1
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
2
|
Cherif H, Li L, Snuggs J, Li X, Sammon C, Li J, Beckman L, Haglund L, Le Maitre CL. Injectable hydrogel induces regeneration of naturally degenerate human intervertebral discs in a loaded organ culture model. Acta Biomater 2024; 176:201-220. [PMID: 38160855 DOI: 10.1016/j.actbio.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc (IVD). This study investigates the ability of an injectable hydrogel (NPgel), to inhibit catabolic protein expression and promote matrix expression in human nucleus pulposus (NP) cells within a tissue explant culture model isolated from degenerate discs. Furthermore, the injection capacity of NPgel into naturally degenerate whole human discs, effects on mechanical function, and resistance to extrusion during loading were investigated. Finally, the induction of potential regenerative effects in a physiologically loaded human organ culture system was investigated following injection of NPgel with or without bone marrow progenitor cells. Injection of NPgel into naturally degenerate human IVDs increased disc height and Young's modulus, and was retained during extrusion testing. Injection into cadaveric discs followed by culture under physiological loading increased MRI signal intensity, restored natural biomechanical properties and showed evidence of increased anabolism and decreased catabolism with tissue integration observed. These results provide essential proof of concept data supporting the use of NPgel as an injectable therapy for disc regeneration. STATEMENT OF SIGNIFICANCE: Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc. This study investigated the potential regenerative properties of an injectable hydrogel system (NPgel) within human tissue samples. To mimic the human in vivo conditions and the unique IVD niche, a dynamically loaded intact human disc culture system was utilised. NPgel improved the biomechanical properties, increased MRI intensity and decreased degree of degeneration. Furthermore, NPgel induced matrix production and decreased catabolic factors by the native cells of the disc. This manuscript provides evidence for the potential use of NPgel as a regenerative biomaterial for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hosni Cherif
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Li Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Joseph Snuggs
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Jianyu Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorne Beckman
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Christine L Le Maitre
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
3
|
Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci 2023; 11:4630-4643. [PMID: 37204288 PMCID: PMC10294806 DOI: 10.1039/d3bm00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an ex vivo caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM-co-DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS. Following enzymatic induction of degeneration using 1 mg mL-1 collagenase and 2 U mL-1 chondroitinase ABC within the LDCS for 7 days, IVDs were injected with NPgel alone or with encapsulated human bone marrow progenitor cells (BMPCs). Un-injected caprine discs served as degenerate controls. IVDs were cultured for a further 21 days within the LDCS. Tissues were then processed for histology and immunohistochemistry. No extrusion of NPgel was observed during culture. A significant decrease in histological grade of degeneration was seen in both IVDs injected with NPgel alone and NPgel seeded with BMPCs, compared to un-injected controls. Fissures within degenerate tissue were filled by NPgel and there was evidence of native cell migration into injected NPgel. The expression of healthy NP matrix markers (collagen type II and aggrecan) was increased, whereas the expression of catabolic proteins (MMP3, ADAMTS4, IL-1β and IL-8) was decreased in NPgel (±BMPCs) injected discs, compared to degenerate controls. This demonstrates that NPgel promotes new matrix production at the same time as halting the degenerative cascade within a physiologically relevant testing platform. This highlights the potential of NPgel as a future therapy for IVD degeneration.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kaj S Emanuel
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Christine Rustenburg
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ronak Janani
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Simon Partridge
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Theo H Smit
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
4
|
Enhancing Cell Migration on Polyetherimide-Grafted Fe3O4@SiO2-Labeled Umbilical Cord-Derived Mesenchymal Stem Cells Arrests in Intervertebral Disc Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ling Z, Liu Y, Wang Z, Zhang Z, Chen B, Yang J, Zeng B, Gao Y, Jiang C, Huang Y, Zou X, Wang X, Wei F. Single-Cell RNA-Seq Analysis Reveals Macrophage Involved in the Progression of Human Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:833420. [PMID: 35295968 PMCID: PMC8918513 DOI: 10.3389/fcell.2021.833420] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc degeneration (IDD) has been considered as the primary pathological mechanism that underlies low back pain. Understanding the molecular mechanisms underlying human IDD is imperative for making strategies to treat IDD-related diseases. Herein, we report the molecular programs, lineage progression patterns, and paths of cellular communications during the progression of IDD using single-cell RNA sequencing (scRNA-seq) on nucleus pulposus (NP) cells from patients with different grades of IDD undergoing discectomy. New subtypes of cells and cell-type-specific gene signatures of the metabolic homeostatic NP cells (Met NPC), adhesive NP cells (Adh NPC), inflammatory response NP cells (IR NPC), endoplasmic reticulum stress NP cells (ERS NPC), fibrocartilaginous NP cells (Fc NPC), and CD70 and CD82+ progenitor NP cells (Pro NPC) were identified. In the late stage of IDD, the IR NPC and Fc NPC account for a large proportion of NPC. Importantly, immune cells including macrophages, T cells, myeloid progenitors, and neutrophils were also identified, and further analysis showed that significant intercellular interaction between macrophages and Pro NPC occurred via MIF (macrophage migration inhibitory factor) and NF-kB signaling pathways during the progression of IDD. In addition, dynamic polarization of macrophage M1 and M2 cell subtypes was found in the progression of IDD, and gene set functional enrichment analysis suggested a significant role of the macrophage polarization in regulating cell metabolism, especially the Pro NPC. Finally, we found that the NP cells in the late degenerative stage were mainly composed of the cell types related to inflammatory and endoplasmic reticulum (ER) response, and fibrocartilaginous activity. Our results provided new insights into the identification of NP cell populations at single-cell resolution and at the relatively whole-transcriptome scale, accompanied by cellular communications between immune cells and NP cells, and discriminative markers in relation to specific cell subsets. These new findings present clues for effective and functional manipulation of human IDD-related bioremediation and healthcare.
