1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Chiew MY, Wang E, Lan KC, Lin YR, Hsueh YH, Tu YK, Liu CF, Chen PC, Lu HE, Chen WL. Improving iPSC Differentiation Using a Nanodot Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36030-36046. [PMID: 38951110 PMCID: PMC11261571 DOI: 10.1021/acsami.4c04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.
Collapse
Affiliation(s)
- Men Yee Chiew
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Erick Wang
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- College
of Biological Science and Technology Industrial Ph. D. Program, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kuan-Chun Lan
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8397, Japan
| | - Yan-Ren Lin
- Department
of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, ROC
- Department
of Post Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan, ROC
- School
of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yu-Huan Hsueh
- College
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Department
of Orthopedic Surgery, E-Da Hospital, I-Shou
University, Kaohsiung 824, Taiwan
| | - Yuan-Kun Tu
- Department
of Orthopedic Surgery, E-Da Hospital, I-Shou
University, Kaohsiung 824, Taiwan
| | - Chu-Feng Liu
- Emergency Medicine Department, Kaohsiung
Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan,
ROC
- Ph. D. Degree Program of Biomedical Science
and Engineering, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan, ROC
| | - Po-Chun Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Huai-En Lu
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Institute of Biochemistry and Molecular
Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Bioresource
Collection and Research Center, Food Industry Research
and Development Institute, Hsinchu
City 300, Taiwan, ROC
| | - Wen Liang Chen
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- College
of Biological Science and Technology Industrial Ph. D. Program, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Bioresource
Collection and Research Center, Food Industry Research
and Development Institute, Hsinchu
City 300, Taiwan, ROC
| |
Collapse
|
3
|
Ren Z, Ahn EH, Do M, Mair DB, Monemianesfahani A, Lee PHU, Kim DH. Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. NPJ Microgravity 2024; 10:18. [PMID: 38365862 PMCID: PMC10873406 DOI: 10.1038/s41526-024-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
While the effects of microgravity on inducing skeletal muscle atrophy have been extensively studied, the impacts of microgravity on myogenesis and its mechanisms remain unclear. In this study, we developed a microphysiological system of engineered muscle tissue (EMT) fabricated using a collagen / Matrigel composite hydrogel and murine skeletal myoblasts. This 3D EMT model allows non-invasive quantitative assessment of contractile function. After applying a 7-day differentiation protocol to induce myotube formation, the EMTs clearly exhibited sarcomerogenesis, myofilament formation, and synchronous twitch and tetanic contractions with electrical stimuli. Using this 3D EMT system, we investigated the effects of simulated microgravity at 10-3 G on myogenesis and contractile function utilizing a random positioning machine. EMTs cultured for 5 days in simulated microgravity exhibited significantly reduced contractile forces, myofiber size, and differential expression of muscle contractile, myogenesis regulatory, and mitochondrial biogenesis-related proteins. These results indicate simulated microgravity attenuates myogenesis, resulting in impaired muscle function.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Amir Monemianesfahani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Wu M, Xun M, Chen Y. Adaptation of Vascular Smooth Muscle Cell to Degradable Metal Stent Implantation. ACS Biomater Sci Eng 2023. [PMID: 37364226 DOI: 10.1021/acsbiomaterials.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron-, magnesium-, or zinc-based metal vessel stents support vessel expansion at the period early after implantation and degrade away after vascular reconstruction, eliminating the side effects due to the long stay of stent implants in the body and the risks of restenosis and neoatherosclerosis. However, emerging evidence has indicated that their degradation alters the vascular microenvironment and induces adaptive responses of surrounding vessel cells, especially vascular smooth muscle cells (VSMCs). VSMCs are highly flexible cells that actively alter their phenotype in response to the stenting, similarly to what they do during all stages of atherosclerosis pathology, which significantly influences stent performance. This Review discusses how biodegradable metal stents modify vascular conditions and how VSMCs respond to various chemical, biological, and physical signals attributable to stent implantation. The focus is placed on the phenotypic adaptation of VSMCs and the clinical complications, which highlight the importance of VSMC transformation in future stent design.
