1
|
Hu W, Deng J, Su Z, Wang H, Lin S. Advances on T cell immunity in bone remodeling and bone regeneration. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:450-459. [PMID: 39183057 PMCID: PMC11375490 DOI: 10.3724/zdxbyxb-2023-0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Bone remodeling and bone regeneration are essential for preserving skeletal integrity and maintaining mineral homeostasis. T cells, as key members of adaptive immunity, play a pivotal role in bone remodeling and bone regeneration by producing a range of cytokines and growth factors. In the physiological state, T cells are involved in the maintenance of bone homeostasis through interactions with mesenchymal stem cells, osteoblasts, and osteoclasts. In pathological states, T cells participate in the pathological process of different types of osteoporosis through interaction with estrogen, glucocorticoids, and parathyroid hormone. During fracture healing for post-injury repair, T cells play different roles during the inflammatory hematoma phase, the bone callus formation phase and the bone remodeling phase. Targeting T cells thus emerges as a potential strategy for regulating bone homeostasis. This article reviews the research progress on related mechanisms of T cells immunity involved in bone remodeling and bone regeneration, with a view to providing a scientific basis for targeting T cells to regulate bone remodeling and bone regeneration.
Collapse
Affiliation(s)
- Wenhui Hu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China.
| | - Jinxia Deng
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Zhanpeng Su
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Haixing Wang
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hongkong 999077, China
| | - Sien Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China.
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hongkong 999077, China.
| |
Collapse
|
2
|
Xia S, Qin X, Wang J, Ren H. Advancements in the pathogenesis of hepatic osteodystrophy and the potential therapeutic of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:359. [PMID: 38087318 PMCID: PMC10717286 DOI: 10.1186/s13287-023-03605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatic osteodystrophy (HOD) is a metabolically associated bone disease mainly manifested as osteoporosis with the characteristic of bone loss induced by chronic liver disease (CLD). Due to its high incidence in CLD patients and increased risk of fracture, the research on HOD has received considerable interest. The specific pathogenesis of HOD has not been fully revealed. While it is widely believed that disturbance of hormone level, abnormal secretion of cytokines and damage of intestinal barrier caused by CLD might jointly affect the bone metabolic balance of bone formation and bone absorption. At present, the treatment of HOD is mainly to alleviate the bone loss by drug treatment, but the efficacy and safety are not satisfactory. Mesenchymal stromal cells (MSCs) are cells with multidirectional differentiation potential, cell transplantation therapy based on MSCs is an emerging therapeutic approach. This review mainly summarized the pathogenesis and treatment of HOD, reviewed the research progress of MSCs therapy and the combination of MSCs and scaffolds in the application of osteoporotic bone defects, and discussed the potential and limitations of MSCs therapy, providing theoretical basis for subsequent studies.
Collapse
Affiliation(s)
- Senzhe Xia
- Department of Oncological Surgery, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Xueqian Qin
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Wang H, Lin S, Feng L, Huang B, Lu X, Yang Z, Jiang Z, Li Y, Zhang X, Wang M, Wang B, Kong L, Pan Q, Bai S, Li Y, Yang Y, Lee WYW, Currie PD, Lin C, Jiang Y, Chen J, Tortorella MD, Li H, Li G. Low-Dose Staphylococcal Enterotoxin C2 Mutant Maintains Bone Homeostasis via Regulating Crosstalk between Bone Formation and Host T-Cell Effector Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300989. [PMID: 37552005 PMCID: PMC10558680 DOI: 10.1002/advs.202300989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Studies in recent years have highlighted an elaborate crosstalk between T cells and bone cells, suggesting that T cells may be alternative therapeutic targets for the maintenance of bone homeostasis. Here, it is reported that systemic administration of low-dose staphylococcal enterotoxin C2 (SEC2) 2M-118, a form of mutant superantigen, dramatically alleviates ovariectomy (OVX)-induced bone loss via modulating T cells. Specially, SEC2 2M-118 treatment increases trabecular bone mass significantly via promoting bone formation in OVX mice. These beneficial effects are largely diminished in T-cell-deficient nude mice and can be rescued by T-cell reconstruction. Neutralizing assays determine interferon gamma (IFN-γ) as the key factor that mediates the beneficial effects of SEC2 2M-118 on bone. Mechanistic studies demonstrate that IFN-γ stimulates Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, leading to enhanced production of nitric oxide, which further activates p38 mitogen-activated protein kinase (MAPK) and Runt-related transcription factor 2 (Runx2) signaling and promotes osteogenic differentiation. IFN-γ also directly inhibits osteoclast differentiation, but this effect is counteracted by proabsorptive factors tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) secreted from IFN-γ-stimulated macrophages. Taken together, this work provides clues for developing innovative approaches which target T cells for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Haixing Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Lu Feng
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Baozhen Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xuan Lu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Zhengmeng Yang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Zhaowei Jiang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yu‐Cong Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xiaoting Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ming Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Bin Wang
- Greater Bay Area Institute of Precision Medicine (Guangzhou)Fudan University2nd Nanjiang Rd, Nansha DistrictGuangzhou511458China
| | - Lingchi Kong
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalYishan Rd. 600Shanghai200233China
| | - Qi Pan
- Department of OrthopaedicsSouth China HospitalShenzhen UniversityShenzhen518116China
| | - Shanshan Bai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yuan Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Yongkang Yang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Peter D. Currie
- Australian Regenerative Medicine InstituteMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Changshuang Lin
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Yanfu Jiang
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Juyu Chen
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Hongyi Li
- Shenyang Xiehe Biopharmaceutical Co. Ltd.ShenyangLiaoning Province110179China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
4
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
5
|
Wang H, Sun XC, Li JH, Yin LQ, Yan YF, Ma X, Xia HF. Combining Bone Collagen Material with hUC-MSCs for Applicationto Spina Bifida in a Rabbit Model. Stem Cell Rev Rep 2023; 19:1034-1050. [PMID: 36648605 DOI: 10.1007/s12015-022-10478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/18/2023]
Abstract
Spina bifida is one of the neural tube defects, with a high incidence in human birth defects, which seriously affects the health and quality of life of patients. In the treatment of bone defects, the source of autologous bone is limited and will cause secondary damage to the patient. At the same time, since the bone tissue in animals needs to play a variety of biological functions, its complex structure cannot be replaced by a single material. The combination of mechanical materials and biological materials has become a common choice. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have the advantages of easy access, rapid proliferation, low immunogenicity, and no ethical issues. It is often used in the clinical research of tissue regeneration and repair. Therefore, in this study, we established a spina bifida model using Japanese white rabbits. This model was used to screen the best regenerative repair products for congenital spina bifida, and to evaluate the safety of regenerative repair products. The results showed that the combination of hUC-MSCs with collagen material had better regeneration effect than collagen material alone, and had no negative impact on the health of animals. This study provides a new idea for the clinical treatment of spina bifida, and also helps to speed up the research progress of regenerative repair products.
