1
|
Du B, Dai Z, Wang H, Ren Z, Li D. Advances and Prospects in Using Induced Pluripotent Stem Cells for 3D Bioprinting in Cardiac Tissue Engineering. Rev Cardiovasc Med 2025; 26:26697. [PMID: 40160587 PMCID: PMC11951483 DOI: 10.31083/rcm26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 04/02/2025] Open
Abstract
Background Cardiovascular diseases remain one of the leading causes of death worldwide. Given the limited self-repair capacity of cardiac tissue, cardiac tissue engineering (CTE) aims to develop strategies and materials for repairing or replacing damaged cardiac tissue by combining biology, medicine, and engineering. Indeed, CTE has made significant strides since the discovery of induced pluripotent stem cells (iPSCs) in 2006, including creating cardiac patches, organoids, and chip models derived from iPSCs, thus offering new strategies for treating cardiac diseases. Methods A systematic search for relevant literature published between 2003 and 2024 was conducted in the PubMed and Web of Science databases using "Cardiac Tissue Engineering", "3D Bioprinting", "Scaffold in Tissue Engineering", "Induced Pluripotent Stem Cells", and "iPSCs" as keywords. Results This systematic search using the abovementioned keywords identified relevant articles for inclusion in this review. The resulting literature indicated that CTE can offer innovative solutions for treating cardiac diseases when integrated with three-dimensional (3D) bioprinting and iPSC technology. Conclusions Despite notable advances in the field of CTE, multiple challenges remain relating to 3D-bioprinted cardiac tissues. These include maintaining long-term cell viability, achieving precise cell distribution, tissue vascularization, material selection, and cost-effectiveness. Therefore, further research is needed to optimize printing techniques, develop more advanced bio-inks, explore larger-scale tissue constructs, and ensure the biosafety and functional fidelity of engineered cardiac tissues. Subsequently, future research efforts should focus on these areas to facilitate the clinical translation of CTE. Moreover, additional long-term animal models and preclinical studies should be conducted to ensure the biosafety and functionality of engineered cardiac tissues, thereby creating novel possibilities for treating patients with heart diseases.
Collapse
Affiliation(s)
- Baoluo Du
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Ziqiang Dai
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Zhipeng Ren
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Dianyuan Li
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Sun M, LaSala VR, Giuglaris C, Blitzer D, Jackman S, Ustunel S, Rajesh K, Kalfa D. Cardiovascular patches applied in congenital cardiac surgery: Current materials and prospects. Bioeng Transl Med 2025; 10:e10706. [PMID: 39801761 PMCID: PMC11711229 DOI: 10.1002/btm2.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Congenital Heart Defects (CHDs) are the most common congenital anomalies, affecting between 4 and 75 per 1000 live births. Cardiovascular patches (CVPs) are frequently used as part of the surgical armamentarium to reconstruct cardiovascular structures to correct CHDs in pediatric patients. This review aims to evaluate the history of cardiovascular patches, currently available options, clinical applications, and important features of these patches. Performance and outcomes of different patch materials are assessed to provide reference points for clinicians. The target audience includes clinicians seeking data on clinical performance as they make choices between different patch products, as well as scientists and engineers working to develop patches or synthesize new patch materials.
Collapse
Affiliation(s)
- Mingze Sun
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | | | - Caroline Giuglaris
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- UMR 168 Laboratoire Physique des Cellules et CancerInstitut Curie, PSL Research University, Sorbonne Université, CNRSParisFrance
| | - David Blitzer
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sophia Jackman
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Senay Ustunel
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Kavya Rajesh
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - David Kalfa
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac SurgeryNew‐York Presbyterian—Morgan Stanley Children's Hospital, Columbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
3
|
Li J, Qiao W, Liu Y, Lei H, Wang S, Xu Y, Zhou Y, Wen S, Yang Z, Wan W, Shi J, Dong N, Wu Y. Facile engineering of interactive double network hydrogels for heart valve regeneration. Nat Commun 2024; 15:7462. [PMID: 39198477 PMCID: PMC11358442 DOI: 10.1038/s41467-024-51773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Regenerative heart valve prostheses are essential for treating valvular heart disease, which requested interactive materials that can adapt to the tissue remodeling process. Such materials typically involves intricate designs with multiple active components, limiting their translational potential. This study introduces a facile method to engineer interactive materials for heart valve regeneration using 1,1'-thiocarbonyldiimidazole (TCDI) chemistry. TCDI crosslinking forms cleavable thiourea and thiocarbamate linkages which could gradually release H2S during degradation, therefore regulates the immune microenvironment and accelerates tissue remodeling. By employing this approach, a double network hydrogel was formed on decellularized heart valves (DHVs), showcasing robust anti-calcification and anti-thrombosis properties post fatigue testing. Post-implantation, the DHVs could adaptively degrade during recellularization, releasing H2S to further support tissue regeneration. Therefore, the comprehensive endothelial cell coverage and notable extracellular matrix remodeling could be clearly observed. This accessible and integrated strategy effectively overcomes various limitations of bioprosthetic valves, showing promise as an attractive approach for immune modulation of biomaterials.
Collapse
Affiliation(s)
- Jinsheng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Yuqi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Huiling Lei
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Shuangshuang Wang
- School of Life Science and Chemistry, Wuhan Donghu University, Wuhan, P. R. China
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Zhuoran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
| | - Wenyi Wan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China.
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China.
| |
Collapse
|
4
|
Wancura M, Nkansah A, Robinson A, Toubbeh S, Talanker M, Jones S, Cosgriff-Hernandez E. PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications. Ann Biomed Eng 2024; 52:1804-1815. [PMID: 36774427 DOI: 10.1007/s10439-023-03154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices-enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors. Herein, we report a systematic investigation of two coating methods: (1) traditional photoinitiated hydrogel coatings; (2) diffusion-mediated, redox-initiated hydrogel coatings. The effects of method, substrate, and compositional variables on the resulting hydrogel coating thickness are presented. To expand the redox-based method to include high molecular weight macromers, a mechanistic investigation of the role of cure rate and macromer viscosity was necessary to balance solution infiltration and gelation. Overall, these structure-property relationships provide users with a toolbox for hydrogel coating design for a broad range of medical devices.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shireen Toubbeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Talanker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, TX, 78712, USA.