Collapse
Affiliation(s)
- Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- School of Nursing, University of South China, Hengyang, Hunan 410001, China
| | - Min Xun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
5
|
Zhao W, Cao S, Cai H, Wu Y, Pan Q, Lin H, Fang J, He Y, Deng H, Liu Z. Chitosan/silk fibroin biomimic scaffolds reinforced by cellulose acetate nanofibers for smooth muscle tissue engineering. Carbohydr Polym 2022; 298:120056. [DOI: 10.1016/j.carbpol.2022.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
6
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
8
|
Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater 2022; 15:82-102. [PMID: 35386347 PMCID: PMC8940767 DOI: 10.1016/j.bioactmat.2021.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual uncovering of substrate mechanical characteristics that can affect cell-matrix interactions, much progress has been made to unravel substrate stiffness-mediated cellular response as well as its underlying mechanisms. Yet, as a part of cell-matrix interaction biology, this field remains in its infancy, and the detailed molecular mechanisms are still elusive regarding scaffold-modulated tissue regeneration. This review provides an overview of recent progress in the area of the substrate stiffness-mediated cellular responses, including 1) the physical determination of substrate stiffness on cell fate and tissue development; 2) the current exploited approaches to manipulate the stiffness of scaffolds; 3) the progress of recent researches to reveal the role of substrate stiffness in cellular responses in some representative tissue-engineered regeneration varying from stiff tissue to soft tissue. This article aims to provide an up-to-date overview of cell mechanobiology research in substrate stiffness mediated cellular response and tissue regeneration with insightful information to facilitate interdisciplinary knowledge transfer and enable the establishment of prognostic markers for the design of suitable biomaterials. Substrate stiffness physically determines cell fate and tissue development. Rational design of scaffolds requires the understanding of cell-matrix interactions. Substrate stiffness depends on scaffold molecular-constituent-structure interaction. Substrate stiffness-mediated cellular responses vary in different tissues.
Collapse
|
9
|
Sung B, Kim DH, Kim MH, Vigolo D. Combined Effect of Matrix Topography and Stiffness on Neutrophil Shape and Motility. Adv Biol (Weinh) 2022; 6:e2101312. [PMID: 35347887 DOI: 10.1002/adbi.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Indexed: 01/27/2023]
Abstract
The crawling behavior of leukocytes is driven by the cell morphology transition, which is a direct manifestation of molecular motor machinery. The topographical anisotropy and mechanical stiffness of the substrates are the main physical cues that affect leukocytes' shape generation and migratory responses. However, their combined effects on the cell morphology and motility have been poorly understood, particularly for neutrophils, which are the fastest reacting leukocytes against infections and wounds. Here, spatiotemporally correlated physical parameters are shown, which determine the neutrophil shape change during migratory processes, in response to surface topography and elasticity. Guided crawling and shape generation of individual neutrophils, activated by a uniform concentration of a chemoattractant, are analyzed by adopting elasticity-tunable micropatterning and live cell imaging techniques. Whole cell-level image analysis is performed based on a planar geometric quantification of cell shape and motility. The findings show that the pattern anisotropy and elastic modulus of the substrate induce synergic effects on the shape anisotropy, deformability, and polarization/alignment of crawling neutrophils. How the morphology-motility relationship is affected by different surface microstructures and stiffness is demonstrated. These results imply that the neutrophil shape-motility correlations can be utilized for controlling the immune cell functions with predefined physical microenvironments.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbH, 66123, Saarbrücken, Germany.,Division of Energy & Environment Technology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
10
|
Spheres-in-Grating Assemblies with Altered Photoluminescence and Wetting Properties. NANOMATERIALS 2022; 12:nano12071084. [PMID: 35407201 PMCID: PMC9000395 DOI: 10.3390/nano12071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.
Collapse
|
11
|
Choi HK, Kim CH, Lee SN, Kim TH, Oh BK. Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. NANO CONVERGENCE 2021; 8:40. [PMID: 34862954 PMCID: PMC8643291 DOI: 10.1186/s40580-021-00291-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 05/04/2023]
Abstract
The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea.
| | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea.
| |
Collapse
|
12
|
Johnson RT, Solanki R, Warren DT. Mechanical programming of arterial smooth muscle cells in health and ageing. Biophys Rev 2021; 13:757-768. [PMID: 34745374 PMCID: PMC8553715 DOI: 10.1007/s12551-021-00833-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Arterial smooth muscle cells (ASMCs), the predominant cell type within the arterial wall, detect and respond to external mechanical forces. These forces can be derived from blood flow (i.e. pressure and stretch) or from the supporting extracellular matrix (i.e. stiffness and topography). The healthy arterial wall is elastic, allowing the artery to change shape in response to changes in blood pressure, a property known as arterial compliance. As we age, the mechanical forces applied to ASMCs change; blood pressure and arterial wall rigidity increase and result in a reduction in arterial compliance. These changes in mechanical environment enhance ASMC contractility and promote disease-associated changes in ASMC phenotype. For mechanical stimuli to programme ASMCs, forces must influence the cell's load-bearing apparatus, the cytoskeleton. Comprised of an interconnected network of actin filaments, microtubules and intermediate filaments, each cytoskeletal component has distinct mechanical properties that enable ASMCs to respond to changes within the mechanical environment whilst maintaining cell integrity. In this review, we discuss how mechanically driven cytoskeletal reorganisation programmes ASMC function and phenotypic switching.
