomaterials.8b01256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be utilized to understand the mechanisms underlying the development and progression of heart disease, as well as to develop better interventions and treatments for this disease. However, these cells are structurally and functionally immature, which undermines some of their adequacy in modeling adult heart tissue. Previous studies with immature cardiomyocytes have shown that altering substrate stiffness, cell anisotropy, and/or cell-cell contact can enhance the contractile and structural maturation of hPSC-CMs. In this study, the structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were enhanced by exposure to a downselected combination of these three maturation stimuli. First, hESC-CMs were seeded onto substrates composed of two commercial formulations of polydimethylsiloxane (PDMS), Sylgard 184 and Sylgard 527, whose stiffness ranged from 5 kPa to 101 kPa. Upon analyzing the morphological and calcium transient properties of these cells, it was concluded that a 21 kPa substrate yielded cells with the highest degree of maturation. Next, these PDMS substrates were microcontact-printed with laminin to force the cultured cells into rod-shaped geometries using line patterns that were 12, 18, or 24 μm in width. We found that cells on the 18 and 24 μm pattern widths had structural and functional properties that were superior to those on the 12 μm pattern. The hESC-CMs were then seeded onto these line-stamped surfaces at a density of 500 000 cells per 25-mm-diameter substrate, to enable the formation of cell-cell contacts at their distal ends. We discovered that this combination of culture conditions resulted in cells that were more structurally and functionally mature than those that were only exposed to one or two stimuli. Our results suggest that downselecting a combination of mechanobiological stimuli could prove to be an effective means of maturing hPSC-CMs in vitro.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Katherine S Chun
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Melissa S Walzer
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.,Department of Medicine/Cardiology, University of Washington, Seattle, Washington 98195, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Abstract
The focus of this paper is to describe the mechanism and behavior of two-dimensional in vitro cell stretch platforms, as well as discussing designs for the evaluation of mechanical properties of cells. It is extremely important to understand the cellular response to extrinsic mechanical forces as living biological system is constantly subjected to mechanical forces in vivo. In addition, this mechanistic understanding of cellular response will provide valuable information towards the design and fabrication of bioengineered tissues and organs, which are expected to replace and/or aid bodily functions. This paper will primarily focus on the development, advantages and limitations of two-dimensional cell stretch platforms.
Collapse
Affiliation(s)
- H. GHAZIZADEH
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd., Greensboro, NC 27401, USA
| | - S. ARAVAMUDHAN
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd., Greensboro, NC 27401, USA
| |
Collapse
|
14
|
Henderson K, Sligar AD, Le VP, Lee J, Baker AB. Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28945009 DOI: 10.1002/adhm.201700556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are an appealing potential therapy for vascular diseases; however, many challenges remain in their clinical translation. While the use of biochemical, pharmacological, and substrate-mediated treatments to condition MSCs has been subjected to intense investigation, there has been far less exploration of using these treatments in combination with applied mechanical force for conditioning MSCs toward vascular phenotypes. This review summarizes the current understanding of the use of applied mechanical forces to differentiate MSCs into vascular cells and enhance their therapeutic potential for cardiovascular disease. First recent work on the use of material-based mechanical cues for differentiation of MSCs into vascular and cardiovascular phenotypes is examined. Then a summary of the studies using mechanical stretch or shear stress in combination with biochemical treatments to enhance vascular phenotypes in MSCs is presented.