| |
Collapse
|
5
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
6
|
Robinson A, Nkansah A, Bhat S, Karnik S, Jones S, Fairley A, Leung J, Wancura M, Sacks MS, Dasi LP, Cosgriff-Hernandez E. Hydrogel-polyurethane fiber composites with enhanced microarchitectural control for heart valve replacement. J Biomed Mater Res A 2024; 112:586-599. [PMID: 38018452 DOI: 10.1002/jbm.a.37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Polymeric heart valves offer the potential to overcome the limited durability of tissue based bioprosthetic valves and the need for anticoagulant therapy of mechanical valve replacement options. However, developing a single-phase material with requisite biological properties and target mechanical properties remains a challenge. In this study, a composite heart valve material was developed where an electrospun mesh provides tunable mechanical properties and a hydrogel coating confers an antifouling surface for thromboresistance. Key biological responses were evaluated in comparison to glutaraldehyde-fixed pericardium. Platelet and bacterial attachment were reduced by 38% and 98%, respectively, as compared to pericardium that demonstrated the antifouling nature of the hydrogel coating. There was also a notable reduction (59%) in the calcification of the composite material as compared to pericardium. A custom 3D-printed hydrogel coating setup was developed to make valve composites for device-level hemodynamic testing. Regurgitation fraction (9.6 ± 1.8%) and effective orifice area (1.52 ± 0.34 cm2 ) met ISO 5840-2:2021 requirements. Additionally, the mean pressure gradient was comparable to current clinical bioprosthetic heart valves demonstrating preliminary efficacy. Although the hemodynamic properties are promising, it is anticipated that the random microarchitecture will result in suboptimal strain fields and peak stresses that may accelerate leaflet fatigue and degeneration. Previous computational work has demonstrated that bioinspired fiber microarchitectures can improve strain homogeneity of valve materials toward improving durability. To this end, we developed advanced electrospinning methodologies to achieve polyurethane fiber microarchitectures that mimic or exceed the physiological ranges of alignment, tortuosity, and curvilinearity present in the native valve. Control of fiber alignment from a random fiber orientation at a normalized orientation index (NOI) 14.2 ± 6.9% to highly aligned fibers at a NOI of 85.1 ± 1.4%. was achieved through increasing mandrel rotational velocity. Fiber tortuosity and curvilinearity in the range of native valve features were introduced through a post-spinning annealing process and fiber collection on a conical mandrel geometry, respectively. Overall, these studies demonstrate the potential of hydrogel-polyurethane fiber composite as a heart valve material. Future studies will utilize the developed advanced electrospinning methodologies in combination with model-directed fabrication toward optimizing durability as a function of fiber microarchitecture.
Collapse
Affiliation(s)
- Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sanchita Bhat
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shweta Karnik
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jonathan Leung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Austin, Texas, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
7
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Phutane P, Telange D, Agrawal S, Gunde M, Kotkar K, Pethe A. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. Polymers (Basel) 2023; 15:1202. [PMID: 36904443 PMCID: PMC10007057 DOI: 10.3390/polym15051202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The limited ability of most human tissues to regenerate has necessitated the interventions namely autograft and allograft, both of which carry the limitations of its own. An alternative to such interventions could be the capability to regenerate the tissue in vivo.Regeneration of tissue using the innate capacity of the cells to regenerate is studied under the discipline of tissue engineering and regenerative medicine (TERM). Besides the cells and growth-controlling bioactives, scaffolds play the central role in TERM which is analogous to the role performed by extracellular matrix (ECM) in the vivo. Mimicking the structure of ECM at the nanoscale is one of the critical attributes demonstrated by nanofibers. This unique feature and its customizable structure to befit different types of tissues make nanofibers a competent candidate for tissue engineering. This review discusses broad range of natural and synthetic biodegradable polymers employed to construct nanofibers as well as biofunctionalization of polymers to improve cellular interaction and tissue integration. Amongst the diverse ways to fabricate nanofibers, electrospinning has been discussed in detail along with advances in this technique. Review also presents a discourse on application of nanofibers for a range of tissues, namely neural, vascular, cartilage, bone, dermal and cardiac.
Collapse
Affiliation(s)
- Prasanna Phutane
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Surendra Agrawal
- Department of Pharmaceutical Chemistry, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Mahendra Gunde
- Department of Pharmacognosy, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Kunal Kotkar
- Department of Pharmaceutical Quality Assurance, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, MH, India
| | - Anil Pethe
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| |
Collapse
|
9
|
Lizana-Vasquez GD, Arrieta-Viana LF, Mendez-Vega J, Acevedo A, Torres-Lugo M. Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers (Basel) 2022; 14:polym14204379. [PMID: 36297960 PMCID: PMC9611013 DOI: 10.3390/polym14204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
Collapse
|
10
|
Sun M, Elkhodiry M, Shi L, Xue Y, Abyaneh MH, Kossar AP, Giuglaris C, Carter SL, Li RL, Bacha E, Ferrari G, Kysar J, Myers K, Kalfa D. A biomimetic multilayered polymeric material designed for heart valve repair and replacement. Biomaterials 2022; 288:121756. [PMID: 36041938 PMCID: PMC9801615 DOI: 10.1016/j.biomaterials.2022.121756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/03/2023]
Abstract
Materials currently used to repair or replace a heart valve are not durable. Their limited durability related to structural degeneration or thrombus formation is attributed to their inadequate mechanical properties and biocompatibility profiles. Our hypothesis is that a biostable material that mimics the structure, mechanical and biological properties of native tissue will improve the durability of these leaflets substitutes and in fine improve the patient outcome. Here, we report the development, optimization, and testing of a biomimetic, multilayered material (BMM), designed to replicate the native valve leaflets. Polycarbonate urethane and polycaprolactone have been processed as film, foam, and aligned fibers to replicate the leaflet's architecture and anisotropy, through solution casting, lyophilization, and electrospinning. Compared to the commercialized materials, our BMMs exhibited an anisotropic behavior and a closer mechanical performance to the aortic leaflets. The material exhibited superior biostability in an accelerated oxidization environment. It also displayed better resistance to protein adsorption and calcification in vitro and in vivo. These results will pave the way for a new class of advanced synthetic material with long-term durability for surgical valve repair or replacement.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Surgery, Columbia University, New York, NY, USA
| | | | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yingfei Xue
- Department of Surgery, Columbia University, New York, NY, USA
| | | | | | | | | | - Richard L. Li
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emile Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jeffrey Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - David Kalfa
- Department of Surgery, Columbia University, New York, NY, USA,Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY, USA,Corresponding author. Pediatric Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA. (D. Kalfa)
| |
Collapse
|
11
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM. A review on 3D printing in tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Madeeha Sadia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering , NED University of Engineering and Technology , Karachi , Pakistan
| | - Saravana Kumar Jaganathan
- Department of Engineering, Faculty of Science and Engineering , University of Hull , Hull HU6 7RX , UK
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Zahran Khudzari
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering , Center for Nanofibers & Nanotechnology Initiative, National University of Singapore , Singapore , Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| |
Collapse
|
13
|