Collapse
Affiliation(s)
- Hu Wang
- Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xue-Cheng Sun
- Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China.,Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Jian-Hui Li
- Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China
| | - Li-Qiang Yin
- Yantai Zhenghai Bio-Tech Co., Ltd., Yantai, 264006, China
| | - Yu-Fang Yan
- Yantai Zhenghai Bio-Tech Co., Ltd., Yantai, 264006, China
| | - Xu Ma
- Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hong-Fei Xia
- Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
6
|
Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model. Stem Cell Rev Rep 2023; 19:133-154. [PMID: 34420159 DOI: 10.1007/s12015-021-10221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Most materials used clinically for filling severe bone defects either cannot induce bone re-generation or exhibit low bone conversion, therefore, their therapeutic effects are limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit good osteoinduction. However, the mechanism by which combining a heterogeneous bone collagen matrix with hUC-MSCs to repair the bone defects of alveolar process clefts remains unclear. METHODS A rabbit alveolar process cleft model was established by removing the bone tissue from the left maxillary bone. Forty-eight young Japanese white rabbits (JWRs) were divided into normal, control, material and MSCs groups. An equal volume of a bone collagen matrix alone or combined with hUC-MSCs was implanted in the defect. X-ray, micro-focus computerized tomography (micro-CT), blood analysis, histochemical staining and TUNEL were used to detect the newly formed bone in the defect area at 3 and 6 months after the surgery. RESULTS The bone formation rate obtained from the skull tissue in MSCs group was significantly higher than that in control group at 3 months (P < 0.01) and 6 months (P < 0.05) after the surgery. The apoptosis rate in the MSCs group was significantly higher at 3 months after the surgery (P < 0.05) and lower at 6 months after the surgery (P < 0.01) than those in the normal group. CONCLUSIONS Combining bone collagen matrix with hUC-MSCs promoted the new bone regeneration in the rabbit alveolar process cleft model through promoting osteoblasts formations and chondrocyte growth, and inducing type I collagen formation and BMP-2 generation.
Collapse
|
7
|
Rudiansyah M, El-Sehrawy AA, Ahmad I, Terefe EM, Abdelbasset WK, Bokov DO, Salazar A, Rizaev JA, Muthanna FMS, Shalaby MN. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci 2022; 306:120717. [PMID: 35792178 DOI: 10.1016/j.lfs.2022.120717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis is the loss of bone density, which is one of the main problems in developed and developing countries and is more common in the elderly. Because this disease is often not diagnosed until a bone fracture, it can become a life-threatening disease and cause hospitalization. With the increase of older people in a population, this disease's personal and social costs increase year by year and affect different communities. Most current treatments focus on pain relief and usually do not lead to bone tissue recovery and regeneration. But today, the use of stem cell therapy is recommended to treat and improve this disease recovery, which helps restore bone tissue by improving the imbalance in the osteoblast-osteoclast axis. Due to mesenchymal stromal/stem cells (MSCs) characteristics and their exosomes, these cells and vesicles are excellent sources for treating and preventing the progression and improvement of osteoporosis. Due to the ability of MSCs to differentiate into different cells and migrate to the site of injury, these cells are used in tissue regenerative medicine. Also, due to their contents, the exosomes of these cells help regenerate and treat various tissue injuries by affecting the injury site's cells. In this article, we attempted to review new studies in which MSCs and their exosomes were used to treat osteoporosis.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Amr A El-Sehrawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ermias Mergia Terefe
- School of pharmacy and Health science, United States International University, Nairobi, Kenya
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Aleli Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector of Samarkand State Medical Institute, Samarkand, Uzbekistan
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| |
Collapse
|
8
|
Ma TL, Chen JX, Ke ZR, Zhu P, Hu YH, Xie J. Targeting regulation of stem cell exosomes: Exploring novel strategies for aseptic loosening of joint prosthesis. Front Bioeng Biotechnol 2022; 10:925841. [PMID: 36032702 PMCID: PMC9399432 DOI: 10.3389/fbioe.2022.925841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Periprosthetic osteolysis is a major long-term complication of total joint replacement. A series of biological reactions caused by the interaction of wear particles at the prosthesis bone interface and surrounding bone tissue cells after artificial joint replacement are vital reasons for aseptic loosening. Disorder of bone metabolism and aseptic inflammation induced by wear particles are involved in the occurrence and development of aseptic loosening of the prosthesis. Promoting osteogenesis and angiogenesis and mediating osteoclasts and inflammation may be beneficial in preventing the aseptic loosening of the prosthesis. Current research about the prevention and treatment of aseptic loosening of the prosthesis focuses on drug, gene, and stem cell therapy and has not yet achieved satisfactory clinical efficacy or has not been used in clinical practice. Exosomes are a kind of typical extracellular vehicle. In recent years, stem cell exosomes (Exos) have been widely used to regulate bone metabolism, block inflammation, and have broad application prospects in tissue repair and cell therapy.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| |
Collapse
|
9
|
Song MK, Sun HJ, Cho SW. Conditioned medium of amniotic fluid-derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis. J Tissue Eng Regen Med 2022; 16:923-933. [PMID: 35819750 DOI: 10.1002/term.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
A cell-free approach utilizing the paracrine effects of mesenchymal stromal cells is receiving attention in regenerative medicine. In the present study, we evaluated the effects of a conditioned medium of amniotic fluid-derived stromal cells (AFSC-CM) on bone metabolism. In mice, intraperitoneal injections of AFSC-CM increased bone mass and enhanced bone turnover. The precursor populations of myeloid and mesenchymal lineages, as well as endothelial cells in bone marrow, were also augmented by AFSC-CM administration. In an in vitro culture experiment, AFSC-CM increased osteoclast differentiation of bone marrow-derived macrophages, but had no significant effect on the osteogenic differentiation of preosteoblasts. However, AFSC-CM administration dramatically accelerated the migration and tube formation of endothelial cells, and a cytokine array showed that AFSC-CM contained many angiogenic factors. These results indicate that AFSC-CM exerts a bone anabolic effect by changing the bone marrow microenvironment, including angiogenesis and precursor expansion. Therefore, ameliorating marrow angiogenesis is a potential therapeutic strategy for bone regeneration, for which AFSCs can be a good cellular source.
