1
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Liu YC, Lo GJ, Shyu VBH, Tsai CH, Chen CH, Chen CT. Surface Modification of Polylactic Acid Bioscaffold Fabricated via 3D Printing for Craniofacial Bone Tissue Engineering. Int J Mol Sci 2023; 24:17410. [PMID: 38139240 PMCID: PMC10744214 DOI: 10.3390/ijms242417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue engineering is a promising solution for advanced bone defect reconstruction after severe trauma. In bone tissue engineering, scaffolds in three-dimensional (3D) structures are crucial components for cell growth, migration, and infiltration. The three-dimensional printing technique is well suited to manufacturing scaffolds since it can fabricate scaffolds with highly complex designs under good internal structural control. In the current study, the 3D printing technique was utilized to produce polylactic acid (PLA) scaffolds. BMSCs were seeded onto selected scaffolds, either hydrogel-mixed or not, and cultivated in vitro to investigate the osteogenic potential in each group. After osteogenic incubation in vitro, BMSC-seeded scaffolds were implanted onto rat cranium defects, and bone regeneration was observed after 12 weeks. Our results demonstrated that BMSCs were able to seed onto 3D-printed PLA scaffolds under high-resolution observation. Real-time PCR analysis showed their osteogenic ability, which could be further improved after BMSCs were mixed with hydrogel. The in vivo study showed significantly increased bone regeneration when rats' cranium defects were implanted with a hydrogel-mixed BMSC-seeded scaffold compared to the control and those without cell or hydrogel groups. This study showed that 3D-printed PLA scaffolds are a feasible option for BMSC cultivation and osteogenic differentiation. After mixing with hydrogel, BMSC-seeded 3D-printed scaffolds can facilitate bone regeneration.
Collapse
Affiliation(s)
- Yao-Chang Liu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Guan-Jie Lo
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Victor Bong-Hang Shyu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chien-Tzung Chen
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Craniofacial Research Center at Taoyuan, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D. Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients. Bioengineering (Basel) 2023; 10:1187. [PMID: 37892917 PMCID: PMC10604230 DOI: 10.3390/bioengineering10101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types-bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)-highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions.
Collapse
Affiliation(s)
- Max Baron
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Philip Drohat
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Brooke Crawford
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Lee E, Moon JY, Ko JY, Park SY, Im GI. GSTT1 as a Predictive Marker and Enhancer for Osteogenic Potential of Human Adipose-Derived Stromal/Stem Cells. J Bone Miner Res 2023; 38:1480-1496. [PMID: 37537994 DOI: 10.1002/jbmr.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine for bone because of their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. On the other hand, the differentiation potential of ASCs is generally lower than that of bone marrow-derived stromal/stem cells and varies greatly depending on donors. In this study, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 (Glutathione S-transferase theta-1) was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation. On the other hand, GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species, and increased GSH/GSSG ratios were also detected in GSTT1-transfected ASCs. When the in vivo effect of GSTT1-transfected ASCs on bone regeneration was investigated with segmental long-bone defect model in rats, bone regeneration was significantly better after implantation of GSTT1-transfected ASCs compared with that of control vector-transfected ASCs. In conclusion, GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jae-Yeon Moon
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Seo-Young Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
5
|
Melzer M, Burk J, Guest DJ, Dudhia J. Influence of Rho/ROCK inhibitor Y-27632 on proliferation of equine mesenchymal stromal cells. Front Vet Sci 2023; 10:1154987. [PMID: 37346276 PMCID: PMC10279950 DOI: 10.3389/fvets.2023.1154987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Mesenchymal stromal cells (MSC) isolated form bone marrow and adipose tissue are the most common cells used for cell therapy of orthopedic diseases. MSC derived from different tissues show differences in terms of their proliferation, differentiation potential and viability in prolonged cell culture. This suggests that there may be subtle differences in intracellular signaling pathways that modulate these cellular characteristics. The Rho/ROCK signaling pathway is essential for many cellular functions. Targeting of this pathway by the ROCK inhibitor Y-27632 has been shown to be beneficial for cell viability and proliferation of different cell types. The aim of this study was to investigate the effects of Rho/ROCK inhibition on equine MSC proliferation using bone marrow-derived MSC (BMSC) and adipose-derived MSC (ASC). Primary ASC and BMSC were stimulated with or without 10 ng/mL TGF-β3 or 10 μM Y-27632, as well as both in combination. Etoposide at 10 μM was used as a positive control for inhibition of cell proliferation. After 48 h of stimulation, cell morphology, proliferation activity and gene expression of cell senescence markers p53 and p21 were assessed. ASC showed a trend for higher basal proliferation than BMSC, which was sustained following stimulation with TGF-β3. This included a higher proliferation with TGF-β3 stimulation compared to Y-27632 stimulation (p < 0.01), but not significantly different to the no treatment control when used in combination. Expression of p21 and p53 was not altered by stimulation with TGF-β3 and/or Y-27632 in either cell type. In summary, the Rho/ROCK inhibitor Y-27632 had no effect on proliferation activity and did not induce cell senescence in equine ASC and BMSC.