Collapse
Affiliation(s)
| | - Reesha Solanki
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | - Derek T. Warren
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| |
Collapse
|
13
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
14
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
15
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Krajnik A, Brazzo JA, Vaidyanathan K, Das T, Redondo-Muñoz J, Bae Y. Phosphoinositide Signaling and Mechanotransduction in Cardiovascular Biology and Disease. Front Cell Dev Biol 2020; 8:595849. [PMID: 33381504 PMCID: PMC7767973 DOI: 10.3389/fcell.2020.595849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides, which are membrane-bound phospholipids, are critical signaling molecules located at the interface between the extracellular matrix, cell membrane, and cytoskeleton. Phosphoinositides are essential regulators of many biological and cellular processes, including but not limited to cell migration, proliferation, survival, and differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the years, a multitude of studies have uniquely implicated phosphoinositide signaling as being crucial in cardiovascular biology and a dominant force in the development of cardiovascular disease and its progression. Independently, the cellular transduction of mechanical forces or mechanotransduction in cardiovascular cells is widely accepted to be critical to their homeostasis and can drive aberrant cellular phenotypes and resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide signaling in the cardiovascular system and the dominant regulation of cardiovascular cell functions by mechanotransduction, the molecular mechanistic overlap and extent to which these two major signaling modalities converge in cardiovascular cells remain unclear. In this review, we discuss and synthesize recent findings that rightfully connect phosphoinositide signaling to cellular mechanotransduction in the context of cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how specific phosphoinositide subspecies have been shown to mediate biomechanically sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the direct interaction of phosphoinositides with mechanically sensitive membrane-bound ion channels in response to mechanical stimuli. Furthermore, we explore the role of phosphoinositide subspecies in association with critical downstream effectors of mechanical signaling in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kalyanaraman Vaidyanathan
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Javier Redondo-Muñoz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
19
|
Synergistic effects of gelatin and nanotopographical patterns on biomedical PCL patches for enhanced mechanical and adhesion properties. J Mech Behav Biomed Mater 2020; 114:104167. [PMID: 33168488 DOI: 10.1016/j.jmbbm.2020.104167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated. The nanotopographical pattern increased the surface area of PCL, allowing more gelatin to be coated on its surface. The biomedical patch made from gelatin-coated nanopatterned PCL showed strong mechanical and adhesive properties (tensile strength: ~14.5 MPa; Young's modulus: ~60.2 MPa; and normal and shear adhesive forces: ~1.81 N/cm2 and ~352.3 kPa) as well as good biocompatibility. Although the nanotopographical pattern or gelatin coating alone could enhance these physical properties of PCL in both dry and wet environmental conditions, both factors in combination further strengthened the properties, indicating the importance of synergistic cues in driving the mechanical behavior of biomedical materials. This strength-enhanced biomedical patch will be especially useful for the treatment of tissues such as cartilage, tendon, and bone.
Collapse
|
20
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
21
|
Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater 2020; 112:75-86. [PMID: 32505802 DOI: 10.1016/j.actbio.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Bone injuries are common and new strategies are desired for achieving ideal bone regeneration for bone defect repair. Scaffolds with bone-mimicking characteristics may provide an appropriate microenvironment to promote bone regeneration. Meanwhile, mechanical stimulation effectively regulates a wide range of cellular behaviors such as cell proliferation and differentiation. In this study, biomimetic multi-layer cell-collagen constructs with angle-ply structural feature were prepared by assembling micropatterned collagen membranes on which aligned MC3T3-E1 cells were cultured. The anisotropic microgrooved collagen membranes effectively guided the alignment of cells and promoted the osteogenic differentiation of them. To further promote cell differentiation and extracellular matrix production, the multi-layer cell-collagen constructs were cultured under mechanical conditioning through cyclic stretching. It was found that the constructs with both cell alignment and mechanical conditioning resulted in better osteogenic potential than those with cell alignment or mechanical conditioning alone. Upon implantation into the critical-sized calvarial defects of mice, the constructs with both cell alignment and mechanical conditioning achieved best new bone formation efficacy. Together, findings from this study reveal that synergized use of microstructural and mechanical cues may provide an effective new approach toward bone regeneration. STATEMENT OF SIGNIFICANCE: Biomimicking is an effective strategy to promote bone regeneration for repairing bone defects. Although numerous studies which micro-structurally mimicked native bone using various scaffolds, far less studies have paid attention to the mechanical environment of bone. In this study, angle-ply collagen membrane-supported cell sheets were prepared and pre-conditioned using mechanical loading prior to implantation at bone defects. The constructs with cell alignment and subjected to mechanical conditioning resulted in better osteogenic differentiation of cells in vitro and new bone formation in vivo than those with cell alignment or mechanical conditioning alone. Therefore, recapitulation of both microstructural and mechanical features of native bone may result in a synergistic effect and provides an effective approach toward bone regeneration.