Collapse
Affiliation(s)
- Min-Kyoung Song
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| |
Collapse
|
10
|
Lin L, He E, Wang H, Guo W, Wu Z, Huang K, Zhao Q. Intravenous Transplantation of Human Hair Follicle-Derived Mesenchymal Stem Cells Ameliorates Trabecular Bone Loss in Osteoporotic Mice. Front Cell Dev Biol 2022; 10:814949. [PMID: 35359450 PMCID: PMC8960386 DOI: 10.3389/fcell.2022.814949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Hair follicles harbor a rich autologous stem cell pool and human hair follicle-derived mesenchymal stem cells (hHF-MSCs) have multi-lineage differentiation potential. Many sources of MSCs include hHF-MSCs have been attractive candidates for cell therapy, regenerative medicine and tissue engineering. The present study is to explore the effect of intravenous transplantation of hHF-MSCs on bone mass in osteoporotic mice and its mechanism, and provides prospects for clinical applications for the treatment of osteoporosis with hHF-MSCs. Methods: Physically pull out about 20 hairs with intact hair follicles from the occipital area of the scalp of healthy volunteers, and extract hair follicle-derived fibroblast-like cells. These cells were cultured and characterized in vitro. Intravenous injection of hHF-MSCs was performed on ovariectomy-induced and age-related osteoporotic SCID mice for osteoporosis treatment. The mice were sacrificed 7 weeks after the second injection and samples were collected. The long bones and L1 vertebrae were collected for micro-CT scan, histomorphometry and immunohistochemical analysis. Peripheral serum were collected for ELISA analysis and antibody array. Results: Hair follicle-derived fibroblast-like cells were defined as hHF-MSCs. Intravenous transplantation of hHF-MSCs can better restores trabecular bone mass in osteoporotic mice. The double calcein labeling assay, trap staining of bones and ELISA analysis in peripheral serum showed enhanced bone formation and weakened bone resorption after transplantation. Antibody array and immunohistochemical analysis showed that several cytokines including OPG, Wnt2b, Noggin, VCAM-1 and RANKL might be involved in this process. Conclusion: Human HF-MSCs transplantation can combat trabecular bone loss induced by menopause and aging in mice. And the above mechanism that hHF-MSCs transplantation inhibits bone resorption and promote bone formation is related to OPG, Wnt2b, VCAM-1, Noggin and RANKL.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| |
Collapse
|
11
|
Wei JX, Luo Y, Xu Y, Xiao JH. Osteoinductive activity of bisdemethoxycurcumin and its synergistic protective effect with human amniotic mesenchymal stem cells against ovariectomy-induced osteoporosis mouse model. Biomed Pharmacother 2022; 146:112605. [PMID: 35062070 DOI: 10.1016/j.biopha.2021.112605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a common disease characterized by skeletal fragility and microarchitectural deterioration. However, existing conventional drugs exhibit limited efficacy and can elicit severe adverse effects; moreover, and novel stem cell-based therapies have not exhibited sufficient therapeutic efficacy. Our hypothesis is that an appropriate osteogenic inducer may improve their therapeutic efficacy. In this study, we found that bisdemethoxycurcumin (BDMC) stimulates the differentiation of human amniotic mesenchymal stem cells (hAMSCs) into osteoblasts without inducing cytotoxicity. Here BDMC enhances calcium deposition in hAMSCs, while promoting the expression of early and late markers of osteoblast differentiation, including ALP, runt-related transcription factor 2, osterix, COL1-α1, osteocalcin, and osteopontin at the transcriptional and translational levels. Mechanistically, BDMC was found to activate the JAK2/STAT3 pathway; whereas AG490 (JAK2/STAT3 pathway inhibitor) inhibited BDMC functioning. Subsequently, we found that the combinatorial therapy of BDMC and hAMSC had a positive synergistic effect on osteoporotic mouse model induced by bilateral ovariectomy, including inhibiting bone loss and bone resorption and improving bone micro-architecture. Moreover, BDMC inhibited production of the bone resorption markers C-terminal telopeptide of type I collagen, and tartrate resistant acid phosphatase, while promoting serum levels of bone formation markers OCN, and procollagen I N-terminal propeptide. BDMC also improved liver and kidney function in osteoporotic mouse model. Collectively, BDMC improved osteoporosis by enhancing hAMSC osteogenesis and exhibited a protective effect on liver and kidney function in an osteoporotic mouse model. Hence, BDMC may serve as an effective adjuvant, and combined therapy with hAMSCs is a promising new approach toward osteoporosis treatment.