Collapse
Affiliation(s)
- Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| |
Collapse
|
6
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
7
|
Park HI, Lee JH, Lee SJ. The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects. Maxillofac Plast Reconstr Surg 2022; 44:31. [PMID: 36195777 PMCID: PMC9532487 DOI: 10.1186/s40902-022-00361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mandible is a functional bio-organ that supports facial structures and helps mastication and speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue reconstruction such as osteocutaneous-vascularized free flap which has a limitation of additional surgery and a functional morbidity at the donor site. A 3D bio-printing technology is recently developed to overcome the limitation in the composite reconstruction of the mandible using osteocutaneous-vascularized free flap. Review Scaffold, cells, and bioactive molecules are essential for a 3D bio-printing. For mandibular reconstruction, materials in a 3D bio-printing require mechanical strength, resilience, and biocompatibility. Recently, an integrated tissue and organ printing system with multiple cartridges are designed and it is capable of printing polymers to reinforce the printed structure, such as hydrogel. Conclusion For successful composite tissue reconstruction of the mandible, biologic considerations and components should be presented with a comprehensive on-demand online platform model of customized approaches.
Collapse
Affiliation(s)
- Han Ick Park
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jee-Ho Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
8
|
Mikłosz A, Nikitiuk BE, Chabowski A. Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand? Obes Rev 2022; 23:e13413. [PMID: 34985174 PMCID: PMC9285813 DOI: 10.1111/obr.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases, and its prevalence is increasing worldwide. Stem cell-based therapies have become a promising tool for therapeutic intervention. Among them are adipose-derived mesenchymal stem cells (ADMSCs), secreting numerous bioactive molecules, like growth factors, cytokines, and chemokines. Their unique features, including immunosuppressive and immunomodulatory properties, make them an ideal candidates for clinical applications. Numerous experimental studies have shown that ADMSCs can improve pancreatic islet cell viability and function, ameliorate hyperglycemia, improve insulin sensitivity, restore liver function, counteract dyslipidemia, lower pro-inflammatory cytokines, and reduce oxidative stress in the animal models. These results prompted scientists to use ADMSCs clinically. However, up to date, there have been few clinical studies or ongoing trails using ADMSCs to treat metabolic disorders such as type 2 diabetes mellitus (T2DM) or liver cirrhosis. Most human studies have implemented autologous ADMSCs with minimal risk of cellular rejection. Because the functionality of ADMSCs is significantly reduced in subjects with obesity and/or metabolic syndrome, their efficacy is questioned. ADMSCs transplantation may offer a potential therapeutic approach for the treatment of metabolic complications of obesity, but randomized controlled trials are required to establish their safety and efficacy in humans prior to routine clinical use.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Impact of Fluid Dynamics on the Viability and Differentiation Capacity of 3D-Cultured Jaw Periosteal Cells. Int J Mol Sci 2022; 23:ijms23094682. [PMID: 35563073 PMCID: PMC9099539 DOI: 10.3390/ijms23094682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Perfused bioreactor systems are considered to be a promising approach for the 3D culturing of stem cells by improving the quality of the tissue-engineered grafts in terms of better cell proliferation and deeper penetration of used scaffold materials. Our study aims to establish an optimal perfusion culture system for jaw periosteal cell (JPC)-seeded scaffolds. For this purpose, we used beta-tricalcium phosphate (β-TCP) scaffolds as a three-dimensional structure for cell growth and osteogenic differentiation. Experimental set-ups of tangential and sigmoidal fluid configurations with medium flow rates of 100 and 200 µL/min were applied within the perfusion system. Cell metabolic activities of 3D-cultured JPCs under dynamic conditions with flow rates of 100 and 200 µL/min were increased in the tendency after 1, and 3 days of culture, and were significantly increased after 5 days. Significantly higher cell densities were detected under the four perfused conditions compared to the static condition at day 5. However, cell metabolic and proliferation activity under dynamic conditions showed flow rate independency in our study. In this study, dynamic conditions increased the expression of osteogenic markers (ALPL, COL1A1, RUNX2, and OCN) compared to static conditions and the tangential configuration showed a stronger osteogenic effect than the sigmoidal flow configuration.