Collapse
|
22
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
23
|
Dayekh K, Mequanint K. Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells. ACS Biomater Sci Eng 2020; 6:2696-2706. [DOI: 10.1021/acsbiomaterials.0c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khalil Dayekh
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|
24
|
Tian B, Ding X, Song Y, Chen W, Liang J, Yang L, Fan Y, Li S, Zhou Y. Matrix stiffness regulates SMC functions via TGF-β signaling pathway. Biomaterials 2019; 221:119407. [PMID: 31442697 DOI: 10.1016/j.biomaterials.2019.119407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
The stiffness change of the vessel wall is involved in many pathological processes of the blood vessel. However, how stiffness changes regulate vascular cell phenotype is not well understood. In this study, we investigated the effects of matrix stiffness on the phenotype and functions of vascular smooth muscle cells (SMCs). SMCs were cultured on the matrices with the stiffness between 1 and 100 kPa. The expression of contractile markers calponin-1 (CNN1) and smoothelin (SMTN) increased with stiffness; in contrast, the expression of synthetic markers osteopontin (OPN) and epiregulin (EREG) were the highest on the soft surface (1 kPa). In addition, matrix metalloproteinase 2 (MMP-2) was significantly upregulated on 1-kPa surface. Consistently, the stiffness of atherosclerotic lesions in human arteries decreased by up to 10 folds compared to normal area (>40 kPa), which was accompanied by a decrease of CNN1 expression and collagen content and an increase of OPN and MMP-2 in the area of lipid deposition. Furthermore, the phosphorylation of Smad2/3 increased with matrix stiffness; when TGF-β signaling pathway was inhibited, the stiffness effects on the SMCs were reversed. Our findings suggest that matrix stiffness regulates SMC phenotype and matrix remodeling through TGF-β signal pathway. This study unravels a mechanobiological mechanism in vascular remodeling, and will help us develop strategies for vascular tissue engineering, disease modeling and therapies.
Collapse
Affiliation(s)
- Baoxiang Tian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xili Ding
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yang Song
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Weicong Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Song Li
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Van den Bergh G, Opdebeeck B, D'Haese PC, Verhulst A. The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends Mol Med 2019; 25:1133-1146. [PMID: 31522956 DOI: 10.1016/j.molmed.2019.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Arterial media calcification and arterial stiffness are independent predictors of cardiovascular mortality. Both processes reinforce one another, creating a vicious cycle in which transdifferentiation of endothelial cells and vascular smooth muscle cells play a central role. Physiological functioning of vascular smooth muscle cells in the arterial medial layer greatly depends on normal endothelial cell behavior. Endothelial or intimal layer cells are the primary sensors of pathological triggers circulating in the blood during, for example, ageing or inflammation, and often can be seen as initiators of this vicious cycle. As such, the search for treatment of arterial media calcification, which until now has been mainly concentrated at the level of the vascular smooth cell, may need to be expanded to intimal layer targets.
Collapse
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
Yi B, Shen Y, Tang H, Wang X, Li B, Zhang Y. Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6867-6880. [PMID: 30676736 DOI: 10.1021/acsami.9b00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospun uniaxially aligned ultrafine fibers show great promise in constructing vascular grafts mimicking the anisotropic architecture of native blood vessels. However, understanding how the stiffness of aligned fibers would impose influences on the functionality of vascular cells has yet to be explored. The present study aimed to explore the stiffness effects of electrospun aligned fibrous substrates (AFSs) on phenotypic modulation in vascular smooth muscle cells (SMCs). A stable jet coaxial electrospinning (SJCES) method was employed to generate highly aligned ultrafine fibers of poly(l-lactide- co-caprolactone)/poly(l-lactic acid) (PLCL/PLLA) in shell-core configuration with a remarkably varying stiffness region from 0.09 to 13.18 N/mm. We found that increasing AFS stiffness had no significant influence on the cellular shape and orientation along the fiber direction with the cultured human umbilical artery SMCs (huaSMCs) but inhibited the cell adhesion rate, promoted cell proliferation and migration, and especially enhanced the F-actin fiber assembly in the huaSMCs. Notably, higher fiber stiffness resulted in significant downregulation of contractile markers like alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain, calponin, and desmin, whereas upregulated the gene expression of pathosis-associated osteopontin ( OPN) in the huaSMCs. These results allude to the phenotype of huaSMCs on stiffer AFSs being miserably modulated into a proliferative and pathological state. Consequently, it adversely affected the proliferation and migration behavior of human umbilical vein endothelial cells as well. Moreover, stiffer AFSs also revealed to incur significant upregulation of inflammatory gene expression, such as interleukin-6 ( IL-6), monocyte chemoattractant protein-1 ( MCP-1), and intercellular adhesion molecule-1 ( ICAM-1), in the huaSMCs. This study stresses that although electrospun aligned fibers are capable of modulating native-like oriented cell morphology and even desired phenotype realization or transition, they might not always direct cells into correct functionality. The integrated fiber stiffness underlying is thereby a critical parameter to consider in engineering structurally anisotropic tissue-engineered vascular grafts to ultimately achieve long-term patency.