Sun W, Tashman JW, Shiwarski DJ, Feinberg AW, Webster-Wood VA. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement. ACS Biomater Sci Eng 2022; 8:303-313. [PMID: 34860495 PMCID: PMC9206824 DOI: 10.1021/acsbiomaterials.1c00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hydrogels are candidate building blocks in a wide range of biomaterial applications including soft and biohybrid robotics, microfluidics, and tissue engineering. Recent advances in embedded 3D printing have broadened the design space accessible with hydrogel additive manufacturing. Specifically, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique has enabled the fabrication of complex 3D structures using extremely soft hydrogels, e.g., alginate and collagen, by assembling hydrogels within a fugitive support bath. However, the low structural rigidity of FRESH printed hydrogels limits their applications, especially those that require operation in nonaqueous environments. In this study, we demonstrated long-fiber embedded hydrogel 3D printing using a multihead printing platform consisting of a custom-built fiber extruder and an open-source FRESH bioprinter with high embedding fidelity. Using this process, fibers were embedded in 3D printed hydrogel components to achieve significant structural reinforcement (e.g., tensile modulus improved from 56.78 ± 8.76 to 382.55 ± 25.29 kPa and tensile strength improved from 9.44 ± 2.28 to 45.05 ± 5.53 kPa). In addition, we demonstrated the versatility of this technique by using fibers of a wide range of sizes and material types and implementing different 2D and 3D embedding patterns, such as embedding a conical helix using electrochemically aligned collagen fiber via nonplanar printing. Moreover, the technique was implemented using low-cost material and is compatible with open-source software and hardware, which facilitates its adoption and modification for new research applications.
Collapse
Affiliation(s)
- Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Victoria A Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets. J Mech Behav Biomed Mater 2022; 125:104877. [PMID: 34695661 PMCID: PMC8818123 DOI: 10.1016/j.jmbbm.2021.104877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023]
Abstract
Although xenograft biomaterials have been used for decades in replacement heart valves, they continue to face multiple limitations, including limited durability, mineralization, and restricted design space due to their biological origins. These issues necessitate the need for novel replacement heart valve biomaterials that are durable, non-thrombogenic, and compatible with transcatheter aortic valve replacement devices. In this study, we explored the suitability of an electrospun poly(carbonate urethane) (ES-PCU) mesh coated with a poly(ethylene glycol) diacrylate (PEGDA) hydrogel as a synthetic biomaterial for replacement heart valve leaflets. In this material design, the mesh provides the mechanical support, while the hydrogel provides the required surface hemocompatibility. We conducted a comprehensive study to characterize the structural and mechanical properties of the uncoated mesh as well as the hydrogel-coated mesh (composite biomaterial) over the estimated operational range. We found that the composite biomaterial was functionally robust with reproducible stress-strain behavior within and beyond the functional ranges for replacement heart valves, and was able to withstand the rigors of mechanical evaluation without any observable damage. In addition, the composite biomaterial displayed a wide range of mechanical anisotropic responses, which were governed by fiber orientation of the mesh, which in turn, was controlled with the fabrication process. Finally, we developed a novel constitutive modeling approach to predict the mechanical behavior of the composite biomaterial under in-plane extension and shear deformation modes. This model identified the existence of fiber-fiber mechanical interactions in the mesh that have not previously been reported. Interestingly, there was no evidence of fiber-hydrogel mechanical interactions. This important finding suggests that the hydrogel coating can be optimized for hemocompatibility independent of the structural mechanical responses required by the leaflet. This initial study indicated that the composite biomaterial has mechanical properties well-suited for replacement heart valve applications and that the electrospun mesh microarchitecture and hydrogel biological properties can be optimized independently. It also reveals that the structural mechanisms contributing to the mechanical response are more complicated than what was previously established and paves the pathway for more detailed future studies.
Collapse
|
15
|
Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: Considerations for developing a valve-on-chip. BIOPHYSICS REVIEWS 2021; 2:041303. [PMID: 38504720 PMCID: PMC10903420 DOI: 10.1063/5.0063608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 03/21/2024]
Abstract
Cardiac valves are sophisticated, dynamic structures residing in a complex mechanical and hemodynamic environment. Cardiac valve disease is an active and progressive disease resulting in severe socioeconomic burden, especially in the elderly. Valve disease also leads to a 50% increase in the possibility of associated cardiovascular events. Yet, valve replacement remains the standard of treatment with early detection, mitigation, and alternate therapeutic strategies still lacking. Effective study models are required to further elucidate disease mechanisms and diagnostic and therapeutic strategies. Organ-on-chip models offer a unique and powerful environment that incorporates the ease and reproducibility of in vitro systems along with the complexity and physiological recapitulation of the in vivo system. The key to developing effective valve-on-chip models is maintaining the cell and tissue-level microenvironment relevant to the study application. This review outlines the various components and factors that comprise and/or affect the cell microenvironment that ought to be considered while constructing a valve-on-chip model. This review also dives into the advancements made toward constructing valve-on-chip models with a specific focus on the aortic valve, that is, in vitro studies incorporating three-dimensional co-culture models that incorporate relevant extracellular matrices and mechanical and hemodynamic cues.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
16
|
Jana S, Morse D, Lerman A. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS APPLIED BIO MATERIALS 2021; 4:7836-7847. [PMID: 35006765 DOI: 10.1021/acsabm.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States.,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - David Morse
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
17
|
Jana S, Franchi F, Lerman A. Fibrous heart valve leaflet substrate with native-mimicked morphology. APPLIED MATERIALS TODAY 2021; 24:101112. [PMID: 34485682 PMCID: PMC8415466 DOI: 10.1016/j.apmt.2021.101112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on in vivo tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during in vivo tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri,
Columbia, MO 65211, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
18
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
19
|
Mirani B, Parvin Nejad S, Simmons CA. Recent Progress Toward Clinical Translation of Tissue-Engineered Heart Valves. Can J Cardiol 2021; 37:1064-1077. [PMID: 33839245 DOI: 10.1016/j.cjca.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Surgical replacement remains the primary option to treat the rapidly growing number of patients with severe valvular heart disease. Although current valve replacements-mechanical, bioprosthetic, and cryopreserved homograft valves-enhance survival and quality of life for many patients, the ideal prosthetic heart valve that is abundantly available, immunocompatible, and capable of growth, self-repair, and life-long performance has yet to be developed. These features are essential for pediatric patients with congenital defects, children and young adult patients with rheumatic fever, and active adult patients with valve disease. Heart valve tissue engineering promises to address these needs by providing living valve replacements that function similarly to their native counterparts. This is best evidenced by the long-term clinical success of decellularised pulmonary and aortic homografts, but the supply of homografts cannot meet the demand for replacement valves. A more abundant and consistent source of replacement valves may come from cellularised valves grown in vitro or acellular off-the-shelf biomaterial/tissue constructs that recellularise in situ, but neither tissue engineering approach has yet achieved long-term success in preclinical testing. Beyond the technical challenges, heart valve tissue engineering faces logistical, economic, and regulatory challenges. In this review, we summarise recent progress in heart valve tissue engineering, highlight important outcomes from preclinical and clinical testing, and discuss challenges and future directions toward clinical translation.