Collapse
|
10
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Comparison of Freshly Isolated Adipose Tissue-derived Stromal Vascular Fraction and Bone Marrow Cells in a Posterolateral Lumbar Spinal Fusion Model. Spine (Phila Pa 1976) 2021; 46:631-637. [PMID: 32991510 DOI: 10.1097/brs.0000000000003709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat posterolateral lumbar fusion model. OBJECTIVE The aim of this study was to compare the efficacy of freshly isolated adipose tissue-derived stromal vascular fraction (A-SVF) and bone marrow cells (BMCs) cells in achieving spinal fusion in a rat model. SUMMARY OF BACKGROUND DATA Adipose tissue-derived stromal cells (ASCs) offer advantages as a clinical cell source compared to bone marrow-derived stromal cells (BMSCs), including larger available tissue volumes and reduced donor site morbidity. While pre-clinical studies have shown that ex vivo expanded ASCs can be successfully used in spinal fusion, the use of A-SVF cells better allows for clinical translation. METHODS A-SVF cells were isolated from the inguinal fat pads, whereas BMCs were isolated from the long bones of syngeneic 6- to 8-week-old Lewis rats and combined with Vitoss (Stryker) bone graft substitute for subsequent transplantation. Posterolateral spinal fusion surgery at L4-L5 was performed on 36 female Lewis rats divided into three experimental groups: Vitoss bone graft substitute only (VO group); Vitoss + 2.5 × 106 A-SVF cells/side; and, Vitoss + 2.5 × 106 BMCs/side. Fusion was assessed 8 weeks post-surgery via manual palpation, micro-computed tomography (μCT) imaging, and histology. RESULTS μCT imaging analyses revealed that fusion volumes and μCT fusion scores in the A-SVF group were significantly higher than in the VO group; however, they were not significantly different between the A-SVF group and the BMC group. The average manual palpation score was highest in the A-SVF group compared with the BMC and VO groups. Fusion masses arising from cell-seeded implants yielded better bone quality than nonseeded bone graft substitute. CONCLUSION In a rat model, A-SVF cells yielded a comparable fusion mass volume and radiographic rate of fusion to BMCs when combined with a clinical-grade bone graft substitute. These results suggest the feasibility of using freshly isolated A-SVF cells in spinal fusion procedures.Level of Evidence: N/A.