Collapse
Affiliation(s)
| | | | | | | | - Bin Li
- Department of Orthopaedics , The First Affiliated Hospital of Soochow University , Suzhou 215006 , China
- Orthopaedic Institute, Medical College , Soochow University , Suzhou 215007 , China
- China Orthopaedic Regenerative Medicine Group (CORMed) , Hangzhou 310058 , China
| | - Yanzhong Zhang
- China Orthopaedic Regenerative Medicine Group (CORMed) , Hangzhou 310058 , China
| |
Collapse
|
28
|
Diaz Quiroz JF, Rodriguez PD, Erndt-Marino JD, Guiza V, Balouch B, Graf T, Reichert WM, Russell B, Höök M, Hahn MS. Collagen-Mimetic Proteins with Tunable Integrin Binding Sites for Vascular Graft Coatings. ACS Biomater Sci Eng 2018; 4:2934-2942. [DOI: 10.1021/acsbiomaterials.8b00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Felipe Diaz Quiroz
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Patricia Diaz Rodriguez
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Josh D. Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Viviana Guiza
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tyler Graf
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - William M. Reichert
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Brooke Russell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
29
|
Le V, Lee J, Chaterji S, Spencer A, Liu YL, Kim P, Yeh HC, Kim DH, Baker AB. Syndecan-1 in mechanosensing of nanotopological cues in engineered materials. Biomaterials 2018; 155:13-24. [PMID: 29156422 PMCID: PMC5738284 DOI: 10.1016/j.biomaterials.2017.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
The cells of the vascular system are highly sensitive to biophysical cues from their local cellular microenvironment. To engineer improved materials for vascular devices and delivery of cell therapies, a key challenge is to understand the mechanisms that cells use to sense biophysical cues from their environment. Syndecans are heparan sulfate proteoglycans (HSPGs) that consist of a protein core modified with heparan sulfate glycosaminoglycan chains. Due to their presence on the cell surface and their interaction with cytoskeletal and focal adhesion associated molecules, cell surface proteoglycans are well poised to serve as mechanosensors of the cellular microenvironment. Nanotopological cues have become recognized as major regulators of cell growth, migration and phenotype. We hypothesized that syndecan-1 could serve as a mechanosensor for nanotopological cues and can mediate the responsiveness of vascular smooth muscle cells to nanoengineered materials. We created engineered substrates made of polyurethane acrylate with nanogrooves using ultraviolet-assisted capillary force lithography. We cultured vascular smooth muscle cells with knockout of syndecan-1 on engineered substrates with varying compliance and nanotopology. We found that knockout of syndecan-1 reduced alignment of vascular smooth muscle cells to the nanogrooves under inflammatory treatments. In addition, we found that loss of syndecan-1 increased nuclear localization of Yap/Taz and phospho-Smad2/3 in response to nanogrooves. Syndecan-1 knockout vascular smooth muscle cells also had elevated levels of Rho-associated protein kinase-1 (Rock1), leading to increased cell stiffness and an enhanced contractile state in the cells. Together, our findings support that syndecan-1 knockout leads to alterations in mechanosensing of nanotopographical cues through alterations of in rho-associated signaling pathways, cell mechanics and mediators of the Hippo and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jason Lee
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne Spencer
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yen-Liang Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Peter Kim
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Deok-Ho Kim
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Xie SA, Zhang T, Wang J, Zhao F, Zhang YP, Yao WJ, Hur SS, Yeh YT, Pang W, Zheng LS, Fan YB, Kong W, Wang X, Chiu JJ, Zhou J. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials 2018; 155:203-216. [DOI: 10.1016/j.biomaterials.2017.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
|
31
|
Kim P, Chu N, Davis J, Kim DH. Mechanoregulation of Myofibroblast Fate and Cardiac Fibrosis. ADVANCED BIOSYSTEMS 2018; 2:1700172. [PMID: 31406913 PMCID: PMC6690497 DOI: 10.1002/adbi.201700172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During myocardial infarction, myocytes die and are replaced by a specialized fibrotic extracellular matrix, otherwise known as scarring. Fibrotic scarring presents a tremendous hemodynamic burden on the heart, as it creates a stiff substrate, which resists diastolic filling. Fibrotic mechanisms result in permanent scarring which often leads to hypertrophy, arrhythmias, and a rapid progression to failure. Despite the deep understanding of fibrosis in other tissues, acquired through previous investigations, the mechanisms of cardiac fibrosis remain unclear. Recent studies suggest that biochemical cues as well as mechanical cues regulate cells in myocardium. However, the steps in myofibroblast transdifferentiation, as well as the molecular mechanisms of such transdifferentiation in vivo, are poorly understood. This review is focused on defining myofibroblast physiology, scar mechanics, and examining current findings of myofibroblast regulation by mechanical stress, stiffness, and topography for understanding fibrotic disease dynamics.