Collapse
Affiliation(s)
- Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Baozhu Zeng
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Gao
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Huang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuhui Wang
- Department of Orthopaedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Fuxin Wei, ; Xiuhui Wang,
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fuxin Wei, ; Xiuhui Wang,
| |
Collapse
|
6
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
8
|
McDonnell EE, Buckley CT. Investigating the physiological relevance of ex vivo disc organ culture nutrient microenvironments using in silico modeling and experimental validation. JOR Spine 2021; 4:e1141. [PMID: 34337330 PMCID: PMC8313156 DOI: 10.1002/jsp2.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ex vivo disc organ culture systems have become a valuable tool for the development and pre-clinical testing of potential intervertebral disc (IVD) regeneration strategies. Bovine caudal discs have been widely selected due to their large availability and comparability to human IVDs in terms of size and biochemical composition. However, despite their extensive use, it remains to be elucidated whether their nutrient microenvironment is comparable to human degeneration. AIMS This work aims to create the first experimentally validated in silico model which can be used to predict and characterize the metabolite concentrations within ex vivo culture systems. MATERIALS & METHODS Finite element models of cultured discs governed by previously established coupled reaction-diffusion equations were created using COMSOL Multiphysics. Experimental validation was performed by measuring oxygen, glucose and pH levels within discs cultured for 7 days, in a static compression bioreactor. RESULTS The in silico model was successfully validated through good agreement between the predicted and experimentally measured concentrations. For an ex vivo organ cultured in high glucose medium (4.5 g/L or 25 mM) and normoxia, a larger bovine caudal disc (Cd1-2 to Cd3-4) had a central concentration of ~2.6 %O2, ~8 mM of glucose and a pH value of 6.7, while the smallest caudal discs investigated (Cd6-7 and Cd7-8), had a central concentration of ~6.5 %O2, ~12 mM of glucose and a pH value of 6.9. DISCUSSION This work advances the knowledge of ex vivo disc culture microenvironments and highlights a critical need for optimization and standardization of culturing conditions. CONCLUSION Ultimately, for assessment of cell-based therapies and successful clinical translation based on nutritional demands, it is imperative that the critical metabolite values within organ cultures (minimum glucose, oxygen and pH values) are physiologically relevant and comparable to the stages of human degeneration.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
9
|
Abstract
STUDY DESIGN Review article. OBJECTIVE A review of the literature on current strategies utilized in intervertebral regeneration and repair efforts. METHODS A review of the literature and analysis of the data to provide an updated review on current concepts of intervertebral disc repair and regeneration efforts. RESULTS Multiple regenerative strategies for intervertebral disc regeneration are being employed to reduce pain and improve quality of life. Current promising strategies include molecular therapy, gene therapy, cell-based therapy, and augmentation with biomaterials. Multiple clinical trials studying biologic, cell-based, and scaffold-based injectable therapies are currently being investigated. CONCLUSION Low back pain due to intervertebral disc disease represents a significant health and societal burden. Current promising strategies include molecular therapy, gene therapy, cell-based therapy, and augmentation with biomaterials. To date, there are no Food and Drug Administration-approved intradiscal therapies for discogenic back pain, and there are no large randomized trials that have shown clinically significant improvement with any investigational regenerative treatment. Multiple clinical trials studying biologic, cell-based, or scaffold-based injectable therapies are being currently investigated.
Collapse
Affiliation(s)
- Derek G. Ju
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Hyun W. Bae
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Sheyn D, Ben-David S, Tawackoli W, Zhou Z, Salehi K, Bez M, De Mel S, Chan V, Roth J, Avalos P, Giaconi JC, Yameen H, Hazanov L, Seliktar D, Li D, Gazit D, Gazit Z. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics 2019; 9:7506-7524. [PMID: 31695783 PMCID: PMC6831475 DOI: 10.7150/thno.34898] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Wafa Tawackoli
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Khosrawdad Salehi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Sandra De Mel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Virginia Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph Roth
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph C Giaconi
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Haneen Yameen
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Lena Hazanov
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
11
|
Pfannkuche JJ, Guo W, Cui S, Ma J, Lang G, Peroglio M, Richards RG, Alini M, Grad S, Li Z. Intervertebral disc organ culture for the investigation of disc pathology and regeneration - benefits, limitations, and future directions of bioreactors. Connect Tissue Res 2019; 61:304-321. [PMID: 31556329 DOI: 10.1080/03008207.2019.1665652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.