Collapse
|
12
|
Muthu S, Jeyaraman M, Jain R, Gulati A, Jeyaraman N, Prajwal GS, Mishra PC. Accentuating the sources of mesenchymal stem cells as cellular therapy for osteoarthritis knees-a panoramic review. Stem Cell Investig 2021; 8:13. [PMID: 34386542 PMCID: PMC8327191 DOI: 10.21037/sci-2020-055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
The large economic burden on the global health care systems is due to the increasing number of symptomatic osteoarthritis (OA) knee patients whereby accounting for greater morbidity and impaired functional quality of life. The recent developments and impulses in molecular and regenerative medicine have paved the way for inducing the biological active cells such as stem cells, bioactive materials, and growth factors towards the healing and tissue regenerative process. Mesenchymal stem cells (MSCs) act as a minimally invasive procedure that bridges the gap between pharmacological treatment and surgical treatment for OA. MSCs are the ideal cell-based therapy for treating disorders under a minimally invasive environment in conjunction with cartilage regeneration. Due to the worldwide recognized animal model for such cell-based therapies, global researchers have started using the various sources of MSCs towards cartilage regeneration. However, there is a lacuna in literature on the comparative efficacy and safety of various sources of MSCs in OA of the knee. Hence, the identification of a potential source for therapeutic use in this clinical scenario remains unclear. In this article, we compared the therapeutic effects of various sources of MSCs in terms of efficacy, safety, differentiation potential, durability, accessibility, allogenic preparation and culture expandability to decide the optimal source of MSCs for OA knee.
Collapse
Affiliation(s)
- Sathish Muthu
- Assistant Orthopaedic Surgeon, Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Madhan Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rashmi Jain
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arun Gulati
- Department of Orthopaedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | - Prabhu Chandra Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
13
|
Mohamed-Ahmed S, Yassin MA, Rashad A, Espedal H, Idris SB, Finne-Wistrand A, Mustafa K, Vindenes H, Fristad I. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Cell Tissue Res 2020; 383:1061-1075. [PMID: 33242173 PMCID: PMC7960590 DOI: 10.1007/s00441-020-03315-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched human ASC and BMSC seeded onto poly(l-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic differentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human osteogenesis–related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, BMSC are more suitable for bone regenerative applications.
Collapse
Affiliation(s)
- Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Mohammed A Yassin
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hallvard Vindenes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department for Plastic, Hand and Reconstructive Surgery, National Fire Damage Center, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Kumar A, Ghosh Kadamb A, Ghosh Kadamb K. Mesenchymal or Maintenance Stem Cell & Understanding Their Role in Osteoarthritis of the Knee Joint: A Review Article. THE ARCHIVES OF BONE AND JOINT SURGERY 2020; 8:560-569. [PMID: 33088856 DOI: 10.22038/abjs.2020.42536.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesenchymal Stem Cell (MSC) therapy in osteoarthritis has been hailed as a promising treatment for osteoarthritis due to their unlimited potential of healing and regeneration. Existing literature regarding their proper name, optimal sources, mechanisms of action, dosage, and route of administration, efficacy, and safety is debatable. This index review article has tried to connect these puzzling pieces of available information and brought clarity on some of these crucial issues. The author believes that Maintenance Stem Cells (MSC) may be a more suitable term than mesenchymal stem cell or medicinal signaling cells as their origin might not be limited to mesodermal tissue. Also, they have been shown capable of self-renewal, differentiation, and maintaining a cascade of healing & possibly regeneration at the implanted site. Only a small percentage of implanted MSC survive and rest undergo apoptosis after releasing growth factors, cytokines, and extracellular vesicles. These surviving MSC become active due to conformational changes induced by anti-environment stimuli and undergo limited self-renewal, proliferation, and differentiation, but only a few of them might incorporate into the host tissues. These cells generate & maintain a momentum of series of regenerative activities to improve the function of joint, stabilize or possibly enhance the cartilage quality. More randomized studies with long term follow-up are required to bring clarity on their ideal source, expansion, culture technique, optimum dosage, and route of administration and long-term safety issues.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Orthopaedics, Saudi German Hospital, Dubai, UAE
| | | | | |
Collapse
|
15
|
Dadras M, May C, Wagner JM, Wallner C, Becerikli M, Dittfeld S, Serschnitzki B, Schilde L, Guntermann A, Sengstock C, Köller M, Seybold D, Geßmann J, Schildhauer TA, Lehnhardt M, Marcus K, Behr B. Comparative proteomic analysis of osteogenic differentiated human adipose tissue and bone marrow-derived stromal cells. J Cell Mol Med 2020; 24:11814-11827. [PMID: 32885592 PMCID: PMC7579700 DOI: 10.1111/jcmm.15797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow‐derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose‐derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri‐lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up‐regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs.