Collapse
Affiliation(s)
- Peter Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Nick Chu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
32
|
Lam NT, Muldoon TJ, Quinn KP, Rajaram N, Balachandran K. Valve interstitial cell contractile strength and metabolic state are dependent on its shape. Integr Biol (Camb) 2017; 8:1079-1089. [PMID: 27713997 DOI: 10.1039/c6ib00120c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of valvular interstitial cell (VIC) architecture in regulating cardiac valve function and pathology is not well understood. VICs are known to be more elongated in a hypertensive environment compared to those in a normotensive environment. We have previously reported that valve tissues cultured under hypertensive conditions are prone to acute pathological alterations in cell phenotype and contractility. We therefore aimed to rigorously study the relationship between VIC shape, contractile output and other functional indicators of VIC pathology. We developed an in vitro model to engineer VICs to take on the same shapes as those seen in normal and hypertensive conditions. VICs with longer cellular and nuclear shapes, as seen in hypertensive conditions, had greater contractile response to endothelin-1 that correlated with increased anisotropy of the actin architecture. These elongated VICs also demonstrated altered cell metabolism through a decreased optical redox ratio, which coincided with increased cellular proliferation. In the presence of actin polymerization inhibitor, however, these functional responses were significantly reduced, suggesting the important role of cytoskeletal actin organization in regulating cellular responses to abnormal shape. Overall, these results demonstrate the relationship between cell shape, cytoskeletal and nuclear organization, with functional output including contractility, metabolism, and proliferation.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Timothy J Muldoon
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR 72701, USA.
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR 72701, USA.
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR 72701, USA.
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR 72701, USA.
| |
Collapse
|
33
|
Henderson K, Sligar AD, Le VP, Lee J, Baker AB. Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28945009 DOI: 10.1002/adhm.201700556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are an appealing potential therapy for vascular diseases; however, many challenges remain in their clinical translation. While the use of biochemical, pharmacological, and substrate-mediated treatments to condition MSCs has been subjected to intense investigation, there has been far less exploration of using these treatments in combination with applied mechanical force for conditioning MSCs toward vascular phenotypes. This review summarizes the current understanding of the use of applied mechanical forces to differentiate MSCs into vascular cells and enhance their therapeutic potential for cardiovascular disease. First recent work on the use of material-based mechanical cues for differentiation of MSCs into vascular and cardiovascular phenotypes is examined. Then a summary of the studies using mechanical stretch or shear stress in combination with biochemical treatments to enhance vascular phenotypes in MSCs is presented.
Collapse
Affiliation(s)
- Kayla Henderson
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Andrew D. Sligar
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Victoria P. Le
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Jason Lee
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Aaron B. Baker
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
- Institute for Cellular and Molecular Biology; University of Texas at Austin; Austin 78712 TX USA
- The Institute for Computational Engineering and Sciences; University of Texas at Austin; Austin 78712 TX USA
- Institute for Biomaterials; Drug Delivery and Regenerative Medicine; University of Texas at Austin; Austin 78712 TX USA
| |
Collapse
|
34
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
35
|
Zhou Q, Castañeda Ocampo O, Guimarães CF, Kühn PT, van Kooten TG, van Rijn P. Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial Micro/nanotopographical Gradients. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31433-31445. [PMID: 28825457 PMCID: PMC5609122 DOI: 10.1021/acsami.7b08237] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
High-throughput screening (HTS) methods based on topography gradients or arrays have been extensively used to investigate cell-material interactions. However, it is a huge technological challenge to cost efficiently prepare topographical gradients of inorganic biomaterials due to their inherent material properties. Here, we developed a novel strategy translating PDMS-based wrinkled topography gradients with amplitudes from 49 to 2561 nm and wavelengths between 464 and 7121 nm to inorganic biomaterials (SiO2, Ti/TiO2, Cr/CrO3, and Al2O3) which are frequently used clinical materials. Optimal substratum conditions promoted human bone-marrow derived mesenchymal stem cell alignment, elongation, cytoskeleton arrangement, filopodia development as well as cell adhesion in vitro, which depended both on topography and interface material. This study displays a positive correlation between cell alignment and the orientation of cytoskeleton, filopodia, and focal adhesions. This platform vastly minimizes the experimental efforts both for inorganic material interface engineering and cell biological assessments in a facile and effective approach. The practical application of the HTS technology is expected to aid in the acceleration of developments of inorganic clinical biomaterials.
Collapse
Affiliation(s)
- Qihui Zhou
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Castañeda Ocampo
- Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Carlos F. Guimarães
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Philipp T. Kühn
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo G. van Kooten
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Zeng YN, Kang YL, Rau LR, Hsu FY, Tsai SW. Construction of cell-containing, anisotropic, three-dimensional collagen fibril scaffolds using external vibration and their influence on smooth muscle cell phenotype modulation. ACTA ACUST UNITED AC 2017; 12:045019. [PMID: 28569670 DOI: 10.1088/1748-605x/aa766d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Numerous methods have been developed for preparing guiding channels/tracks to promote the alignment of highly oriented cell types. However, these manufacture methods cannot fabricate interconnected guiding channels within three-dimensional (3D) scaffolds. Providing a suitable architectural scaffold for cell attachment could lead cells to more rapidly display a desired phenotype and perform their unique functions. Previously, we developed a simple device composed of a pneumatic membrane that can generate a tunable vibration frequency to apply physical stimulation for fabricating a 3D aligned collagen fibril matrix with the characteristic D-period structure in one step. In the present study, we aimed to evaluate the cellular responses of thoracic aortic smooth muscle cells (A7r5) incorporated during the fabrication of 3D-aligned collagen fibrils with D-periods and compared these cells with those incorporated in a 3D, randomly distributed collagen matrix and in a two-dimensional (2D) aligned substrate after up to 10 days of culture. The results consistently demonstrated that A7r5 cells cultured within the 3D and 2D anisotropic matrices were aligned. Cells cultured in the 3D aligned scaffolds exhibited a higher proliferation rate as well as higher F-actin and smoothelin expression levels compared with cells cultured in 3D randomly distributed scaffolds. Together, these results indicate that a 3D-reconstituted, anisotropic collagen matrix fabricated by our process provides synergistic effects of tension stimulation and matrix stiffness on encapsulated cells and can direct A7r5 cells to transform from a synthetic phenotype into a contractile state.