Collapse
Affiliation(s)
- Bahram Mirani
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shouka Parvin Nejad
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Howsmon DP, Sacks MS. On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology. Cardiovasc Eng Technol 2021; 12:15-27. [PMID: 33527256 PMCID: PMC11046423 DOI: 10.1007/s13239-020-00509-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023]
Abstract
Heart valves function in one of the most mechanically demanding environments in the body to ensure unidirectional blood flow. The resident valve interstitial cells respond to this mechanical environment and maintain the structure and integrity of the heart valve tissues to preserve homeostasis. While the mechanics of organ-tissue-cell heart valve function has progressed, the intracellular signaling network downstream of mechanical stimuli has not been fully elucidated. This has hindered efforts to both understand heart valve mechanobiology and rationally identify drug targets for treating valve disease. In the present work, we review the current literature on VIC mechanobiology and then propose mechanistic mathematical modeling of the mechanically-stimulated VIC signaling response to comprehend the coupling between VIC mechanobiology and valve mechanics.
Collapse
Affiliation(s)
- Daniel P Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
21
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
22
|
Uiterwijk M, Smits AIPM, van Geemen D, van Klarenbosch B, Dekker S, Cramer MJ, van Rijswijk JW, Lurier EB, Di Luca A, Brugmans MCP, Mes T, Bosman AW, Aikawa E, Gründeman PF, Bouten CVC, Kluin J. In Situ Remodeling Overrules Bioinspired Scaffold Architecture of Supramolecular Elastomeric Tissue-Engineered Heart Valves. ACTA ACUST UNITED AC 2020; 5:1187-1206. [PMID: 33426376 PMCID: PMC7775962 DOI: 10.1016/j.jacbts.2020.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
In situ tissue engineering that uses resorbable synthetic heart valve scaffolds is an affordable and practical approach for heart valve replacement; therefore, it is attractive for clinical use. This study showed no consistent collagen organization in the predefined direction of electrospun scaffolds made from a resorbable supramolecular elastomer with random or circumferentially aligned fibers, after 12 months of implantation in sheep. These unexpected findings and the observed intervalvular variability highlight the need for a mechanistic understanding of the long-term in situ remodeling processes in large animal models to improve predictability of outcome toward robust and safe clinical application.
Collapse
Affiliation(s)
- Marcelle Uiterwijk
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Daphne van Geemen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Bas van Klarenbosch
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maarten Jan Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan Willem van Rijswijk
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Emily B Lurier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrea Di Luca
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul F Gründeman
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
23
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
24
|
Chester AH, Grande-Allen KJ. Which Biological Properties of Heart Valves Are Relevant to Tissue Engineering? Front Cardiovasc Med 2020; 7:63. [PMID: 32373630 PMCID: PMC7186395 DOI: 10.3389/fcvm.2020.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last 20 years, the designs of tissue engineered heart valves have evolved considerably. An initial focus on replicating the mechanical and structural features of semilunar valves has expanded to endeavors to mimic the biological behavior of heart valve cells as well. Studies on the biology of heart valves have shown that the function and durability of native valves is underpinned by complex interactions between the valve cells, the extracellular matrix, and the mechanical environment in which heart valves function. The ability of valve interstitial cells to synthesize extracellular matrix proteins and remodeling enzymes and the protective mediators released by endothelial cells are key factors in the homeostasis of valve function. The extracellular matrix provides the mechanical strength and flexibility required for the valve to function, as well as communicating with the cells that are bound within. There are a number of regulatory mechanisms that influence valve function, which include neuronal mechanisms and the tight regulation of growth and angiogenic factors. Together, studies into valve biology have provided a blueprint for what a tissue engineered valve would need to be capable of, in order to truly match the function of the native valve. This review addresses the biological functions of heart valve cells, in addition to the influence of the cells' environment on this behavior and examines how well these functions are addressed within the current strategies for tissue engineering heart valves in vitro, in vivo, and in situ.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, The Magdi Yacoub Institute, Harefield, United Kingdom
| | | |
Collapse
|
25
|
Acute In Vivo Functional Assessment of a Biodegradable Stentless Elastomeric Tricuspid Valve. J Cardiovasc Transl Res 2020; 13:796-805. [DOI: 10.1007/s12265-020-09960-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
26
|
Ming Z, Pang Y, Liu J. Switching between Elasticity and Plasticity by Network Strength Competition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906870. [PMID: 31856364 DOI: 10.1002/adma.201906870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Switching a material between highly elastic and plastic would be of great use in many fields but has proven to be extremely challenging. Here, the use of mechanical strength competition between two networks in a hybrid material is reported to switch between elasticity and plasticity. In a gel material composed of an elastic polymer network and a shear-thinning nanofiber network, the excellent elasticity of the gel is demonstrated when the former is stronger than the latter. In contrast, the gel exhibits an extraordinary plasticity, which can be stretched to form a permanent anisotropic and tough gel due to the orientation of the nanofibers. The mechanical strength of each network can be simply tuned by adjusting either the crosslinking density or the loading of the nanofibers. This work may open a window to transform a material between superior elastic and plastic, which is useful for the development of adaptable materials.