Collapse
Affiliation(s)
- Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Lukas Schilde
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annika Guntermann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Christina Sengstock
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Manfred Köller
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Dominik Seybold
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Geßmann
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
16
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
17
|
Nokhbatolfoghahaei H, Bohlouli M, Adavi K, Paknejad Z, Rezai Rad M, Khani MM, Salehi-Nik N, Khojasteh A. Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering. Proc Inst Mech Eng H 2020; 234:1397-1408. [PMID: 32692276 DOI: 10.1177/0954411920944039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in order to alleviate the time and material consuming for evaluating bioreactor parameters and effect of fluid flow hydrodynamics (various amounts of shear stress) on osteogenesis. Also, biological assessments were performed in order to validate similar parameters under implementing the perfusion or rotating and perfusion fluid motions in bioreactors' prototype. Finite element method was used to investigate the effect of hydrodynamic of fluid flow inside the bioreactors. The equations used in the simulation to calculate the velocity values and consequently the shear stress values include Navier-Stokes and Brinkman equations. It has been shown that rotational fluid motion in rotating and perfusion bioreactor produces more velocity and shear stress compared with perfusion bioreactor. Moreover, implementing the perfusion together with rotational force in rotating and perfusion bioreactors has been shown to have more cell proliferation and higher activity of alkaline phosphatase enzyme as well as formation of extra cellular matrix sheet, as an indicator of bone-like tissue formation.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Adavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Faulty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rambøl MH, Han E, Niklason LE. Microvessel Network Formation and Interactions with Pancreatic Islets in Three-Dimensional Chip Cultures. Tissue Eng Part A 2020; 26:556-568. [PMID: 31724494 PMCID: PMC7249478 DOI: 10.1089/ten.tea.2019.0186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The pancreatic islet is a highly vascularized micro-organ, and rapid revascularization postislet transplantation is important for islet survival and function. However, the various mechanisms involved in islet revascularization are not fully understood, and we currently lack good in vitro platforms to explore this. Our aim for this study was to generate perfusable microvascular networks in a microfluidic chip device, in which islets could be easily integrated, to establish an in vitro platform for investigations on islet-microvasculature interactions. We compared the ability of mesenchymal stem cells (MSCs) and fibroblasts to support microvascular network formation by human umbilical vein endothelial cells (HUVECs) and human induced pluripotent stem cell-derived endothelial colony-forming cell in two-dimensional and three-dimensional models of angiogenesis, and tested the effect of different culture media on microvessel formation. HUVECs that were supported by MSCs formed patent and perfusable networks in a fibrin gel, whereas networks supported by fibroblasts rapidly regressed. Network morphology could be controlled by adjusting relative cell numbers and densities. Incorporation of isolated rat islets demonstrated that islets recruit local microvasculature in vitro, but that the microvessels did not invade islets, at least during the course of these studies. This in vitro microvascularization platform can provide a useful tool to study how various parameters affect islet integration with microvascular networks and could also be utilized for studies of vascularization of other organ systems. Impact statement To improve pancreatic islet graft survival and function posttransplantation, rapid and adequate revascularization is critical. Efforts to improve islet revascularization are demanding due to an insufficient understanding of the mechanisms involved in the process. We have applied a microfluidics platform to generate microvascular networks, and by incorporating pancreatic islets, we were able to study microvasculature-islet interactions in real time. This platform can provide a useful tool to study islet integration with microvascular networks, and could be utilized for studies of vascularization of other organ systems. Moreover, this work may be adapted toward developing a prevascularized islet construct for transplantation.