Collapse
Affiliation(s)
- Kayla Henderson
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Andrew D. Sligar
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Victoria P. Le
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Jason Lee
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Aaron B. Baker
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
- Institute for Cellular and Molecular Biology; University of Texas at Austin; Austin 78712 TX USA
- The Institute for Computational Engineering and Sciences; University of Texas at Austin; Austin 78712 TX USA
- Institute for Biomaterials; Drug Delivery and Regenerative Medicine; University of Texas at Austin; Austin 78712 TX USA
| |
Collapse
|
15
|
Liu Z, Hu GD, Luo XB, Yin B, Shu B, Guan JZ, Jia CY. Potential of bone marrow mesenchymal stem cells in rejuvenation of the aged skin of rats. Biomed Rep 2017; 6:279-284. [PMID: 28451386 PMCID: PMC5403304 DOI: 10.3892/br.2017.842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to evaluate the anti-aging effects of bone marrow-mesenchymal stem cells (BM-MSCs) in a D-galactose-induced skin aging rat model. Male Sprague Dawley rats were randomly divided into four groups (n=10/group) as follows: Normal control group; skin aging model group; MSC-treated group by subcutaneous multi-point injection. The skin aging model was established by a daily subcutaneous injection of 15% D-galactose (1,000 mg/kg) for 8 weeks. Rats in the MSC-treated groups were administered 3×106/ml BM-MSCs/green fluorescent protein (GFP) for 4 weeks, administered once per week. Oxidative/antioxidative parameters were evaluated, and morphological and ultrastructure analyses were performed. Rats in the model group exhibited the typical changes of aging skin. Compared with the control group, rats in the model group had significantly increased malondialdehyde (MDA) content (P<0.01), and decreased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities (P<0.05). MSC treatment markedly ameliorated aging-induced oxidative stress in the skin. Histologically, rats in the model group exhibited loosely arranged epidermal cell layers and disorganized collagen fibers. BM-MSC treatment significantly improved the histological abnormalities, which was similar to those in the control group. In addition, 7 days after the final cell transplantation, GFP-positive cells were observed by fluorescence microscopy to be distributed in the dermis. Injection of BM-MSCs significantly improved the D-galactose-induced histological abnormalities of the skin, by promoting an antioxidant response and ameliorating oxidative stress in aged skin. Thus, BM-MSCs may be beneficial in the rejuvenation of aged skin.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Burns and Plastic Surgery, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Guo-Dong Hu
- Department of Burns and Plastic Surgery, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Xiao-Bo Luo
- Department of Orthopedics, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Bin Yin
- Department of Burns and Plastic Surgery, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Bin Shu
- Department of Burns and Plastic Surgery, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Jing-Zhi Guan
- Department of Oncology, The 309th Hospital of PLA, Beijing 100091, P.R. China
| | - Chi-Yu Jia
- Department of Burns and Plastic Surgery, The 309th Hospital of PLA, Beijing 100091, P.R. China
| |
Collapse
|
16
|
D'Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107:1-14. [PMID: 27579776 DOI: 10.1016/j.biomaterials.2016.07.039] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/28/2023]
Abstract
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; DICGIM, Università di Palermo, Italy
| | - Tomo Yoshizumi
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel K Luketich
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew T Wolf
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinzhu Gu
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Richard Hoff
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Zhang S, Dong Z, Peng Z, Lu F. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose. PLoS One 2014; 9:e97573. [PMID: 24831697 PMCID: PMC4022592 DOI: 10.1371/journal.pone.0097573] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/21/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Glycation products accumulate during aging of slowly renewing tissue, including skin, and are suggested as an important mechanism underlying the skin aging process. Adipose-derived cells are widely used in the clinic to treat ischemic diseases and enhance wound healing. Interestingly, adipose-derived stem cells (ASCs) are also effective in anti-aging therapy, although the mechanism underlying their effects remains unknown. The purpose of the present study was to examine the anti-aging effect of ASCs in a D-galactose-induced aging animal model and to clarify the underlying mechanism. Materials and Methods Six-week-old nude mice were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, mice were randomized to receive subcutaneous injections of 106 green fluorescent protein (GFP)-expressing ASCs, aminoguanidine (AG) or phosphate-buffered saline (PBS). Control mice received no treatment. We examined tissue histology and determined the activity of senescence-associated molecular markers such as superoxide dismutase (SOD) and malondialdehyde (MDA). Results Transplanted ASCs were detectable for 14 days and their GFP signal disappeared at day 28 after injection. ASCs inhibited advanced glycation end product (AGE) levels in our animal model as well as increased the SOD level and decreased the MDA level, all of which act to reverse the aging phenotype in a similar way to AG, an inhibitor of AGE formation. Furthermore, ASCs released angiogenic factors in vivo such as vascular endothelial growth factor, suggesting a skin trophic effect. Conclusions These results demonstrate that ASCs may contribute to the regeneration of skin during aging. In addition, the data shows that ASCs provide a functional benefit by glycation suppression, antioxidation, and trophic effects in a mouse model of aging.