Collapse
Affiliation(s)
- Zunzhen Ming
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinyao Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
27
|
Jana S, Franchi F, Lerman A. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering. ACTA ACUST UNITED AC 2019; 15:015004. [PMID: 31814596 DOI: 10.1088/1748-605x/ab52e2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
28
|
Xue Y, Ravishankar P, Zeballos MA, Sant V, Balachandran K, Sant S. Valve leaflet‐inspired elastomeric scaffolds with tunable and anisotropic mechanical properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yingfei Xue
- Department of Pharmaceutical SciencesUniversity of Pittsburgh Pittsburgh PA USA
| | | | | | - Vinayak Sant
- Department of Pharmaceutical SciencesUniversity of Pittsburgh Pittsburgh PA USA
| | - Kartik Balachandran
- Department of Biomedical EngineeringUniversity of Arkansas Fayetteville AR USA
| | - Shilpa Sant
- Department of Pharmaceutical SciencesUniversity of Pittsburgh Pittsburgh PA USA
- Department of BioengineeringUniversity of Pittsburgh Pittsburgh PA USA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
29
|
Jana S, Bhagia A, Lerman A. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. ACTA ACUST UNITED AC 2019; 14:065014. [PMID: 31593551 DOI: 10.1088/1748-605x/ab3d24] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pore size is generally small in nanofibrous scaffolds prepared by electrospinning polymeric solutions. Increase of scaffold thickness leads to decrease in pore size, causing impediment to cell infiltration into the scaffolds during tissue engineering. In contrast, comparatively larger pore size can be realized in microfibrous scaffolds prepared from polymeric solutions at higher concentrations. Further, microfibrous scaffolds are conducive to infiltration of reparative M2 phenotype macrophages during in vivo/in situ tissue engineering. However, rise of mechanical properties of a fibrous scaffold with the increase of polymer concentration may limit the functionality of a scaffold-based, tissue-engineered heart valve. In this study, we developed microfibrous scaffolds from 14%, 16% and 18% (wt/v) polycaprolactone (PCL) polymer solutions prepared with chloroform solvent. Porcine valvular interstitial cells were cultured in the scaffolds for 14 d to investigate the effect of microfibers prepared with different PCL concentrations on the seeded cells. Further, fresh microfibrous scaffolds were implanted subcutaneously in a rat model for two months to investigate the effect of microfibers on infiltrated cells. Cell proliferation, and its morphologies, gene expression and deposition of different extracellular matrix proteins in the in vitro study were characterized. During the in vivo study, we characterized cell infiltration, and myofibroblast and M1/M2 phenotypes expression of the infiltrated cells. Among different PCL concentrations, microfibrous scaffolds from 14% solution were suitable for heart valve tissue engineering for their sufficient pore size and low but adequate tensile properties, which promoted cell adhesion to and proliferation in the scaffolds, and effective gene expression and extracellular matrix deposition by the cells in vitro. They also encouraged the cells in vivo for their infiltration and effective gene expression, including M2 phenotype expression.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
30
|
Wilson RL, Connell JP, Grande-Allen KJ. Monitoring Oxygen Levels within Large, Tissue-Engineered Constructs Using Porphyin-Hydrogel Microparticles. ACS Biomater Sci Eng 2019; 5:4522-4530. [PMID: 33438417 DOI: 10.1021/acsbiomaterials.9b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A major barrier to the creation of engineered organs is the limited diffusion of oxygen through biological tissues. Advances in biofabrication bring us increasingly closer to complex vascular networks capable of supplying oxygen to large cellularized scaffolds. However, technologies for monitoring oxygen levels in engineered tissues do not accommodate imaging depths of more than a few dozen micrometers. Here, we report the creation of fluorescent porphyrin-hydrogel microparticles that can be used at depths of 2 mm into artificial tissues. By combining an oxygen-responsive porphyrin dye with a reference dye, the microparticles generate a ratiometric signal that is photostable, unaffected by attenuation from biological material, and responsive to physiological change in oxygen concentration. These microparticles can measure long-distance oxygen gradients within 3D, cellularized constructs and accurately report cellular oxygen consumption rates. Furthermore, they are compatible with a number of hydrogel polymerization chemistries and cell types, including primary human cells. We believe this technology will significantly advance efforts to visualize oxygen gradients in cellularized constructs and inform efforts to tissue engineer solid organs.
Collapse
Affiliation(s)
- Reid L Wilson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
31
|
Saidy NT, Wolf F, Bas O, Keijdener H, Hutmacher DW, Mela P, De-Juan-Pardo EM. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900873. [PMID: 31058444 DOI: 10.1002/smll.201900873] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Heart valves are characterized to be highly flexible yet tough, and exhibit complex deformation characteristics such as nonlinearity, anisotropy, and viscoelasticity, which are, at best, only partially recapitulated in scaffolds for heart valve tissue engineering (HVTE). These biomechanical features are dictated by the structural properties and microarchitecture of the major tissue constituents, in particular collagen fibers. In this study, the unique capabilities of melt electrowriting (MEW) are exploited to create functional scaffolds with highly controlled fibrous microarchitectures mimicking the wavy nature of the collagen fibers and their load-dependent recruitment. Scaffolds with precisely-defined serpentine architectures reproduce the J-shaped strain stiffening, anisotropic and viscoelastic behavior of native heart valve leaflets, as demonstrated by quasistatic and dynamic mechanical characterization. They also support the growth of human vascular smooth muscle cells seeded both directly or encapsulated in fibrin, and promote the deposition of valvular extracellular matrix components. Finally, proof-of-principle MEW trileaflet valves display excellent acute hydrodynamic performance under aortic physiological conditions in a custom-made flow loop. The convergence of MEW and a biomimetic design approach enables a new paradigm for the manufacturing of scaffolds with highly controlled microarchitectures, biocompatibility, and stringent nonlinear and anisotropic mechanical properties required for HVTE.