Collapse
Affiliation(s)
- Mia H. Rambøl
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Edward Han
- Department of Biomedical Engineering and Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering and Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Nokhbatolfoghahaei H, Bohlouli M, Paknejad Z, R Rad M, M Amirabad L, Salehi-Nik N, Khani MM, Shahriari S, Nadjmi N, Ebrahimpour A, Khojasteh A. Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis. J Biomed Mater Res A 2020; 108:1662-1672. [PMID: 32191385 DOI: 10.1002/jbm.a.36932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/18/2023]
Abstract
Dynamic-based systems are bio-designed in order to mimic the micro-environments of the bone tissue. There is limited direct comparison between perfusion and perfusion-rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating & perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β-Tricalcium phosphate scaffold. Cell-scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating & perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating & perfusion forces of the bioreactor. The outcomes demonstrated that rotating & perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi-stimuli is more effective for bone engineering.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Student Research Committee, Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam R Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila M Amirabad
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Faulty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Mohammad M Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayan Shahriari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasser Nadjmi
- The Team for Cleft and Craniofacial Anomalies, Oral and Maxillofacial Surgery, University of Antwerp, Antwerp, Belgium
| | - Adel Ebrahimpour
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
He J, Han X, Wang S, Zhang Y, Dai X, Liu B, Liu L, Zhao X. Cell sheets of co-cultured BMP-2-modified bone marrow stromal cells and endothelial progenitor cells accelerate bone regeneration in vitro. Exp Ther Med 2019; 18:3333-3340. [PMID: 31602206 PMCID: PMC6777308 DOI: 10.3892/etm.2019.7982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bone tissue engineering provides a substitute for bone transplantation to address various bone defects. However, bone regeneration involves a large number of cellular events. In addition, obtaining sufficient source material for autogenous bone or alloplastic bone substitutes remains an unsolved issue. In previous studies, it was confirmed that bone marrow stromal cells (BMSCs) and endothelial progenitor cells (EPCs) had the capacity to promote bone regeneration. Additionally, bone morphogenetic protein-2 (BMP-2) has been demonstrated to be an active inducer of osteoblast differentiation. Therefore, the aim of the present study was to produce an effective integration system, including a scaffold, reparative cells and growth factors, that may enhance bone regeneration. Firstly, bone marrow-derived BMSCs and EPCs were isolated and identified by flow cytometry. Cell proliferation ability, secreted BMP-2 levels and alkaline phosphatase (ALP) activity were highest in the cell sheets containing BMP-2-modified BMSCs and EPCs. In addition, the expression levels of osteogenesis-associated genes, including runt related transcription factor 2 (Runx2), distal-less homeobox 5 (Dlx5), ALP and integrin-binding sialoprotein (Ibsp), and osteogenesis-associated proteins, including Runx2, Dlx, ALP, Ibsp, vascular endothelial growth factor, osteonectin, osteopontin and type I collagen, gradually increased during the co-culture of ad-BMP-2-BMSCs/EPCs. The levels of these genes and proteins were increased compared with those observed in the BMSC, EPC and BMP-2-modified BMSC groups. Finally, scanning electron microscopy observation also demonstrated that the BMP2-modified BMSCs were able to combine well with EPCs to construct a cell sheet for bone formation. Collectively, these results describe an adenovirus (ad)-BMP2-BMSCs/EPCs co-culture system that may significantly accelerate bone regeneration compared with a BMSCs/EPCs co-culture system or ad-BMP2-BMSCs alone.
Collapse
Affiliation(s)
- Jia He
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xuesong Han
- Department of Obstetrics and Gynecology, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Songmei Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ying Zhang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Boyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
21
|
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes, each of which is important for musculoskeletal tissue regeneration and repair. Reconstruction and healing of bony defects remains a major clinical challenge. Even as surgical practices advance, some severe cases of bone loss do not yield optimal recovery results. New techniques involving implantation of stem cells and tissue-engineered scaffolds are being developed to help improve bone and cartilage repair. The invasiveness and low yield of harvesting MSCs from the bone marrow (BMSCs) has led to the investigation of alternatives, including adipose-derived mesenchymal stem cells (ASCs). A review of the literature yielded several studies concerning the use of BMSCs and ASCs for the treatment of bone defects in both in vitro and in vivo models. Although both ASCs and BMSCs have demonstrated bone regenerative capabilities, BMSCs have outperformed ASCs in vitro. Despite these in vitro study findings, in vivo study results remain variable. Analysis of the literature seems to conclude there is no significant difference between bone regeneration using ASCs or BMSCs in vivo. Improved study design and standardization may enhance the application of these studies to patient care in the clinical setting.