Collapse
Affiliation(s)
- Judith-Johanna Pfannkuche
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | - Gernot Lang
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
12
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
13
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
14
|
Tendulkar G, Ehnert S, Sreekumar V, Chen T, Kaps HP, Golombek S, Wendel HP, Nüssler AK, Avci-Adali M. Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs-The Potential Role in Increasing Anabolic Response. Int J Mol Sci 2019; 20:E1716. [PMID: 30959917 PMCID: PMC6479841 DOI: 10.3390/ijms20071716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFβ signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Vrinda Sreekumar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Tao Chen
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Andreas K Nüssler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Shu CC, Dart A, Bell R, Dart C, Clarke E, Smith MM, Little CB, Melrose J. Efficacy of administered mesenchymal stem cells in the initiation and co-ordination of repair processes by resident disc cells in an ovine (Ovis aries) large destabilizing lesion model of experimental disc degeneration. JOR Spine 2018; 1:e1037. [PMID: 31463452 PMCID: PMC6686814 DOI: 10.1002/jsp2.1037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Forty percent of low back pain cases are due to intervertebral disc degeneration (IVDD), with mesenchymal stem cells (MSCs) a reported treatment. We utilized an ovine IVDD model and intradiscal heterologous MSCs to determine therapeutic efficacy at different stages of IVDD. METHODOLOGY Three nonoperated control (NOC) sheep were used for MSC isolation. In 36 sheep, 6 × 20 mm annular lesions were made at three spinal levels using customized blades/scalpel handles, and IVDD was allowed to develop for 4 weeks in the Early (EA) and late Acute (LA) groups, or 12 weeks in the chronic (EST) group. Lesion IVDs received injections of 10 × 106 MSCs or PBS, and after 8 (EA), 22 (LA) or 14 (EST) weeks recuperation the sheep were sacrificed. Longitudinal lateral radiographs were used to determine disc heights. IVD glycosaminoglycan (GAG) and hydroxyproline contents were quantified using established methods. An Instron materials testing machine and customized jigs analyzed IVD (range of motion, neutral zone [NZ] and stiffness) in flexion/extension, lateral bending and axial rotation. qRTPCR gene profiles of key anabolic and catabolic matrix molecules were undertaken. Toluidine blue and hematoxylin and eosin stained IVD sections were histopathologically scoring by two blinded observers. RESULTS IVDD significantly reduced disc heights. MSC treatment restored 95% to 100% of disc height, maximally improved NZ and stiffness in flexion/extension and lateral bending in the EST group, restoring GAG levels. With IVDD qRTPCR demonstrated elevated catabolic gene expression (MMP2/3/9/13, ADAMTS4/5) in the PBS IVDs and expession normalization in MSC-treated IVDs. Histopathology degeneracy scores were close to levels of NOC IVDs in MSC IVDs but IVDD developed in PBS injected IVDs. DISCUSSION Administered MSCs produced recovery in degenerate IVDs, restored disc height, composition, biomechanical properties, down regulated MMPs and fibrosis, strongly supporting the efficacy of MSCs for disc repair.
Collapse
Affiliation(s)
- Cindy C. Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Andrew Dart
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Robin Bell
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Christina Dart
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Elizabeth Clarke
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Murray Maxwell Biomechanics Laboratory, Kolling Institute of Medical Research, The Royal North Shore HospitalUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Margaret M. Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
16
|
Short Link N promotes disc repair in a rabbit model of disc degeneration. Arthritis Res Ther 2018; 20:201. [PMID: 30157962 PMCID: PMC6116458 DOI: 10.1186/s13075-018-1625-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
Background The degeneration of the intervertebral disc (IVD) is characterized by proteolytic degradation of the extracellular matrix, and its repair requires the production of an extracellular matrix with a high proteoglycan-to-collagen ratio characteristic of a nucleus pulposus (NP)-like phenotype in vivo. At the moment, there is no medical treatment to reverse or even retard disc degeneration. The purpose of the present study was to determine if a low dose of short link N (sLN), a recently discovered fragment of the link N peptide, could behave in a manner similar to that of link N in restoring the proteoglycan content and proteoglycan-to-collagen ratio of the disc in a rabbit model of IVD degeneration, as an indication of its potential therapeutic benefit in reversing disc degeneration. Methods Adolescent New Zealand white rabbits received an annular puncture with an 18-gauge needle into two noncontiguous discs to induce disc degeneration. Two weeks later, either saline (10 μL) or sLN (25 μg in 10 μL saline) was injected into the center of the NP. The sLN concentration was empirically chosen at a lower molar concentration equivalent to half that of link N (100 μg in 10 μL). The effect on radiographic, biochemical and histologic changes were evaluated. Results Following needle puncture, disc height decreased by about 25–30% within 2 weeks and maintained this loss for the duration of the 12-week study; a single 25-μg sLN injection at 2 weeks partially restored this loss in disc height. sLN injection led to an increase in glycosaminoglycans (GAG) content 12 weeks post-injection in both the NP and annulus fibrosus (AF). There was a trend towards maintaining control disc collagen-content with sLN supplementation and the GAG-to-collagen ratio in the NP was increased when compared to the saline group. Conclusions When administered to the degenerative disc in vivo, sLN injection leads to an increase in proteoglycan content and a trend towards maintaining control disc collagen content in both the NP and AF. This is similar to link N when it is administered to the degenerative disc. Thus, pharmacologically, sLN supplementation could be a novel therapeutic approach for treating disc degeneration.