Collapse
Affiliation(s)
- Navid T Saidy
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Frederic Wolf
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Onur Bas
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Hans Keijdener
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- Institute for Advanced Study, Technische Universität München, D-85748, Garching, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Medical Materials and Medical Implant Design, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching,
| | - Elena M De-Juan-Pardo
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| |
Collapse
|
32
|
Duan B, Xu C, Das S, Chen JM, Butcher JT. Spatial Regulation of Valve Interstitial Cell Phenotypes within Three-Dimensional Micropatterned Hydrogels. ACS Biomater Sci Eng 2019; 5:1416-1425. [PMID: 33405617 PMCID: PMC10951959 DOI: 10.1021/acsbiomaterials.8b01280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcific aortic valve disease (CAVD) is the third leading cause of cardiovascular disease. CAVD exhibits progressive disruption of the normally highly organized and aligned extracellular matrix (ECM) structure within the valve leaflets simultaneously with myofibroblastic and/or osteogenic differentiation of indigenous endogenous valve interstitial cells (VIC). It is unclear how the alignment of VIC within their 3D microenvironment drives VIC phenotype or how alignment affects cellular responses to biochemical cues in physiological or pathological conditions. In this study, we implement a photolithographic technique to control the alignment and elongation of both normal and diseased human aortic VIC (HAVIC) within microengineered 3D hydrogels consisting of methacrylated hyaluronic acid and methacrylated gelatin. Stripe micropatterning created distinct alignment of HAVIC within a 3D culture system, which promoted spreading and enhanced their activation and osteogenic differentiation in pro-osteogenic conditions. HAVIC from a patient with CAVD exhibited greater susceptibility to myofibroblastic and osteogenic differentiation in culture. The roles of conjugated basic fibroblastic growth factor (bFGF) and RhoA/ROCK pathway in regulating HAVIC phenotypes were also investigated in the presence of aligned microtopography. The addition of bFGF was preventative to osteogenic differentiation for healthy HAVIC; however, it promoted osteogenic differentiation in diseased HAVIC. Inhibition of the ROCK pathway only decreased osteogenic differentiation for diseased HAVIC in the aligned formation. Collectively, these results improve our knowledge of the effects that VIC alignment has on VIC phenotypes and valve disease progression. The cell culture platform also enables a better understanding of the interplay between topography, biochemical cues, and VIC differentiation and provides information useful for directing differentiation as well as valve tissue regeneration.
Collapse
Affiliation(s)
- Bin Duan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Charlie Xu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shoshana Das
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan M. Chen
- Department of Cardiac Surgery, Seattle Children’s Hospital, Seattle WA, USA
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
34
|
Sano K, Arazoe YO, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Aida T. Extra-Large Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. Angew Chem Int Ed Engl 2018; 57:12508-12513. [DOI: 10.1002/anie.201807240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Koki Sano
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yuka Onuma Arazoe
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuo Ebina
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Minoru Osada
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Takayoshi Sasaki
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center; 1-1-1 Kouto Sayo Hyogo 679-5198 Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
35
|
Sano K, Arazoe YO, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Aida T. Extra-Large Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Koki Sano
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yuka Onuma Arazoe
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuo Ebina
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Minoru Osada
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Takayoshi Sasaki
- National Institute for Materials Science; International Center for Materials Nanoarchitectonics; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center; 1-1-1 Kouto Sayo Hyogo 679-5198 Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
36
|
Bas O, Catelas I, De-Juan-Pardo EM, Hutmacher DW. The quest for mechanically and biologically functional soft biomaterials via soft network composites. Adv Drug Deliv Rev 2018; 132:214-234. [PMID: 30048654 DOI: 10.1016/j.addr.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Developing multifunctional soft biomaterials capable of addressing all the requirements of the complex tissue regeneration process is a multifaceted problem. In order to tackle the current challenges, recent research efforts are increasingly being directed towards biomimetic design concepts that can be translated into soft biomaterials via advanced manufacturing technologies. Among those, soft network composites consisting of a continuous hydrogel matrix and a reinforcing fibrous network closely resemble native soft biological materials in terms of design and composition as well as physicochemical properties. This article reviews soft network composite systems with a particular emphasis on the design, biomaterial and fabrication aspects within the context of soft tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Onur Bas
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Isabelle Catelas
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Elena M De-Juan-Pardo
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Dietmar W Hutmacher
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
37
|
Sheffield C, Meyers K, Johnson E, Rajachar RM. Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels 2018; 4:E51. [PMID: 30674827 PMCID: PMC6209271 DOI: 10.3390/gels4020051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The development of biomaterials for the restoration of the normal tissue structure⁻function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in general, and more specifically in composite hydrogel materials, each of these properties provide unique qualities that are essential for proper augmentation and repair following disease and injury. The broad focus of this review is on physical properties in particular, static and dynamic mechanical properties provided by composite hydrogel materials and their link to native tissue architecture and, ultimately, tissue-specific applications for composite hydrogels.
Collapse
Affiliation(s)
- Cassidy Sheffield
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Emil Johnson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
38
|
Wang L, Lu G, Lu Q, Kaplan DL. Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures. ACS Biomater Sci Eng 2018; 4:933-941. [DOI: 10.1021/acsbiomaterials.7b00969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People’s Republic of China
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
39
|
D'Amore A, Luketich SK, Raffa GM, Olia S, Menallo G, Mazzola A, D'Accardi F, Grunberg T, Gu X, Pilato M, Kameneva MV, Badhwar V, Wagner WR. Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials 2018; 150:25-37. [PMID: 29031049 PMCID: PMC5988585 DOI: 10.1016/j.biomaterials.2017.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial. This study aimed to overcome these limitations by introducing double component deposition (DCD), an electrodeposition technique that employs multi-phase electrodes to dictate valve macro and microstructure and resultant function. Results in this report demonstrate the capacity of the DCD method to simultaneously control scaffold macro-scale morphology, mechanics and microstructure while producing fully assembled stent-less multi-leaflet valves composed of microscopic fibers. DCD engineered valve characterization included: leaflet thickness, biaxial properties, bending properties, and quantitative structural analysis of multi-photon and scanning electron micrographs. Quasi-static ex-vivo valve coaptation testing and dynamic organ level functional assessment in a pressure pulse duplicating device demonstrated appropriate acute valve functionality.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuseppe M Raffa
- Istituto mediterraneo trapianti e terapie ad alta specializzazione (ISMETT), UPMC, Italy
| | - Salim Olia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Artificial Heart Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giorgio Menallo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antonino Mazzola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Flavio D'Accardi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Tamir Grunberg
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; ORT Braude College of Engineering, Israel
| | - Xinzhu Gu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele Pilato
- Istituto mediterraneo trapianti e terapie ad alta specializzazione (ISMETT), UPMC, Italy
| | - Marina V Kameneva
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vinay Badhwar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Dep. of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WV, USA
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Kargozar S, Hamzehlou S, Baino F. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1429. [PMID: 29244726 PMCID: PMC5744364 DOI: 10.3390/ma10121429] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023]
Abstract
Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
41
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
42
|
Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 2017; 62:42-63. [PMID: 28736220 DOI: 10.1016/j.actbio.2017.07.028] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. STATEMENT OF SIGNIFICANCE Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues.