Collapse
|
22
|
Fideles SOM, Ortiz AC, Assis AF, Duarte MJ, Oliveira FS, Passos GA, Beloti MM, Rosa AL. Effect of cell source and osteoblast differentiation on gene expression profiles of mesenchymal stem cells derived from bone marrow or adipose tissue. J Cell Biochem 2019; 120:11842-11852. [PMID: 30746760 DOI: 10.1002/jcb.28463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs) have been used in therapies for bone tissue healing. The aim of this study was to investigate the effect of cell source and osteoblast differentiation on gene expression profiles of MSCs from bone marrow (BM-MSCs) or adipose tissue (AT-MSCs) to contribute for selecting a suitable cell population to be used in cell-based strategies for bone regeneration. BM-MSCs and AT-MSCs were cultured in growth medium to keep MSCs characteristics or in osteogenic medium to induce osteoblast differentiation (BM-OBs and AT-OBs). The transcriptomic analysis was performed by microarray covering the entire rat functional genome. It was observed that cells from bone marrow presented higher expression of genes related to osteogenesis, whereas cells from adipose tissue showed a higher expression of genes related to angiogenesis and adipocyte differentiation, irrespective of cell differentiation. By comparing cells from the same source, MSCs from both sources exhibited higher expression of genes involved in angiogenesis, osteoblast differentiation, and bone morphogenesis than osteoblasts. The clustering analysis showed that AT-OBs exhibited a gene expression profile closer to MSCs from both sources than BM-OBs, suggesting that BM-OBs were in a more advanced stage of differentiation. In conclusion, our results suggest that in cell-based therapies for bone regeneration AT-MSCs could be considered for angiogenic purposes, whereas BM-MSCs and osteoblasts differentiated from either source could be better for osteogenic approaches.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana Cassia Ortiz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Freire Assis
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Max Jordan Duarte
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Biomed Mater Eng 2019; 29:567-585. [PMID: 30400072 DOI: 10.3233/bme-181009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSCs) contain lineage-committed progenitor cells that have the ability to differentiate into various cell types that may be useful for autologous cell transplantation to correct defects of skin, adipose, cartilage, bone, tendon, and blood vessels. The multipotent characteristics of ADSCs, as well as their abundance in the human body, make them an attractive potential resource for wound repair and applications to tissue engineering. ADSC transplantation has been used in combination with biomaterials, including cell sheets, hydrogel, and three-dimensional (3D) scaffolds based on chitosan, fibrin, atelocollagen, and decellularized porcine dermis, etc. Furthermore, low molecular weight heparin/protamine nanoparticles (LH/P NPs) have been used as an inducer of ADSC aggregation. The tissue engineering potential of these biomaterials as cell carriers is increased by the synergistic relationship between ADSCs and the biomaterials, resulting in the release of angiogenic cytokines and growth factors. In this review article, we describe the advantages of ADSC transplantation for tissue engineering, focusing on biomaterials as cell carriers which we have studied.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan
| |
Collapse
|
24
|
Luo Y, Wei X, Huang P. 3D bioprinting of hydrogel‐based biomimetic microenvironments. J Biomed Mater Res B Appl Biomater 2018; 107:1695-1705. [DOI: 10.1002/jbm.b.34262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/30/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| | - Xiaoyue Wei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| |
Collapse
|
25
|
MORILLO CMR, SLONIAK MC, GONÇALVES F, VILLAR CC. Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review. Braz Oral Res 2018; 32:e83. [DOI: 10.1590/1807-3107bor-2018.vol32.0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
|
26
|
Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M, Shah R, Steinbacher DM, Niklason LE. Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 2018; 27:1269-1280. [PMID: 30008231 PMCID: PMC6434463 DOI: 10.1177/0963689718782452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic "Bone" scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized bone grafts. Using this sequential cell-seeding process, the HUVECs formed lumen structures throughout the DB scaffolds as well as vascular tissue bridging 3D-printed fibers within the HB. The pre-cultured hSMCs were essential for endothelial cell (EC) lumen formation within DB scaffolds, as well as for upregulating EC-specific gene expression of HUVECs grown on HB scaffolds. We further applied this co-culture protocol to DB scaffolds using a perfusion bioreactor, to overcome the limitations of diffusive mass transport into the interiors of the scaffolds. Compared with static culture, panoramic histological sections of DB scaffolds cultured in bioreactors showed improved cellular density, as well as a nominal increase in the number of lumen structures formed by ECs in the interior regions of the scaffolds. In conclusion, we have demonstrated that the sequential seeding of hSMCs and HUVECs can serve to generate early microvascular networks that could further support the in vitro tissue engineering of naturally or synthetically derived bone grafts and in both random (DB) and ordered (HB) pore networks. Combined with the preliminary bioreactor study, this process also shows potential to generate clinically sized, vascularized bone scaffolds for tissue and regenerative engineering.