Collapse
|
17
|
Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: a review. Gene Ther 2018; 25:67-82. [DOI: 10.1038/s41434-018-0004-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
|
18
|
Noorwali H, Grant MP, Epure LM, Madiraju P, Sampen H, Antoniou J, Mwale F. Link N as a therapeutic agent for discogenic pain. JOR Spine 2018; 1:e1008. [PMID: 31463438 PMCID: PMC6686832 DOI: 10.1002/jsp2.1008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Neurotrophins (NTs) are the major contributors of sensory axonal sprouting, neural survival, regulation of nociceptive sensory neurons, inflammatory hyperalgesia, and neuropathic pain. Intervertebral disc (IVD) cells constitutively express NTs. Their expression is upregulated by proinflammatory cytokines present in the IVD during degeneration, which can promote peripheral nerve ingrowth and hyperinnervation, leading to discogenic pain. Currently, there are no targeted therapies that decrease hyperinnervation in degenerative disc disease. Link N is a naturally occurring peptide with a high regenerative potential in the IVD. Therefore, the suitability of Link N as a therapeutic peptide for suppressing NTs, which are known modulators and mediators of pain, was investigated. The aim of the present study is to determine the effect of Link N on NTs expression, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and their cognate receptors TrkA and TrkB as they are directly correlated with symptomatic back pain. Furthermore, the neurotransmitter (substance P) was also evaluated in human annulus fibrosus (AF) cells stimulated with cytokines. Human AF cells isolated from normal IVDs were stimulated with interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the presence or absence of Link N. NGF release in the media was evaluated by Western blotting. Total RNA was isolated and gene expression was measured using real-time PCR. Gene expression of NGF, BDNF, TrkA, and TrkB significantly decreased in human disc cells stimulated with either IL-1β or TNF-α supplemented with Link N when compared to the cells stimulated only with IL-1β or TNF-α. NGF protein expression was also suppressed in AF cells coincubated with Link N and IL-1β when compared to the cells stimulated only with IL-1β. Link N can suppress the stimulation of NGF, BDNF, and their receptors TrkA and TrkB in AF cells in an inflammatory milieu. Thus, coupled with previous observations, this suggests that administration of Link N has the potential to not only repair the discs in early stages of the disease but also suppress pain.
Collapse
Affiliation(s)
- Hussain Noorwali
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
- Division of Orthopaedic SurgeryKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Michael P. Grant
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Laura M. Epure
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Padma Madiraju
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Hee‐Jeong Sampen
- Department of BiochemistryRush University Medical CenterChicagoIllinois
| | - John Antoniou
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Fackson Mwale
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| |
Collapse
|
19
|
Yeh CH, Chen D, Aghdasi B, Xiao L, Ding M, Jin L, Li X. Link protein N-terminal peptide and fullerol promote matrix production and decrease degradation enzymes in rabbit annulus cells. Connect Tissue Res 2018; 59:191-200. [PMID: 28509587 PMCID: PMC5690886 DOI: 10.1080/03008207.2017.1330333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/09/2017] [Indexed: 02/03/2023]
Abstract
PURPOSE Intervertebral disc degeneration is a major cause of back pain. Novel therapies for prevention or reversal of disc degeneration are needed. It is desirable for potential therapies to target both inflammation and matrix degeneration. MATERIALS AND METHODS The combined regenerative potential of link protein N-terminal peptide (LN) and fullerol on annulus fibrosus (AF) cells was evaluated in a 3D culture model. RESULTS Interleukin-1α (IL-1α)-induced AF cell degeneration was counteracted by fullerol, LN, and fullerol + LN, with the latter having the greatest effect on matrix production as evaluated by real-time polymerase chain reaction and glycosaminoglycan assay. IL-1α-induced increases in pro-inflammatory mediators (interleukin-6 and cyclooxygenase-2) and matrix metalloproteinases (MMP-1, -2, -9, and -13) were also counteracted by fullerol and LN. CONCLUSION Our data demonstrate that LN and fullerol individually, and in combination, promote matrix production and have anti-inflammatory and anti-catabolic effects on AF cells.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
- Centre for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Dennis Chen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Bayan Aghdasi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Sci Rep 2017; 7:17184. [PMID: 29215065 PMCID: PMC5719358 DOI: 10.1038/s41598-017-17472-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLR) are activated by endogenous alarmins such as fragmented extracellular matrix compounds found in the degenerating disc. TLRs regulate cytokine, neurotrophin, and protease expression in human disc cells in vitro, and thus control key factors in disc degeneration. However, whether TLR activation leads to degenerative changes in intact human discs is unclear. Nucleus pulposus (NP) cells isolated from non-degenerating discs increase IL-1β and nerve growth factor gene expression following treatment with Pam2CSK4 (TLR2/6 agonist) but not Pam3CSK4 (TLR1/2 agonist). Challenging NP cells with Pam2CSK4 or 30 kDa fibronectin fragments (FN-f, an endogenous TLR2 and TLR4 alarmin) increased secretion of proinflammatory cytokines. We then investigated the effect of TLR activation in intact, non-degenerate, ex vivo human discs. Discs were injected with PBS, Pam2CSK4 and FN-f, and cultured for 28 days. TLR activation increased proteoglycan and ECM protein release into the culture media and decreased proteoglycan content in the NP. Proteases, including MMP3, 13 and HTRA1, are secreted at higher levels following TLR activation. In addition, proinflammatory cytokine levels, including IL-6, TNFα and IFNγ, increased following TLR activation. These results indicate that TLR activation induces degeneration in human discs. Therefore, TLRs are potential disease-modifying therapeutic targets to slow disc degeneration.