Collapse
Affiliation(s)
- Yao-Nan Zeng
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol 2016; 97:153-61. [PMID: 27167848 PMCID: PMC5482716 DOI: 10.1016/j.yjmcc.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Fibrotic remodeling is a hallmark of most forms of cardiovascular disease and a strong prognostic indicator of the advancement towards heart failure. Myofibroblasts, which are a heterogeneous cell-type specialized for extracellular matrix (ECM) secretion and tissue contraction, are the primary effectors of the heart's fibrotic response. This review is focused on defining myofibroblast physiology, its progenitor cell populations, and the core signaling network that orchestrates myofibroblast differentiation as a way of understanding the basic determinants of fibrotic disease in the heart and other tissues.
Collapse
Affiliation(s)
- April Stempien-Otero
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Davis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Carlier A, Alsberg E. Harnessing Topographical Cues for Tissue Engineering. Tissue Eng Part A 2016; 22:995-6. [PMID: 27401908 DOI: 10.1089/ten.tea.2016.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Aurélie Carlier
- 1 MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University , Maastricht, The Netherlands
| | - Eben Alsberg
- 2 Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
40
|
Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 2016; 86:1-10. [PMID: 26874887 DOI: 10.1016/j.biomaterials.2016.01.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/21/2022]
Abstract
Coordinated extracellular matrix spatiotemporal reorganization helps regulate cellular differentiation, maturation, and function in vivo, and is therefore vital for the correct formation, maintenance, and healing of complex anatomic structures. In order to evaluate the potential for cultured cells to respond to dynamic changes in their in vitro microenvironment, as they do in vivo, the collective behavior of primary cardiac muscle cells cultured on nanofabricated substrates with controllable anisotropic topographies was studied. A thermally induced shape memory polymer (SMP) was employed to assess the effects of a 90° transition in substrate pattern orientation on the contractile direction and structural organization of cardiomyocyte sheets. Cardiomyocyte sheets cultured on SMPs exhibited anisotropic contractions before shape transition. 48 h after heat-induced shape transition, the direction of cardiomyocyte contraction reoriented significantly and exhibited a bimodal distribution, with peaks at ∼45 and -45° (P < 0.001). Immunocytochemical analysis highlighted the significant structural changes that the cells underwent in response to the shift in underlying topography. The presented results demonstrate that initial anisotropic nanotopographic cues do not permanently determine the organizational fate or contractile properties of cardiomyocytes in culture. Given the importance of surface cues in regulating primary and stem cell development, investigation of such tunable nanotopographies may have important implications for advancing cellular maturation and performance in vitro, as well as improving our understanding of cellular development in response to dynamic biophysical cues.
Collapse
|
41
|
Yang HS, Lee B, Tsui JH, Macadangdang J, Jang SY, Im SG, Kim DH. Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation. Adv Healthc Mater 2016; 5:137-45. [PMID: 25988569 PMCID: PMC5003176 DOI: 10.1002/adhm.201500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that form the extracellular matrix of skeletal muscle tissue are mimicked using nanopatterns created with capillary force lithography. Electron beam deposition is then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, are cultured for 7 d on substrates and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation are assessed. It is found that biomimetic nanotopography enhances the formation of aligned myotubes and the addition of an electroconductive coating promotes myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD, and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Bora Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Seok-Young Jang
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
42
|
Zhou Q, Kühn PT, Huisman T, Nieboer E, van Zwol C, van Kooten TG, van Rijn P. Directional nanotopographic gradients: a high-throughput screening platform for cell contact guidance. Sci Rep 2015; 5:16240. [PMID: 26572879 PMCID: PMC4647116 DOI: 10.1038/srep16240] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
A novel approach was developed using PDMS-substrates with surface-aligned nanotopography gradients, varying unidirectional in amplitude and wavelength, for studying cell behavior with regard to adhesion and alignment. The gradients target more surface feature parameters simultaneously and provide more information with fewer experiments and are therefore vastly superior with respect to individual topography substrates. Cellular adhesion experiments on non-gradient aligned nanowrinkled surfaces displayed a linear relationship of osteoblast cell adhesion with respect to topography aspect ratio. Additionally, an aspect ratio of 0.25 was found to be most efficient for cell alignment. Modification of the surface preparation method allowed us to develop an approach for creating surface nanotopography gradients which innovatively provided a superior data collection with fewer experiments showing that 1) low amplitude with small wavenumber is best for osteoblast cell adhesion 2) indeed higher aspect ratios are favorable for alignment however only with features between 80-180 nm in amplitude and 450-750 nm in wavelength with a clear transition between adhesion and alignment efficiency and 3) disproved a linear relationship of cell adhesion towards aspect ratio as was found for single feature substrate analysis.