Collapse
|
43
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2017; 28:532-554. [PMID: 28125380 PMCID: PMC5597446 DOI: 10.1080/09205063.2017.1286184] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
The primary focus of this work is to present the current challenges of printing scaffolds with concentration gradients of nanoparticles with an aim to improve the processing of these scaffolds. Furthermore, we address how print fidelity is related to material composition and emphasize the importance of considering this relationship when developing complex scaffolds for bone implants. The ability to create complex tissues is becoming increasingly relevant in the tissue engineering community. For bone tissue engineering applications, this work demonstrates the ability to use extrusion-based printing techniques to control the spatial deposition of hydroxyapatite (HA) nanoparticles in a 3D composite scaffold. In doing so, we combined the benefits of synthetic, degradable polymers, such as poly(propylene fumarate) (PPF), with osteoconductive HA nanoparticles that provide robust compressive mechanical properties. Furthermore, the final 3D printed scaffolds consisted of well-defined layers with interconnected pores, two critical features for a successful bone implant. To demonstrate a controlled gradient of HA, thermogravimetric analysis was carried out to quantify HA on a per-layer basis. Moreover, we non-destructively evaluated the tendency of HA particles to aggregate within PPF using micro-computed tomography (μCT). This work provides insight for proper fabrication and characterization of composite scaffolds containing particle gradients and has broad applicability for future efforts in fabricating complex scaffolds for tissue engineering applications.
Collapse
Key Words
- (Tukey’s) Honestly Significant Difference test, HSD
- Analysis of variance, ANOVA
- Atomic force microscopy, AFM
- Diethyl fumarate, DEF
- Dimethyl sulfoxide, DMSO
- Extracellular matrix, ECM
- Fourier transform-infrared spectroscopy, FT-IR
- Hydroxyapatite, HA
- Micro-computed tomography, μCT.
- Phenylbis(246-trimethylbenzoyl)-phosphine oxide, BAPO
- Poly(propylene fumarate), PPF
- Poly(propylene fumarate)-co-poly(ε-caprolactone), PPF-co-PCL
- Polydispersity index, PDI
- Scanning electron microscopy, SEM
- Sodium dodecyl sulfate, SDS
- Stereolithography, STL
- Thermogravimetric analysis, TGA
- Viscosity
- bone tissue engineering
- composites
- compressive modulus
- gradient
Collapse
Affiliation(s)
| | - Jesse K. Placone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
45
|
Schweller RM, Wu ZJ, Klitzman B, West JL. Stiffness of Protease Sensitive and Cell Adhesive PEG Hydrogels Promotes Neovascularization In Vivo. Ann Biomed Eng 2017; 45:1387-1398. [PMID: 28361182 DOI: 10.1007/s10439-017-1822-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 01/10/2023]
Abstract
Materials that support the assembly of new vasculature are critical for regenerative medicine. Controlling the scaffold's mechanical properties may help to optimize neovascularization within implanted biomaterials. However, reducing the stiffness of synthetic hydrogels usually requires decreasing polymer densities or increasing chain lengths, both of which accelerate degradation. We synthesized enzymatically-degradable poly(ethylene glycol) hydrogels with compressive moduli from 2 to 18 kPa at constant polymer density, chain length, and proteolytic degradability by inserting an allyloxycarbonyl functionality into the polymer backbone. This group competes with acrylates during photopolymerization to alter the crosslink network structure and reduce the hydrogel's stiffness. Hydrogels that incorporated (soft) or lacked (stiff) this group were implanted subcutaneously in rats to investigate the role of stiffness on host tissue interactions. Changes in tissue integration were quantified after 4 weeks via the hydrogel area replaced by native tissue (tissue area fraction), yielding 0.136 for softer vs. 0.062 for stiffer hydrogels. Including soluble FGF-2 and PDGF-BB improved these responses to 0.164 and 0.089, respectively. Softer gels exhibited greater vascularization with 8.6 microvessels mm-2 compared to stiffer gels at 2.4 microvessels mm-2. Growth factors improved this to 11.2 and 4.9 microvessels mm-2, respectively. Softer hydrogels tended to display more sustained responses, promoting neovascularization and tissue integration in synthetic scaffolds.
Collapse
Affiliation(s)
- Ryan M Schweller
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zi Jun Wu
- Kenan Plastic Surgery Research Labs, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bruce Klitzman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.,Kenan Plastic Surgery Research Labs, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
46
|
Wu S, Duan B, Qin X, Butcher JT. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomater 2017; 51:89-100. [PMID: 28110071 DOI: 10.1016/j.actbio.2017.01.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. STATEMENT OF SIGNIFICANCE Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury.
Collapse
|
47
|
Jin T, Stanciulescu I. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomater 2017; 49:247-259. [PMID: 27856282 DOI: 10.1016/j.actbio.2016.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels can be potentially used as scaffold material for tissue engineered heart valves (TEHVs) due to their good biocompatibility and biomechanical tunability. The photolithographic patterning technique is an effective approach to pattern PEGDA hydrogels to mimic the mechanical behavior of native biological tissues that are intrinsically anisotropic. The material properties of patterned PEGDA hydrogels largely depend on the pattern topology. In this paper, we adopt a newly proposed computational framework for fibrous biomaterials to numerically investigate the influence of pattern topology, including pattern ratio, orientation and waviness, on the mechanical behavior of patterned PEGDA hydrogels. The material parameters for the base hydrogel and the pattern stripes are directly calibrated from published experimental data. Several experimental observations reported in the literature are captured in the simulation, including the nonlinear relationship between pattern ratio and material linear modulus, and the decrease of material anisotropy when pattern ratio increases. We further numerically demonstrate that a three-region (toe-heel-linear) stress-strain relationship typically exhibited by biological tissues can be obtained by tuning the pattern waviness and the relative stiffness between the base hydrogel and pattern stripes. The numerical strategy and simulation results presented here can provide helpful guidance to optimize pattern design of PEGDA hydrogels toward the targeted material mechanical properties, therefore advance the development of TEHVs. STATEMENT OF SIGNIFICANCE Poly(ethylene glycol) diacrylate (PEGDA) hydrogels can be used as scaffold material for tissue engineered heart values (TEHVs) providing a promising alternative to generate suitable heart valve replacement method. The patterning of PEGDA hydrogels using photolithographic techniques creates materials that mimic the mechanical behavior of native heart valve tissues. However, targeted material properties are obtained via a trial-and-error process. Depending on experiments alone to explore the influence of pattern topology is expensive and time-consuming. We combine a newly proposed computational framework with published experimental data to numerically investigate the influence of pattern geometry on the mechanical behavior of patterned PEGDA hydrogels. The numerical strategy and simulation results presented here can provide guidance to optimize the design of PEGDA hydrogels with targeted material properties, therefore advance the development of TEHVs.