Collapse
Affiliation(s)
- Shengchang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou, Guang Dong, P. R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou, Guang Dong, P. R. China
| | - Zhangsong Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou, Guang Dong, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou, Guang Dong, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Sheehy SP, Pasqualini F, Grosberg A, Park SJ, Aratyn-Schaus Y, Parker KK. Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Reports 2014; 2:282-94. [PMID: 24672752 PMCID: PMC3964283 DOI: 10.1016/j.stemcr.2014.01.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/02/2023] Open
Abstract
Advances in stem cell manufacturing methods have made it possible to produce stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology research purposes. Although FDA-mandated quality assurance metrics address safety issues in the manufacture of stem cell-based products, no standardized guidelines currently exist for the evaluation of stem cell-derived myocyte functionality. As a result, it is unclear whether the various stem cell-derived myocyte cell lines on the market perform similarly, or whether any of them accurately recapitulate the characteristics of native cardiac myocytes. We propose a multiparametric quality assessment rubric in which genetic, structural, electrophysiological, and contractile measurements are coupled with comparison against values for these measurements that are representative of the ventricular myocyte phenotype. We demonstrated this procedure using commercially available, mass-produced murine embryonic stem cell- and induced pluripotent stem cell-derived myocytes compared with a neonatal mouse ventricular myocyte target phenotype in coupled in vitro assays.
Collapse
Affiliation(s)
- Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Francesco Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Anna Grosberg
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sung Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yvonne Aratyn-Schaus
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Shimizu-Motohashi Y, Asakura A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol 2014; 5:50. [PMID: 24600399 PMCID: PMC3927135 DOI: 10.3389/fphys.2014.00050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/27/2014] [Indexed: 11/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common hereditary muscular dystrophy caused by mutation in dystrophin, and there is no curative therapy. Dystrophin is a protein which forms the dystrophin-associated glycoprotein complex (DGC) at the sarcolemma linking the muscle cytoskeleton to the extracellular matrix. When dystrophin is absent, muscle fibers become vulnerable to mechanical stretch. In addition to this, accumulating evidence indicates DMD muscle having vascular abnormalities and that the muscles are under an ischemic condition. More recent studies demonstrate decreased vascular densities and impaired angiogenesis in the muscles of murine model of DMD. Therefore, generation of new vasculature can be considered a potentially effective strategy for DMD therapy. The pro-angiogenic approaches also seem to be pro-myogenic and could induce muscle regeneration capacity through expansion of the satellite cell juxtavascular niche in the mouse model. Here, we will focus on angiogenesis, reviewing the background, vascular endothelial growth factor (VEGF)/VEGF receptor-pathway, effect, and concerns of this strategy in DMD.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA ; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School Minneapolis, MN, USA ; Department of Neurology, University of Minnesota Medical School Minneapolis, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA ; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School Minneapolis, MN, USA ; Department of Neurology, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
20
|
Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 2013; 35:2436-45. [PMID: 24378015 DOI: 10.1016/j.biomaterials.2013.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/08/2013] [Indexed: 01/09/2023]
Abstract
Regeneration of chronic myocardial infarction (CMI) is one of the challenging issues due to its limited regeneration activity compared to acute or sub-acute stage. In this study, we examined whether combination of stem cell homing factor (SDF-1) and angiogenic peptides (Ac-SDKP) injected with biomimetic hydrogels promote regeneration of cardiac function in a CMI model. We evaluated the regeneration of chronically infarcted myocardium using injectable biomimetic hydrogels containing two therapeutic factors; stromal-derived factor-1 (SDF-1) and Ac-SDKP for stem cell homing and angiogenesis, respectively. Injection of the two therapeutic factors into the infarct region of the left ventricle showed that the biomimetic hydrogels containing two therapeutic factor exhibited significantly improved left ventricle function, increased angiogenesis, decreased infarct size and greatest wall thickness within the infarct region at 4 weeks post-treatment. From these results, it is clear that hydrogels containing two therapeutic factors showed synergistic effects on regeneration in the chronic heart failure model. In conclusion, these results suggest that combination of stem cell homing factor with angiogenic peptides recruit stem cells to the microenvironments, increase the expression of angiogenic genes, enhance the matured vessel formation and improve the cardiac function in chronic MI.