Collapse
Affiliation(s)
- Jin-Xing Wei
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| |
Collapse
|
12
|
Ueno M, Zhang N, Hirata H, Barati D, Utsunomiya T, Shen H, Lin T, Maruyama M, Huang E, Yao Z, Wu JY, Zwingenberger S, Yang F, Goodman SB. Sex Differences in Mesenchymal Stem Cell Therapy With Gelatin-Based Microribbon Hydrogels in a Murine Long Bone Critical-Size Defect Model. Front Bioeng Biotechnol 2021; 9:755964. [PMID: 34738008 PMCID: PMC8560789 DOI: 10.3389/fbioe.2021.755964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy and novel biomaterials are promising strategies for healing of long bone critical size defects. Interleukin-4 (IL-4) over-expressing MSCs within a gelatin microribbon (µRB) scaffold was previously shown to enhance the bridging of bone within a critical size femoral bone defect in male Balb/c mice. Whether sex differences affect the healing of this bone defect in conjunction with different treatments is unknown. In this study, we generated 2-mm critical-sized femoral diaphyseal bone defects in 10–12-week-old female and male Balb/c mice. Scaffolds without cells and with unmodified MSCs were implanted immediately after the primary surgery that created the bone defect; scaffolds with IL-4 over-expressing MSCs were implanted 3 days after the primary surgery, to avoid the adverse effects of IL-4 on the initial inflammatory phase of fracture healing. Mice were euthanized 6 weeks after the primary surgery and femurs were collected. MicroCT (µCT), histochemical and immunohistochemical analyses were subsequently performed of the defect site. µRB scaffolds with IL-4 over-expressing MSCs enhanced bone healing in both female and male mice. Male mice showed higher measures of bone bridging and increased alkaline phosphatase (ALP) positive areas, total macrophages and M2 macrophages compared with female mice after receiving scaffolds with IL-4 over-expressing MSCs. Female mice showed higher Tartrate-Resistant Acid Phosphatase (TRAP) positive osteoclast numbers compared with male mice. These results demonstrated that sex differences should be considered during the application of MSC-based studies of bone healing.
Collapse
Affiliation(s)
- Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Danial Barati
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Joy Y Wu
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:377. [PMID: 34215342 PMCID: PMC8254211 DOI: 10.1186/s13287-021-02456-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). Conclusion This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical experiments. These results provided important information for the systemic application of MSCs as a potential application of bone formation in further animal experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02456-w.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
14
|
Hamed GM, Nassef NA, Mansour RSAE, Shawky MKE, Zeid AAA, Hassan AA. The Effect of Early Application of a Combined Therapy of Bone Marrow Mesenchymal Stem Cells and Platelet-Rich Plasma on Blood and Bone Parameters in Ovariectomized Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chung MJ, Son JY, Park S, Park SS, Hur K, Lee SH, Lee EJ, Park JK, Hong IH, Kim TH, Jeong KS. Mesenchymal Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int J Stem Cells 2021; 14:150-167. [PMID: 33377459 PMCID: PMC8138662 DOI: 10.15283/ijsc20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.
Collapse
Affiliation(s)
- Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Soon-Seok Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Keun Hur
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Tae-Hwan Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
16
|
Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells 2020; 12:1511-1528. [PMID: 33505598 PMCID: PMC7789129 DOI: 10.4252/wjsc.v12.i12.1511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.
Collapse
Affiliation(s)
- Soyoun Um
- Research Team for Immune Cell Therapy, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Jueun Ha
- Research Team for Osteoarthritis, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| |
Collapse
|
17
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J, Jin Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 2020; 6:666-683. [PMID: 33005830 PMCID: PMC7509590 DOI: 10.1016/j.bioactmat.2020.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
Reconstruction of bone defects, especially the critical-sized defects, with mechanical integrity to the skeleton is important for a patient's rehabilitation, however, it still remains challenge. Utilizing biomaterials of human origin bone tissue for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural bone tissue with regard to its properties. However, not only efficacious and safe but also cost-effective and convenient are important for regenerative biomaterials to achieve clinical translation and commercial success. Advances in our understanding of regenerative biomaterials and their roles in new bone formation potentially opened a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multicomponent construction of native extracellular matrix (ECM) for cell accommodation, the ECM-mimicking biomaterials and the naturally decellularized ECM scaffolds were used to create new tissues for bone restoration. On the other hand, with the going deep in understanding of mesenchymal stem cells (MSCs), they have shown great promise to jumpstart and facilitate bone healing even in diseased microenvironments with pharmacology-based endogenous MSCs rescue/mobilization, systemic/local infusion of MSCs for cytotherapy, biomaterials-based approaches, cell-sheets/-aggregates technology and usage of subcellular vesicles of MSCs to achieve scaffolds-free or cell-free delivery system, all of them have been shown can improve MSCs-mediated regeneration in preclinical studies and several clinical trials. Here, following an overview discussed autogenous/allogenic and ECM-based bone biomaterials for reconstructive surgery and applications of MSCs-mediated bone healing and tissue engineering to further offer principles and effective strategies to optimize MSCs-based bone regeneration. Focusing on MSCs based bone regeneration. Discussed cytotherapy, cell-free therapies and cell-aggregates technology in detail. Stating the approaches of MSCs in diseased microenvironments.
Collapse
Affiliation(s)
- Fengqing Shang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Stomatology, The 306th Hospital of PLA, Beijing, 100101, China
| | - Yang Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongjie Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, 850000, China
| | - Jiayu Zhao
- Bureau of Service for Veteran Cadres of PLA in Beijing, Beijing, 100001, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
19
|
Alatyyat SM, Alasmari HM, Aleid OA, Abdel-Maksoud MS, Elsherbiny N. Umbilical cord stem cells: Background, processing and applications. Tissue Cell 2020; 65:101351. [PMID: 32746993 DOI: 10.1016/j.tice.2020.101351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
Stem cells have currently gained attention in the field of medicine not only due to their ability to repair dysfunctional or damaged cells, but also they could be used as drug delivery system after being engineered to do so. Human umbilical cord is attractive source for autologous and allogenic stem cells that are currently amenable to treatment of various diseases. Human umbilical cord stem cells are -in contrast to embryonic and fetal stem cells- ethically noncontroversial, inexpensive and readily available source of cells. Umbilical cord, umbilical cord vein, amnion/placenta and Wharton's jelly are all rich of many types of multipotent stem cell populations capable of forming many different cell types. This review will focus on umbilical cord stem cells processing and current application in medicine.
Collapse
Affiliation(s)
- Shumukh M Alatyyat
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Houton M Alasmari
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omamah A Aleid
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
20
|
Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21051653. [PMID: 32121265 PMCID: PMC7084428 DOI: 10.3390/ijms21051653] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.