Collapse
|
21
|
Bach FC, Laagland LT, Grant MP, Creemers LB, Ito K, Meij BP, Mwale F, Tryfonidou MA. Link-N: The missing link towards intervertebral disc repair is species-specific. PLoS One 2017; 12:e0187831. [PMID: 29117254 PMCID: PMC5679057 DOI: 10.1371/journal.pone.0187831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lisanne T. Laagland
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- Orthopedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
22
|
Li A, Tao Y, Kong D, Zhang N, Wang Y, Wang Z, Wang Y, Wang J, Xiao J, Jiang Y, Liu X, Zheng C. Infusion of umbilical cord mesenchymal stem cells alleviates symptoms of ankylosing spondylitis. Exp Ther Med 2017; 14:1538-1546. [PMID: 28781629 PMCID: PMC5526206 DOI: 10.3892/etm.2017.4687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
The current study evaluated 5 patients with ankylosing spondylitis (AS). Patients received intravenous transfusions of umbilical cord mesenchymal stem cells (uMSCs). All therapeutic and adverse responses were assessed and recorded during uMSC therapy. No severe adverse reactions were observed in any of the patients, although a slight transient fever was observed in 3 patients within 2–6 h of intravenous administration of uMSCs. Following treatment, the Bath Ankylosing Spondylitis Disease Activity and Bath Ankylosing Spondylitis Metrology Indices decreased, however the Bath Ankylosing Spondylitis Functional Index increased. The erythrocyte sedimentation rate in 3 patients was reduced and C-reactive protein levels in 1 patient were markedly reduced. The symptoms of AS were alleviated in all patients. The present study indicates that intravenous transfusion of uMSCs is safe and well tolerated by patients and that it effectively alleviates disease activity and clinical symptoms. In the future, a larger cohort of patients with AS should be recruited to enable the systemic evaluation of uMSC therapy.
Collapse
Affiliation(s)
- Ai Li
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dexiao Kong
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ni Zhang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongjing Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhilun Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yingxue Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juandong Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jiang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chengyun Zheng
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
23
|
Shu CC, Smith MM, Smith SM, Dart AJ, Little CB, Melrose J. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration. Int J Mol Sci 2017; 18:E1049. [PMID: 28498326 PMCID: PMC5454961 DOI: 10.3390/ijms18051049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i-vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3-6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - Margaret M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - Andrew J Dart
- Faculty of Veterinary Science, University Veterinary Teaching Hospital, University of Sydney, Camden, NSW 2050, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
24
|
Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater 2017; 54:212-226. [PMID: 28285075 DOI: 10.1016/j.actbio.2017.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 01/07/2023]
Abstract
We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach. STATEMENT OF SIGNIFICANCE Low back pain (LBP) is associated with degeneration of the intervertebral disc (IVD). We have previously described development of a jelly delivery system (hydrogel). This has the potential to deliver adult stem cells to the centre of the IVD, known as the nucleus pulposus (NP). Here, we have demonstrated that adult stem cells can be safely injected into the NP using small bore needles, reducing damage to the disc. Following injection the hydrogel integrates with surrounding NP tissue, promotes differentiation of stem cells towards disc cells and restores IVD mechanical function. The hydrogel could be used to restore mechanical function to the IVD and deliver cells to promote regeneration of the disc as a minimally invasive treatment for LBP.