Collapse
Affiliation(s)
- Tao Jin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Ilinca Stanciulescu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
48
|
Xue Y, Sant V, Phillippi J, Sant S. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Acta Biomater 2017; 48:2-19. [PMID: 27780764 DOI: 10.1016/j.actbio.2016.10.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 01/04/2023]
Abstract
Valvular heart diseases are the third leading cause of cardiovascular disease, resulting in more than 25,000 deaths annually in the United States. Heart valve tissue engineering (HVTE) has emerged as a putative treatment strategy such that the designed construct would ideally withstand native dynamic mechanical environment, guide regeneration of the diseased tissue and more importantly, have the ability to grow with the patient. These desired functions could be achieved by biomimetic design of tissue-engineered constructs that recapitulate in vivo heart valve microenvironment with biomimetic architecture, optimal mechanical properties and possess suitable biodegradability and biocompatibility. Synthetic biodegradable elastomers have gained interest in HVTE due to their excellent mechanical compliance, controllable chemical structure and tunable degradability. This review focuses on the state-of-art strategies to engineer biomimetic elastomeric scaffolds for HVTE. We first discuss the various types of biodegradable synthetic elastomers and their key properties. We then highlight tissue engineering approaches to recreate some of the features in the heart valve microenvironment such as anisotropic and hierarchical tri-layered architecture, mechanical anisotropy and biocompatibility. STATEMENT OF SIGNIFICANCE Heart valve tissue engineering (HVTE) is of special significance to overcome the drawbacks of current valve replacements. Although biodegradable synthetic elastomers have emerged as promising materials for HVTE, a mature HVTE construct made from synthetic elastomers for clinical use remains to be developed. Hence, this review summarized various types of biodegradable synthetic elastomers and their key properties. The major focus that distinguishes this review from the current literature is the thorough discussion on the key features of native valve microenvironments and various up-and-coming approaches to engineer synthetic elastomers to recreate these features such as anisotropic tri-layered architecture, mechanical anisotropy, biodegradability and biocompatibility. This review is envisioned to inspire and instruct the design of functional HVTE constructs and facilitate their clinical translation.
Collapse
|
49
|
Xue Y, Yatsenko T, Patel A, Stolz DB, Phillippi JA, Sant V, Sant S. PEGylated poly(ester amide) elastomer scaffolds for soft tissue engineering. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yingfei Xue
- Department of Pharmaceutical Sciences; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Tatyana Yatsenko
- Department of Bioengineering; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Akhil Patel
- Department of Pharmaceutical Sciences; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Donna Beer Stolz
- Center for Biologic Imaging; University of Pittsburgh; Pittsburgh PA 15261 USA
- Departments of Cell Biology and Pathology; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Julie A. Phillippi
- Department of Bioengineering; University of Pittsburgh; Pittsburgh PA 15261 USA
- Department of Cardiothoracic Surgery; University of Pittsburgh; Pittsburgh PA 15219 USA
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA 15219 USA
| | - Vinayak Sant
- Department of Pharmaceutical Sciences; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences; University of Pittsburgh; Pittsburgh PA 15261 USA
- Department of Bioengineering; University of Pittsburgh; Pittsburgh PA 15261 USA
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA 15219 USA
| |
Collapse
|
50
|
Puperi DS, Kishan A, Punske ZE, Wu Y, Cosgriff-Hernandez E, West JL, Grande-Allen KJ. Electrospun Polyurethane and Hydrogel Composite Scaffolds as Biomechanical Mimics for Aortic Valve Tissue Engineering. ACS Biomater Sci Eng 2016; 2:1546-1558. [PMID: 33440590 PMCID: PMC10615647 DOI: 10.1021/acsbiomaterials.6b00309] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a composite scaffold consisting of an electrospun polyurethane and poly(ethylene glycol) hydrogel was investigated for aortic valve tissue engineering. This multilayered approach permitted the fabrication of a scaffold that met the desired mechanical requirements while enabling the 3D culture of cells. The scaffold was tuned to mimic the tensile strength, anisotropy, and extensibility of the natural aortic valve through design of the electrospun polyurethane mesh layer. Valve interstitial cells were encapsulated inside the hydrogel portion of the scaffold around the electrospun mesh, creating a composite scaffold approximately 200 μm thick. The stiffness of the electrospun fibers caused the encapsulated cells to exhibit an activated phenotype that resulted in fibrotic remodeling of the scaffold in a heterogeneous manner. Remodeling was further explored by culturing the scaffolds in both a mechanically constrained state and in a bent state. The constrained scaffolds demonstrated strong fibrotic remodeling with cells aligning in the direction of the mechanical constraint. Bent scaffolds demonstrated that applied mechanical forces could influence cell behavior. Cells seeded on the outside curve of the bend exhibited an activated, fibrotic response, while cells seeded on the inside curve of the bend were a quiescent phenotype, demonstrating potential control over the fibrotic behavior of cells. Overall, these results indicate that this polyurethane/hydrogel scaffold mimics the structural and functional heterogeneity of native valves and warrants further investigation to be used as a model for understanding fibrotic valve disease.
Collapse
Affiliation(s)
- Daniel S. Puperi
- Department of Bioengineering, Rice University, 6500 Main
St, Houston, TX 77030
| | - Alysha Kishan
- Department of Biomedical Engineering, Texas A&M
University, 2121 W Holcombe Blvd, Houston, TX 77030
| | - Zoe E. Punske
- Department of Bioengineering, Rice University, 6500 Main
St, Houston, TX 77030
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, 121
Science Drive, Durham, NC 27708
| | | | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, 121
Science Drive, Durham, NC 27708
| | | |
Collapse
|