Collapse
|
21
|
Hu Y, Zhang Y, Ni CY, Chen CY, Rao SS, Yin H, Huang J, Tan YJ, Wang ZX, Cao J, Liu ZZ, Xie PL, Wu B, Luo J, Xie H. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Am J Cancer Res 2020; 10:2293-2308. [PMID: 32089743 PMCID: PMC7019162 DOI: 10.7150/thno.39238] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis and osteoporotic fractures severely compromise quality of life in elderly people and lead to early death. Human umbilical cord mesenchymal stromal cell (MSC)-derived extracellular vesicles (hucMSC-EVs) possess considerable therapeutic effects in tissue repair and regeneration. Thus, in the present study, we investigated the effects of hucMSC-EVs on primary and secondary osteoporosis and explored the underlying mechanisms. Methods: hucMSCs were isolated and cultured. EVs were obtained from the conditioned medium of hucMSCs and determined by using transmission electron microscopy, dynamic light scattering and Western Blot analyses. The effects of hucMSC-EVs on ovariectomy-induced postmenopausal osteoporosis and tail suspension-induced hindlimb disuse osteoporosis in mouse models were assessed by using microcomputed tomography, biomechanical, histochemical and immunohistochemical, as well as histomorphometric analyses. Proteomic analysis was applied between hucMSC-EVs and hucMSCs to screen the candidate proteins that mediate hucMSC-EVs function. The effects of hucMSC-EVs on osteogenic and adipogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs), and osteoclastogenesis of the macrophage cell line RAW264.7 in vitro were determined by using cytochemical staining and quantitative real-time PCR analysis. Subsequently, the roles of the key protein in hucMSC-EVs-induced regulation on BMSCs and RAW264.7 cells were evaluated. Results: hucMSCs were able to differentiate into osteoblasts, adipocytes or chondrocytes and positively expressed CD29, CD44, CD73 and CD90, but negatively expressed CD34 and CD45. The morphological assessment revealed the typical cup- or sphere-shaped morphology of hucMSC-EVs with diameters predominantly ranging from 60 nm to 150 nm and expressed CD9, CD63, CD81 and TSG101. The systemic administration of hucMSC-EVs prevented bone loss and maintained bone strength in osteoporotic mice by enhancing bone formation, reducing marrow fat accumulation and decreasing bone resorption. Proteomic analysis showed that the potently pro-osteogenic protein, CLEC11A (C-type lectin domain family 11, member A) was very highly enriched in hucMSC-EVs. In addition, hucMSC-EVs enhanced the shift from adipogenic to osteogenic differentiation of BMSCs via delivering CLEC11A in vitro. Moreover, CLEC11A was required for the inhibitory effects of hucMSC-EVs on osteoclast formation. Conclusion: Our results suggest that hucMSC-EVs serve as a critical regulator of bone metabolism by transferring CLEC11A and may represent a potential agent for prevention and treatment of osteoporosis.
Collapse
|
22
|
Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma 2019; 10:S32-S36. [PMID: 31695257 PMCID: PMC6823697 DOI: 10.1016/j.jcot.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoporotic fracture treatment has become a skeletal reconstructive challenge due to accelerated bone turnover and impaired bone regeneration potential. Poor osseointegration ability of the osteoporotic bone usually results in implant pull out and failure. Adoption of conventional bone fracture treatment strategies like autografts and allografts have limited applications in such pathological conditions. Hence biomaterials functionalised with therapeutic ions or drugs may be adopted to aid the delivery of therapeutic factors at the defect site to promote bone healing and implant integration, towards functional restoration of the fractured bone. This concise review narrates on improving the osseointegration ability of biomaterials using functional ions like Silica and Strontium. Silica based bone substitutes are known to promote bone healing in non pathological conditions. Further, Strontium based drugs show significant effects in the prevention and treatment of osteoporotic bones. In addition, stem cell therapy has become the focus of orthopaedic research attributed to its ability to restore and accelerate the bone healing process, but the clinical application of stem cells in osteoporotic condition is scarce. Present review suggests a novel strategy of combining the therapeutic potential of functional ions like Silica, Strontium and stem cells within a single implant unit to facilitate osseointegration and osteogenesis, so as to reduce the chances of implant rejection/pull out and encourage osteoporotic bone re-union.
Collapse
|
23
|
Kou J, Zheng X, Guo J, Liu Y, Liu X. MicroRNA‐218‐5p relieves postmenopausal osteoporosis through promoting the osteoblast differentiation of bone marrow mesenchymal stem cells. J Cell Biochem 2019; 121:1216-1226. [PMID: 31478244 DOI: 10.1002/jcb.29355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianqiang Kou
- Department of Spinal Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Xiujun Zheng
- Department of Spinal Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Jianwei Guo
- Department of Spinal Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Yang Liu
- Department of Spinal Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Xiangyun Liu
- Department of Spinal Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong China
| |
Collapse
|
24
|
Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 2019; 35:557-566. [DOI: 10.1007/s10103-019-02848-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
|
25
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
26
|
Hu Y, Xu R, Chen CY, Rao SS, Xia K, Huang J, Yin H, Wang ZX, Cao J, Liu ZZ, Tan YJ, Luo J, Xie H. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism 2019; 95:93-101. [PMID: 30668962 DOI: 10.1016/j.metabol.2019.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Senile osteoporosis is one of the most common age-related diseases worldwide. Accumulating evidences have indicated that young blood can reverse age-related impairments. Extracellular vesicles (EVs) exert therapeutic effects in a variety of diseases by delivering bioactive molecules such as microRNAs (miRNAs). The aim of the study is to evaluate the therapeutic potential of EVs from human umbilical cord blood plasma (UCB-EVs) on senile osteoporosis and to preliminarily clarify the underlying mechanism. METHODS UCB-EVs were injected into the tail vein of aged (16 months old) male C57BL/6 mice. Microcomputed tomography was performed to evaluate bone mass and microarchitecture of mice. The osteogenic and osteoclastic activities were determined by quantitative real-time PCR (qRT-PCR), histological examination and western blot analysis. In vitro, qRT-PCR assay was undertaken to explore the enrichment levels of a number of miRNAs that have positive effects in reducing bone loss. The efficacy of UCB-EVs on osteoblastic differentiation of bone marrow mesenchymal stromal cells (BMSCs) and osteoclastogenesis of RAW264.7 cells were assessed by cytochemical staining. Gene and protein expression changes were detected by qRT-PCR and western blotting respectively. Meanwhile, the roles of the selected miRNA in the regulatory effects of UCB-EVs on BMSCs and RAW264.7 cells were evaluated by using specific miRNA inhibitor. RESULTS The intravenous injection of UCB-EVs for two months attenuated bone loss in old mice, as defined by increased trabecular and cortical bone mass, enhanced osteoblast formation and reduced osteoclast formation compared to the control mice. In vitro, UCB-EVs could promote the osteogenic differentiation of BMSCs and inhibit the osteoclastogenesis of RAW264.7 cells. Moreover, it was confirmed that miR-3960 was highly enriched in UCB-EVs and miR-3960 inhibitor reversed the stimulatory effect of UCB-EVs on osteoblastic differentiation of BMSCs. CONCLUSION Our findings indicate that UCB-EVs ameliorate age-related bone loss by stimulating bone formation and inhibiting bone resorption, and miR-3960 mediated the osteogenic effect of UCB-EVs on BMSCs. Thus, UCB-EVs may represent a promising agent for prevention of senile osteoporosis.