Collapse
|
25
|
Peroglio M, Douma LS, Caprez TS, Janki M, Benneker LM, Alini M, Grad S. Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: An ex vivo study. J Orthop Translat 2017; 9:43-51. [PMID: 29662798 PMCID: PMC5822953 DOI: 10.1016/j.jot.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro and in vivo studies evidenced that mesenchymal stem cells (MSCs) contribute to intervertebral disc (IVD) regeneration by differentiation towards the disc phenotype and matrix synthesis and/or by paracrine signalling to endogenous cells, thereby promoting a healthier disc phenotype in degenerative discs. The aim of this study was to investigate IVD response to human MSC (hMSC) treatment based on the disc degenerative state and hMSC carrier. Bovine caudal IVDs with endplates were cultured in a bioreactor under simulated physiological (0.1 Hz load and sufficient glucose) or degenerative (10 Hz load and limited glucose) conditions for 7 days. Discs were partially nucleotomised, restored with hMSCs in either fibrin gel or saline solution and cultured under physiological conditions for 7 days. Controls included fibrin and saline without hMSCs. Cell viability, histology, disc height, and gene expression analyses were performed to evaluate regeneration. hMSCs in fibrin were viable and homogenously distributed following 7 days of culture under dynamic loading in partially nucleotomised discs. IVD response to hMSCs was conditioned by both disc degenerative state and hMSC carrier. The effect of the regenerative treatment was stronger on simulated-degenerative discs than on simulated-physiological discs. hMSCs in fibrin induced a superior anabolic response in degenerative IVDs compared with fibrin alone, thus suggesting an added value of the cellular therapy compared with an acellular solution. When comparing fibrin and saline as a hMSC carrier, a significantly higher anabolic response was observed in IVDs treated with hMSCs in fibrin. Moreover, it was found that the degenerative state of the disc influenced hMSC differentiation. Indeed, a significantly higher expression of specific discogenic markers (ACAN and CA12) was observed in hMSCs implanted into physiological discs than in those implanted into degenerative discs. In conclusion, host disc cells and donor hMSC response depend on the degenerative state of the host disc and carrier used for hMSC delivery, and these two aspects need to be considered for a successful translation of hMSC therapies for the treatment of IVD degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
26
|
Fuller ES, Shu C, Smith MM, Little CB, Melrose J. Hyaluronan oligosaccharides stimulate matrix metalloproteinase and anabolic gene expression in vitro by intervertebral disc cells and annular repair in vivo. J Tissue Eng Regen Med 2017; 12:e216-e226. [PMID: 27689852 DOI: 10.1002/term.2319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/14/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
The role of hyaluronan (HA) oligosaccharides in disc cell-mediated matrix metalloproteinase (MMP) and anabolic gene expression in vitro and annular repair in vivo were examined. Monolayer and alginate bead cultures of ovine intervertebral disc cells were stimulated with 10-12 mer hyaluronan oligosaccharides (HA-oligos). Annulus fibrosus (AF) monolayers were poorly responsive to the HA-oligos, proMMP-2 levels were marginally elevated and levels were MMP-9 unaffected. ProMMP-2 displayed a strong dose-dependent increase in the nucleus pulposus (NP) monolayers. In AF alginate bead cultures, proMMP-2 and active MMP-9 increased up to day 10, in NP cultures proMMP-2 was progressively converted to active MMP-2 over days 7-10 and active MMP-9 levels were elevated on day 10. A steady decline in MMP-2 and MMP-9 activity was evident over days 2-10 in the non-stimulated NP cultures. Disc cell viabilities were ≥92 ± 5% in all cultures indicating that the HA-oligo was not cytotoxic. Reverse-transcription polymerase chain reaction demonstrated an upregulation in MMP1, MMP113 and ADAMTS1 and the anabolic matrix repair genes ACAN, COL1A1 and COL2A1 in the NP by HA-oligos, whereas AF MMP13, ADAMTS1, ADAMTS4 and ADAMTS5, ACAN and COL2A1 were down-regulated; this differential regulation is expected to promote clearance of granulation/scar tissue from AF defects and matrix replenishment. The AF defect sites contained enlarged annular lamellae in vivo in response to the HA oligos, which is consistent with an active repair response. Masson trichrome and PicroSirius red histology and immunolocalization of type I collagen supported active remodelling in the outer lesion zone by the HA-oligo treatment but not the inner lesion. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emily S Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Cindy Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
27
|
Bach FC, Miranda-Bedate A, van Heel FW, Riemers FM, Müller MC, Creemers LB, Ito K, Benz K, Meij BP, Tryfonidou MA. Bone Morphogenetic Protein-2, But Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells. Tissue Eng Part A 2017; 23:233-242. [DOI: 10.1089/ten.tea.2016.0251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ferdi W.M. van Heel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C.M.E. Müller
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Laura B. Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 2016; 43:236-242. [PMID: 28043032 DOI: 10.1016/j.intimp.2016.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.
Collapse
|
29
|
AlGarni N, Grant MP, Epure LM, Salem O, Bokhari R, Antoniou J, Mwale F. Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae. Tissue Eng Part A 2016; 22:1252-1257. [DOI: 10.1089/ten.tea.2016.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nizar AlGarni
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Laura M. Epure
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Omar Salem
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Rakan Bokhari
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| |
Collapse
|
30
|
Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Sci Rep 2016; 6:33836. [PMID: 27652931 PMCID: PMC5031983 DOI: 10.1038/srep33836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.