Collapse
Affiliation(s)
- Myeongjin Song
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Hwanseok Jang
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea
| | - Jaeyeon Lee
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Ji Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Sun
- Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea; Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Yongdoo Park
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea.
| |
Collapse
|
21
|
Best TM, Gharaibeh B, Huard J. Republished: Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Postgrad Med J 2013; 89:666-70. [DOI: 10.1136/postgradmedj-2012-091685rep] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Beckman SA, Chen WCW, Tang Y, Proto JD, Mlakar L, Wang B, Huard J. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2013; 33:2004-12. [PMID: 23723372 DOI: 10.1161/atvbaha.112.301166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. APPROACH AND RESULTS MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. CONCLUSIONS The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.
Collapse
Affiliation(s)
- Sarah A Beckman
- Departments of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tang X, Wen Q, Kuhlenschmidt TB, Kuhlenschmidt MS, Janmey PA, Saif TA. Attenuation of cell mechanosensitivity in colon cancer cells during in vitro metastasis. PLoS One 2012; 7:e50443. [PMID: 23226284 PMCID: PMC3511581 DOI: 10.1371/journal.pone.0050443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
Human colon carcinoma (HCT-8) cells show a stable transition from low to high metastatic state when cultured on appropriately soft substrates (21 kPa). Initially epithelial (E) in nature, the HCT-8 cells become rounded (R) after seven days of culture on soft substrate. R cells show a number of metastatic hallmarks [1]. Here, we use gradient stiffness substrates, a bio-MEMS force sensor, and Coulter counter assays to study mechanosensitivity and adhesion of E and R cells. We find that HCT-8 cells lose mechanosensitivity as they undergo E-to-R transition. HCT-8 R cells' stiffness, spread area, proliferation and migration become insensitive to substrate stiffness in contrast to their epithelial counterpart. They are softer, proliferative and migratory on all substrates. R cells show negligible cell-cell homotypic adhesion, as well as non-specific cell-substrate adhesion. Consequently they show the same spread area on all substrates in contrast to E cells. Taken together, these results indicate that R cells acquire autonomy and anchorage independence, and are thus potentially more invasive than E cells. To the best of our knowledge, this is the first report of quantitative data relating changes in cancer cell adhesion and stiffness during the expression of an in vitro metastasis-like phenotype.
Collapse
Affiliation(s)
- Xin Tang
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Qi Wen
- Departments of Physiology, Physics, and Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Theresa B. Kuhlenschmidt
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mark S. Kuhlenschmidt
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Paul A. Janmey
- Departments of Physiology, Physics, and Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taher A. Saif
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
24
|
Best TM, Gharaibeh B, Huard J. Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Br J Sports Med 2012. [PMID: 23197410 DOI: 10.1136/bjsports-2012-091685] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.
Collapse
Affiliation(s)
- Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health And Performance Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|