Collapse
Affiliation(s)
- Yin Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chun-Yuan Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Kun Xia
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hao Yin
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juan Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
27
|
Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, Kaito T. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int J Mol Sci 2019; 20:E2557. [PMID: 31137666 PMCID: PMC6567245 DOI: 10.3390/ijms20102557] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is an unavoidable public health problem in an aging or aged society. Anti-resorptive agents (calcitonin, estrogen, and selective estrogen-receptor modulators, bisphosphonates, anti-receptor activator of nuclear factor κB ligand antibody along with calcium and vitamin D supplementations) and anabolic agents (parathyroid hormone and related peptide analogs, sclerostin inhibitors) have major roles in current treatment regimens and are used alone or in combination based on the pathological condition. Recent advancements in the molecular understanding of bone metabolism and in bioengineering will open the door to future treatment paradigms for osteoporosis, including antibody agents, stem cells, and gene therapies. This review provides an overview of the molecular mechanisms, clinical evidence, and potential adverse effects of drugs that are currently used or under development for the treatment of osteoporosis to aid clinicians in deciding how to select the best treatment option.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Joe Kodama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery. Exp Mol Med 2018; 50:1-14. [PMID: 30559383 PMCID: PMC6297134 DOI: 10.1038/s12276-018-0192-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the CD3+T-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.
Collapse
|
29
|
Aghebati‐Maleki L, Dolati S, Zandi R, Fotouhi A, Ahmadi M, Aghebati A, Nouri M, Kazem Shakouri S, Yousefi M. Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. J Cell Physiol 2018; 234:8570-8578. [DOI: 10.1002/jcp.27833] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Leili Aghebati‐Maleki
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Zandi
- Department of Orthopedic Surgery Faculty of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery Faculty of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Majid Ahmadi
- Department of Reproductive Biology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Aghebati
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
30
|
Hong B, Lee S, Shin N, Ko Y, Kim D, Lee J, Lee W. Bone regeneration with umbilical cord blood mesenchymal stem cells in femoral defects of ovariectomized rats. Osteoporos Sarcopenia 2018; 4:95-101. [PMID: 30775550 PMCID: PMC6362973 DOI: 10.1016/j.afos.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/04/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Current treatments for osteoporosis were prevention of progression, yet it has been questionable in the stimulation of bone growth. The mesenchymal stem cells (MSCs) treatment for osteoporosis aims to induce differentiation of bone progenitor cells into bone-forming osteoblasts. We investigate whether human umbilical cord blood (hUCB)-MSCs transplantation may induce bone regeneration for osteoporotic rat model induced by ovariectomy. METHODS The ovariectomized (OVX) group (n = 10) and OVX-MSCs group (n = 10) underwent bilateral ovariectomy to induce osteoporosis, while the Sham group (n = 10) underwent sham operation at aged 12 weeks. After a femoral defect was made at 9 months, Sham group and OVX group were injected with Hartmann solution, while the OVX-MSCs group was injected with Hartmann solution containing 1 × 107 hUCB-MSCs. The volume of regenerated bone was evaluated using micro-computed tomography at 4 and 8 weeks postoperation. RESULTS At 4- and 8-week postoperation, the OVX group (5.0% ± 1.5%; 6.1% ± 0.7%) had a significantly lower regenerated bone volume than the Sham group (8.6% ± 1.3%; 12.0% ± 1.8%, P < 0.01), respectively. However, there was no significant difference between the OVX-MSCs and Sham groups. The OVX-MSCs group resulted in about 53% and 65% significantly higher new bone formation than the OVX group (7.7% ± 1.9%; 10.0% ± 2.9%, P < 0.05). CONCLUSIONS hUCB-MSCs in bone defects may enhance bone regeneration in osteoporotic rat model similar to nonosteoporotic bone regeneration. hUCB-MSCs may be a promising alternative stem cell therapy for osteoporosis.
Collapse
Affiliation(s)
- Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Sunyeul Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Nara Shin
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Youngkwon Ko
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - DongWoon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jun Lee
- Department of Orofascial Surgery, Wonkwang Dental Hospital, Daejeon, Korea
| | - Wonhyung Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
31
|
Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:52-64. [PMID: 29752119 DOI: 10.1016/j.msec.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 01/12/2023]
Abstract
Patients with compromised bone conditions still suffer the problem of deficient osseointegration during dental implant treatment. Developing mesenchymal stem cell (MSC) sheet functionalized titanium implant with proper inductive cue to promote osteogenesis and angiogenesis coupling shall be a good solution. In the present study, the antimiR-138 delivered MSC sheet is used to functionalize the Ti implant. The cell sheet can well integrate with the Ti implant to form the MSC sheet-implant complex (MSIC). The antimiR-138 delivered MSIC shows greatly improved osteogenesis and angiogenesis coupling both in vitro and in vivo. In vitro, the antimiR-138 delivered MSIC significantly promotes the expression of endogenous osteogenesis and angiogenesis related genes and proteins, alkaline phosphatase activity, extracellular matrix mineralization and collagen secretion compared to the antimiR-control and the nothing delivered control. The in vivo ectopic implantation assay uncovers the robust vascularized bone formation of the antimiR-138 delivered MSIC. The antimiR-138 delivered MSIC with promoted osteogenesis and angiogenesis coupling is anticipated to lead to rigid osseointegration in the compromised bone conditions.