Collapse
Affiliation(s)
- Qihui Zhou
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Philipp T. Kühn
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Thirsa Huisman
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Elsje Nieboer
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Charlotte van Zwol
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Theo G. van Kooten
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Patrick van Rijn
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| |
Collapse
|
43
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Zhou Q, Xie J, Bao M, Yuan H, Ye Z, Lou X, Zhang Y. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells. J Mater Chem B 2015; 3:4439-4450. [PMID: 32262788 DOI: 10.1039/c5tb00051c] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In tissue engineering research, aligned electrospun ultrafine fibers have been shown to regulate cellular alignment and relevant functional expression, but the imposed effect of individual fiber surface nanotopography on cell behaviour has not been examined closely. This work investigates the impact of superimposing a nano-pore feature atop individual fiber surfaces on the responsive behaviour of human vascular smooth muscle cells (vSMCs) for blood vessel tissue engineering. Well-aligned ultrafine poly(l-lactic acid) (PLLA) microfibers with an average fiber diameter of ca. 1.6 μm were fabricated by using a novel stable jet electrospinning (SJES) method. Ellipse-shaped nano-pores with varied aspect ratios (defined as long-to-short axis ratio) of 2.7-3.9, corresponding to a surface nano-roughness in the range of 54.8-110.0 nm, were in situ generated onto individual fiber surfaces by varying ambient humidity from 45% to 75% during the SJES process. The presence of elliptical nano-pores on fiber surfaces affected the characteristic anisotropic wettability of the aligned PLLA fibers and contributed to greater protein adsorption (up to 17.59 μg mg-1). A 7 day in vitro assessment of human umbilical arterial SMCs cultured on these aligned nano-porous fiber substrates indicated that cellular responses were in close correlation with the elliptical nano-pore feature. A pronounced fiber surface nanotopography was superior in soliciting favorable cellular responses, leading to enhanced cell attachment, proliferation, alignment, expression of the vascular matrix proteins and maintenance of a contractile phenotype. This study thus suggests that introduction of an elliptical nano-pore feature to the aligned microfiber surfaces could provide additional dimensionality of topographical cues to modulate the vSMC responses when using the aligned electrospun ultrafine fibers for engineering vascular constructs.
Collapse
Affiliation(s)
- Qihui Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Jeon H, Tsui JH, Jang SI, Lee JH, Park S, Mun K, Boo YC, Kim DH. Combined effects of substrate topography and stiffness on endothelial cytokine and chemokine secretion. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4525-4532. [PMID: 25658848 PMCID: PMC4937831 DOI: 10.1021/acsami.5b00554] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endothelial physiology is regulated not only by humoral factors, but also by mechanical factors such as fluid shear stress and the underlying cellular matrix microenvironment. The purpose of the present study was to examine the effects of matrix topographical cues on the endothelial secretion of cytokines/chemokines in vitro. Human endothelial cells were cultured on nanopatterned polymeric substrates with different ratios of ridge to groove widths (1:1, 1:2, and 1:5) and with different stiffnesses (6.7 MPa and 2.5 GPa) in the presence and absence of 1.0 ng/mL TNF-α. The levels of cytokines/chemokines secreted into the conditioned media were analyzed with a multiplexed bead-based sandwich immunoassay. Of the nanopatterns tested, the 1:1 and 1:2 type patterns were found to induce the greatest degree of endothelial cell elongation and directional alignment. The 1:2 type nanopatterns lowered the secretion of inflammatory cytokines such as IL-1β, IL-3, and MCP-1, compared to unpatterned substrates. Additionally, of the two polymers tested, it was found that the stiffer substrate resulted in significant decreases in the secretion of IL-3 and MCP-1. These results suggest that substrates with specific extracellular nanotopographical cues or stiffnesses may provide anti-atherogenic effects like those seen with laminar shear stresses by suppressing the endothelial secretion of cytokines and chemokines involved in vascular inflammation and remodeling.
Collapse
Affiliation(s)
- Hyeona Jeon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, 700-422, Republic of Korea
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Sue Im Jang
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, 700-422, Republic of Korea
| | - Justin H. Lee
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Soojin Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, 700-422, Republic of Korea
| | - Kevin Mun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, 700-422, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, 700-422, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
46
|
Tu C, Das S, Baker AB, Zoldan J, Suggs LJ. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS NANO 2015; 9:3436-52. [PMID: 25844518 PMCID: PMC5494973 DOI: 10.1021/nn507269g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.
Collapse
|
47
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|