Collapse
|
31
|
Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun 2016; 7:12503. [PMID: 27527664 PMCID: PMC4990710 DOI: 10.1038/ncomms12503] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 07/07/2016] [Indexed: 01/07/2023] Open
Abstract
The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. Homeobox protein Mohwak (Mkx) is involved in tendon and ligament development. Here the authors show that Mkx in the outer annulus fibrosus of the intervertebral disc plays a role in maintenance of the IVD, showing that stem cells overexpressing Mkx enhance therapeutic IVD regeneration in mice.
Collapse
|
32
|
Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA, Kang JD. Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 2016; 34:1289-306. [PMID: 26890203 PMCID: PMC4988945 DOI: 10.1002/jor.23195] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1289-1306, 2016.
Collapse
Affiliation(s)
- Nam V. Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert A. Hartman
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prashanti R. Patil
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - James C. Iatridis
- Leni & Peter W May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Faculty of Medical and Human Sciences, University of Manchester M13 9PT and NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Christine L. Le Maitre
- Musculoskeletal and Regenerative Medicine Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Gwendolyn A. Sowa
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D. Kang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Grant M, Epure LM, Salem O, AlGarni N, Ciobanu O, Alaqeel M, Antoniou J, Mwale F. Development of a Large Animal Long-Term Intervertebral Disc Organ Culture Model That Includes the Bony Vertebrae for Ex Vivo Studies. Tissue Eng Part C Methods 2016; 22:636-43. [PMID: 27216856 DOI: 10.1089/ten.tec.2016.0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain. Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to investigate IVD degeneration, they are technically challenging to prepare, expensive, present with limitations when performing biomechanical studies on the disc, and are impractical in large-scale screening of novel anabolic and scaffolding agents. An IVD organ culture system offers an inexpensive alternative. In the current paradigm, the bony endplates are removed to allow for nutrient diffusion and maintenance of disc cell viability. Although this is an excellent system for testing biologics, it results in concave cartilage endplates and, as such, requires special platens for loading purposes in a bioreactor as flat ones can overload the annular disc region leading to improper loading. Furthermore, the absence of bone makes it unsuitable for applying complex cyclic loading, a topic of interest in the study of chronic progressive degeneration, as multiaxial loading is more representative of daily forces encountered by the IVD. We have developed and validated a novel long-term IVD organ culture model that retains vertebral bone and is easy to prepare. Our model is ideal for testing potential drugs and alternate-based therapies, in addition to investigating the long-term effects of loading paradigms on disc degeneration and repair.
Collapse
Affiliation(s)
- Michael Grant
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Laura M Epure
- 2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Omar Salem
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Nizar AlGarni
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Ovidiu Ciobanu
- 2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Motaz Alaqeel
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Fackson Mwale
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| |
Collapse
|
34
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, Ignatius A, Barbosa MA, Gonçalves RM, Neidlinger-Wilke C. A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An Ex Vivo Model for Anti-inflammatory Drug and Cell Therapy. Tissue Eng Part C Methods 2015; 22:8-19. [PMID: 26565141 DOI: 10.1089/ten.tec.2015.0195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a proinflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 μg/mL) or interleukin-1β (IL-1β, 10-100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically significant upregulation of proinflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen II, aggrecan) were significantly downregulated. The injection of the anti-inflammatory drug, Df, was able to reduce the levels of proinflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The proinflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany .,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Antje Boldt
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Ines Nagl
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Catarina Leite Pereira
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Karin Benz
- 5 Natural and Medical Sciences Institute (NMI), University of Tuebingen , Reutlingen, Germany
| | - Hans-Joachim Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Anita Ignatius
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Mário A Barbosa
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Raquel M Gonçalves
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Cornelia Neidlinger-Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| |
Collapse
|
36
|
de Vries SAH, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture. Tissue Eng Part A 2015; 22:103-10. [PMID: 26421447 DOI: 10.1089/ten.tea.2015.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue, in which the NCCM ultimately should exert its effect. The objective of this study is to test whether NCCM stimulates NPCs within their native environment, and whether combined stimulation with NCCM and addition of BMSCs has a synergistic effect on extracellular matrix production. METHODS Bovine NP tissue was cultured in an artificial annulus in base medium (BM), porcine NCCM, or BM supplemented with 1 μg/mL Link N. Furthermore, BM and NCCM samples were injected with 10(6) BMSCs per NP sample. Samples were cultured for 4 weeks, and analyzed for biochemical contents (water, glycosaminoglycan [GAG], hydroxyproline, and DNA), gene expression (COL1A1, COL2A1, ACAN, and SOX9), and histology by Safranin O/Fast Green staining. RESULTS Culture in NCCM resulted in increased proteoglycan content compared to day 0 and BM, similar to Link N. However, only minor differences in gene expression compared to day 0 were observed. Addition of BMSCs did not result in increased GAG content, and surprisingly, DNA content in BMSC-injected groups was not higher than in the other groups after 4 weeks of culture. DISCUSSION This study shows that, indeed, NCCM is capable of stimulating NPC matrix production within the NP environment. The lack of increased DNA content in the BMSC-injected groups indicates that BMSCs have died over time. Identification of the bioactive factors in NCCM is crucial for further development of an NCCM-based treatment for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Stefan A H de Vries