Collapse
|
32
|
Saito A, Nagaishi K, Iba K, Mizue Y, Chikenji T, Otani M, Nakano M, Oyama K, Yamashita T, Fujimiya M. Umbilical cord extracts improve osteoporotic abnormalities of bone marrow-derived mesenchymal stem cells and promote their therapeutic effects on ovariectomised rats. Sci Rep 2018; 8:1161. [PMID: 29348535 PMCID: PMC5773568 DOI: 10.1038/s41598-018-19516-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the most valuable source of autologous cells for transplantation and tissue regeneration to treat osteoporosis. Although BM-MSCs are the primary cells responsible for maintaining bone metabolism and homeostasis, their regenerative ability may be attenuated in postmenopausal osteoporosis patients. Therefore, we first examined potential abnormalities of BM-MSCs in an oestrogen-deficient rat model constructed by ovariectomy (OVX-MSCs). Cell proliferation, mobilisation, and regulation of osteoclasts were downregulated in OVX-MSCs. Moreover, therapeutic effects of OVX-MSCs were decreased in OVX rats. Accordingly, we developed a new activator for BM-MSCs using human umbilical cord extracts, Wharton’s jelly extract supernatant (WJS), which improved cell proliferation, mobilisation and suppressive effects on activated osteoclasts in OVX-MSCs. Bone volume, RANK and TRACP expression of osteoclasts, as well as proinflammatory cytokine expression in bone tissues, were ameliorated by OVX-MSCs activated with WJS (OVX-MSCs-WJ) in OVX rats. Fusion and bone resorption activity of osteoclasts were suppressed in macrophage-induced and primary mouse bone marrow cell-induced osteoclasts via suppression of osteoclast-specific genes, such as Nfatc1, Clcn7, Atp6i and Dc-stamp, by co-culture with OVX-MSCs-WJ in vitro. In this study, we developed a new activator, WJS, which improved the functional abnormalities and therapeutic effects of BM-MSCs on postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Akira Saito
- Department of Orthopaedic Surgery, Sapporo Medical University, Sapporo, Japan
| | - Kanna Nagaishi
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan. .,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan.
| | - Kousuke Iba
- Department of Orthopaedic Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuka Mizue
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Takako Chikenji
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Miho Otani
- Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Masako Nakano
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Kazusa Oyama
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
33
|
Veronesi F, Borsari V, Sartori M, Orciani M, Mattioli-Belmonte M, Fini M. The use of cell conditioned medium for musculoskeletal tissue regeneration. J Cell Physiol 2017; 233:4423-4442. [PMID: 29159853 DOI: 10.1002/jcp.26291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Tissue regenerative medicine combines the use of cells, scaffolds, and molecules to repair damaged tissues. Different cell types are employed for musculoskeletal diseases, both differentiated and mesenchymal stromal cells (MSCs). In recent years, the hypothesis that cell-based therapy is guided principally by cell-secreted factors has become increasingly popular. The aim of the present literature review was to evaluate preclinical and clinical studies that used conditioned medium (CM), rich in cell-factors, for musculoskeletal regeneration. Thirty-one were in vitro, 12 in vivo studies, 1 was a clinical study, and 2 regarded extracellular vesicles. Both differentiated cells and MSCs produce CM that induces reduction in inflammation and increases synthetic activity. MSC recruitment and differentiation, endothelial cell recruitment and angiogenesis have also been observed. In vivo studies were performed with CM in bone and periodontal defects, arthritis and muscle dystrophy pathologies. The only clinical study was performed with CM from MSCs in patients needing alveolar bone regeneration, showing bone formation and no systemic or local complications. Platelet derived growth factor receptor β, C3a, vascular endothelial growth factor, monocyte chemoattractant protein-1 and -3, interleukin 3 and 6, insulin-like growth factor-I were identified as responsible of cell migration, proliferation, osteogenic differentiation, and angiogenesis. The use of CM could represent a new regenerative treatment in several musculoskeletal pathologies because it overcomes problems associated with the use of cells and avoids the use of exogenous GFs or gene delivery systems. However, some issues remain to be clarified.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
34
|
Wang G, Zhao F, Yang D, Wang J, Qiu L, Pang X. Human amniotic epithelial cells regulate osteoblast differentiation through the secretion of TGFβ1 and microRNA-34a-5p. Int J Mol Med 2017; 41:791-799. [PMID: 29207015 PMCID: PMC5752186 DOI: 10.3892/ijmm.2017.3261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Since the beginning of the use of stem cells in tissue regenerative medicine, there has been a search for optimal sources of stem cells. Human amniotic epithelial cells (hAECs) are derived from human amnions, which are typically discarded as medical waste, but were recently found to include cells with trilineage differentiation potential in vitro. Previous study has focused on the osteogenic differentiation ability of hAECs as seed cells in bone regeneration; however, their paracrine effects on osteoblasts (OBs) are yet to be elucidated. In the present study, conditioned medium (CM) derived from hAECs was used to determine their paracrine effects on the human fetal OB cell line (hFOB1.19), and the potential bioactive factors involved in this process were investigated. The results suggested that hAEC-CM markedly promoted the proliferation, migration and osteogenic differentiation of hFOB1.19 cells. Expression of transforming growth factor β1 (TGFβ1) and microRNA 34a-5p (miR-34a-5p) were detected in hAECs. Furthermore, it was demonstrated that TGFβ1 and miR-34a-5p stimulated the differentiation of hFOB1.19 cells, and that TGFβ1 promoted cell migration. Moreover, the effects of hAEC-CM were downregulated following the depletion of either TGFβ1 or miR-34a-5p. These results demonstrated that hAECs promote OB differentiation through the secretion of TGFβ1 and miR-34a-5p, and that hAECs may be an optimal cell source in bone regenerative medicine.
Collapse
Affiliation(s)
- Guiling Wang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jing Wang
- Department of Anal and Intestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| |
Collapse
|
35
|
Kong F, Shi X, Xiao F, Yang Y, Zhang X, Wang LS, Wu CT, Wang H. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis. Hum Gene Ther 2017; 29:271-282. [PMID: 28950723 DOI: 10.1089/hum.2017.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.