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Marina van Doeselaar
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Björn P Meij
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Keita Ito
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands .,3 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
37
|
Chen L, Liao J, Klineberg E, Leung VYL, Huang S. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. J Tissue Eng Regen Med 2015; 11:602-608. [PMID: 26370612 DOI: 10.1002/term.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lili Chen
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| | - Jingwen Liao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou China
| | - Eric Klineberg
- Department of Orthopaedics; University of California at Davis; Sacramento California USA
| | - Victor YL Leung
- Department of Orthopaedics and Traumatology; Li Ka Shing Faculty of Medicine, The University of Hong Kong; Hong Kong
| | - Shishu Huang
- Department of Orthopaedic Surgery; West China Hospital; State Key Laboratory of Oral Diseases, Sichuan University; Chengdu China
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| |
Collapse
|
38
|
Song K, Gu T, Shuang F, Tang J, Ren D, Qin J, Hou S. Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs. Mol Med Rep 2015; 12:4664-4668. [PMID: 26059030 DOI: 10.3892/mmr.2015.3895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Patients with degenerative disc disease (DDD) experience serious clinical symptoms, including chronic low back pain. A series of therapies have been developed to treat DDD, including physical therapy and surgical treatment. However, the therapeutic effect of such treatments has remained insufficient. Recently, stem cell‑based therapy, in which stem cells are injected into the nucleus pulposus in degenerated intervertebral disc tissue, has appeared to be effective in the treatment of DDD. In the present study, the effect of adipose‑derived stem cells on degenerated nucleus pulposus cells was investigated using a co‑culture system to evaluate the biological activity of degenerated nucleus pulposus cells. Human degenerated nucleus pulposus tissue was obtained from surgical specimens and the adipose‑derived stem cells were derived from adipose tissue. The degenerated nucleus pulposus cells were cultured in a mono‑culture or in a co‑culture with adipose‑derived stem cells using 0.4‑µm Transwell inserts. The results indicated that adipose‑derived stem cells were able to stimulate matrix synthesis and the cell proliferation of degenerated nucleus pulposus cells, promoting the restoration of nucleus pulposus cells in the degenerated intervertebral disc.
Collapse
Affiliation(s)
- Keran Song
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Tao Gu
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Feng Shuang
- Department of Orthopedic Surgery, The 94th Hospital of Chinese PLA, Nanchang, Jiangxi 330002, P.R. China
| | - Jiaguang Tang
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Dongfeng Ren
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Jiang Qin
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Shuxun Hou
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
39
|
Nikkhoo M, Khalaf K, Kuo YW, Hsu YC, Haghpanahi M, Parnianpour M, Wang JL. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations. Front Bioeng Biotechnol 2015; 3:4. [PMID: 25674562 PMCID: PMC4309208 DOI: 10.3389/fbioe.2015.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Collapse
Affiliation(s)
- Mohammad Nikkhoo
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University , Tehran , Iran ; Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University , Taipei , Taiwan
| | - Kinda Khalaf
- Department of Biomedical Engineering, Khalifa University of Science, Technology and Research , Abu Dhabi , UAE
| | - Ya-Wen Kuo
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University , Taipei , Taiwan
| | - Yu-Chun Hsu
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University , Taipei , Taiwan
| | - Mohammad Haghpanahi
- School of Mechanical Engineering, Iran University of Science and Technology , Tehran , Iran
| | - Mohamad Parnianpour
- Department of Industrial and Manufacturing, University of Wisconsin , Milwaukee, WI , USA
| | - Jaw-Lin Wang
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
40
|
Vasiliadis ES, Pneumaticos SG, Evangelopoulos DS, Papavassiliou AG. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med 2014; 20:400-9. [PMID: 25171110 PMCID: PMC4212014 DOI: 10.2119/molmed.2014.00145] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Disc degeneration is the most common cause of back pain in adults and has enormous socioeconomic implications. Conservative management is ineffective in most cases, and results of surgical treatment have not yet reached desirable standards. Biologic treatment options are an alternative to the above conventional management and have become very attractive in recent years. The present review highlights the currently available biologic treatment options in mild and moderate disc degeneration, where a potential for regeneration still exists. Biologic treatment options include protein-based and cell-based therapies. Protein-based therapies involve administration of biologic factors into the intervertebral disc to enhance matrix synthesis, delay degeneration or impede inflammation. These factors can be delivered by an intradiscal injection, alone or in combination with cells or tissue scaffolds and by gene therapy. Cell-based therapies comprise treatment strategies that aim to either replace necrotic or apoptotic cells, or minimize cell death. Cell-based therapies are more appropriate in moderate stages of degenerated disc disease, when cell population is diminished; therefore, the effect of administration of growth factors would be insufficient. Although clinical application of biologic treatments is far from being an everyday practice, the existing studies demonstrate promising results that will allow the future design of more sophisticated methods of biologic intervention to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Elias S Vasiliadis
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Demitrios S Evangelopoulos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | | |
Collapse
|