Collapse
Affiliation(s)
- Fanxuan Kong
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Xuefeng Shi
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,3 Department of Respiration, Qinghai Provincial People's Hospital , Xining, PR China
| | - Fengjun Xiao
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Yuefeng Yang
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Xiaoyan Zhang
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Li-Sheng Wang
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Chu-Tse Wu
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| | - Hua Wang
- 1 Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing, PR China .,2 Beijing Key Laboratory for Radiobiology , Beijing, PR China
| |
Collapse
|
36
|
Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2017; 196:18-30. [PMID: 29122279 DOI: 10.1016/j.biomaterials.2017.10.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
37
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
38
|
Sui BD, Hu CH, Zheng CX, Shuai Y, He XN, Gao PP, Zhao P, Li M, Zhang XY, He T, Xuan K, Jin Y. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 2017; 7:1225-1244. [PMID: 28435461 PMCID: PMC5399589 DOI: 10.7150/thno.18181] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments.
Collapse
|
39
|
Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons. Stem Cells Int 2017; 2017:2730472. [PMID: 28194184 PMCID: PMC5286488 DOI: 10.1155/2017/2730472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023] Open
Abstract
We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay. We found that IL-8, IL-6, and GROα were the top three most abundant signal factors. Moreover, compared to 2D-MSCs, levels of 11 cytokines and IL-2Rα were significantly increased in conditioned medium from spheroid MSCs. Finally, to test if enhanced expression of these factors reflects altered immunomodulating activities, we assessed the effect of 2D-MSC-MVs and 3D-MSC-MVs on CD14+ cell chemoattraction. Compared to 2D-MSC-MVs, 3D-MSC-MVs significantly decreased the chemotactic index of CD14+ cells. Our results suggest that spheroid culture conditions improve the ability of MSCs to selectively secrete signal factors. Moreover, 3D-MSC-MVs also possessed an enhanced capability to promote signal factors secretion compared to 2D-MSC-MVs and may possess enhanced immunomodulating activities and might be a better regenerative therapy for retinal degenerative diseases.
Collapse
|
40
|
Tan KY, Teo KL, Lim JFY, Chen AKL, Choolani M, Reuveny S, Chan J, Oh SK. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy 2016; 17:1152-65. [PMID: 26139547 DOI: 10.1016/j.jcyt.2015.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. METHODS We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. RESULTS We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. CONCLUSIONS Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Jessica F Y Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Allen K L Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Steve Kw Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| |
Collapse
|
41
|
Liu H, Li W, Liu Y, Zhang X, Zhou Y. Co-administration of aspirin and allogeneic adipose-derived stromal cells attenuates bone loss in ovariectomized rats through the anti-inflammatory and chemotactic abilities of aspirin. Stem Cell Res Ther 2015; 6:200. [PMID: 26474767 PMCID: PMC4609080 DOI: 10.1186/s13287-015-0195-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/20/2015] [Accepted: 10/01/2015] [Indexed: 01/21/2023] Open
Abstract
Introduction Osteoporosis is a syndrome of excessive skeletal fragility characterized by the loss of mass and deterioration of microarchitecture in bone. Single use of aspirin or adipose-derived stromal cells (ASCs) has been recognized recently to be effective against osteoporosis. The goal of the study was to evaluate the osteogenic effects of the co-administration of aspirin and allogeneic rat adipose-derived stromal cells (rASCs) on ovariectomized (OVX)-induced bone loss in rats. The underlying mechanisms were investigated in vitro and in vivo. Methods Firstly, allogeneic rASCs were isolated and cultured, and the conditioned medium (CM) from the maintenance of rASCs was collected. Secondly, the OVX rats were administrated CM, rASCs, aspirin (ASP) or rASCs + ASP, respectively. Twelve weeks later, the anti-inflammatory and osteogenic effects were assessed by micro-CT, undecalcified histological sections, dynamic histomorphometric analyses and serologic assays for biochemical markers. Finally, a Transwell migration assay in vitro and cell-trafficking analyses in vivo were used to explore the effects of aspirin on rASC migration. Results Systemic administration of aspirin and rASCs attenuated OVX-induced bone loss better than single use of aspirin or ASCs (p < 0.05, respectively). Next, we analyzed the underlying mechanisms of the anti-inflammatory and chemotactic abilities of aspirin. Aspirin suppressed serum levels of the pro-inflammatory cytokines on tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and the anti-inflammatory ability was positively associated with bone morphometry. Also, aspirin exhibited excellent chemotactic effects in vitro and accelerated the homing of allogeneic rASCs into bone marrow during early in vivo stages. Conclusions Co-administered aspirin and allogeneic ASCs can partially reverse OVX-induced bone loss in rats. This effect appears to be mediated by the anti-inflammatory and chemotactic abilities of aspirin.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Wei Li
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
42
|
Abstract
Osteoporosis is a debilitating disease that affects millions of people worldwide. Current osteoporosis treatments are predominantly bone-resorbing drugs that are associated with several side effects. The use of stem cells for tissue regeneration has raised great hope in various fields of medicine, including musculoskeletal disorders. Stem cell therapy for osteoporosis could potentially reduce the susceptibility of fractures and augment lost mineral density by either increasing the numbers or restoring the function of resident stem cells that can proliferate and differentiate into bone-forming cells. Such osteoporosis therapies can be carried out by exogenous introduction of mesenchymal stem cells (MSCs), typically procured from bone marrow, adipose, and umbilical cord blood tissues or through treatments with drugs or small molecules that recruit endogenous stem cells to osteoporotic sites. The main hurdle with cell-based osteoporosis therapy is the uncertainty of stem cell fate and biodistribution following cell transplantation. Therefore, future advancements will focus on long-term engraftment and differentiation of stem cells at desired bone sites for tangible clinical outcome.
Collapse
Affiliation(s)
- Ben Antebi
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, Hebrew University, Hadassah Medical Campus, POB 12272, Ein Kerem, Jerusalem, 91120, Israel
| | | | | |
Collapse
|
43
|
Pham PV, Vu NB, Pham VM, Truong NH, Pham TLB, Dang LTT, Nguyen TT, Bui ANT, Phan NK. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 2014; 12:56. [PMID: 24565047 PMCID: PMC3939935 DOI: 10.1186/1479-5876-12-56] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. Methods UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. Results The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. Conclusion This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam.
| | | | | | | | | | | | | | | | | |
Collapse
|