Collapse
Affiliation(s)
- Xi Liu
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Adam E Jakus
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Mehmet Kural
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hong Qian
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexander Engler
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mahboobe Ghaedi
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ramille Shah
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.,6 Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,7 Division of Organ Transplantation, Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek M Steinbacher
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 2018; 9:168. [PMID: 29921311 PMCID: PMC6008936 DOI: 10.1186/s13287-018-0914-1] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have been introduced as an alternative to bone marrow mesenchymal stem cells (BMSCs) for cell-based therapy. However, different studies comparing ASCs and BMSCs have shown conflicting results. In fact, harvesting ASCs and BMSCs from different individuals might influence the results, making comparison difficult. Therefore, this study aimed to characterize donor-matched ASCs and BMSCs in order to investigate proliferation, differentiation potential and possible effects of donor variation on these mesenchymal stem cells (MSCs). Methods Human bone marrow and adipose tissue samples were obtained from nine donors aged 8–14. ASCs and BMSCs were isolated and characterized based on expression of surface markers using flow cytometry. The proliferation up to 21 days was investigated. Multi-lineage differentiation was induced using osteogenic, chondrogenic and adipogenic differentiation media. Alkaline phosphatase (ALP) activity was monitored and collagen type I formation was evaluated by immunofluorescence staining. In vitro multi-potency was studied using tissue-specific stains and lineage-specific gene expression. In addition, the osteogenic lineage was evaluated at protein level. Results Isolated ASCs and BMSCs from all donors demonstrated morphologic and immunophenotypic characteristics of MSCs, with expression of MSCs markers and negative expression of hematopoietic markers. Unlike BMSCs, ASCs showed high expression of CD49d and low expression of Stro-1. In general, ASCs showed significantly higher proliferation and adipogenic capacity with more lipid vesicle formation and expression of the adipogenesis-related genes than BMSCs. In contrast, BMSCs showed significantly higher osteogenic and chondrogenic capacity compared to ASCs. BMSCs had earlier and higher ALP activity, calcium deposition, and expression of the osteogenesis- and chondrogenesis-related genes and the osteogenesis-related protein osteopontin. Proliferation and differentiation capacity of ASCs and BMSCs varied significantly among the donors. Conclusions ASCs and BMSCs showed tissue-specific differentiation abilities, but with significant variation between donors. The similarities and differences in the properties of ASCs and BMSCs should be taken into consideration when planning stem cell-based therapy.
Collapse
Affiliation(s)
- Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Stein Atle Lie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hallvard Vindenes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department for Plastic, Hand and Reconstructive Surgery, National Fire Damage Center, Bergen, Norway
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
|
29
|
|
30
|
Liu Z, Zhu Y, Ge R, Zhu J, He X, Yuan X, Liu X. Combination of bone marrow mesenchymal stem cells sheet and platelet rich plasma for posterolateral lumbar fusion. Oncotarget 2017; 8:62298-62311. [PMID: 28977946 PMCID: PMC5617506 DOI: 10.18632/oncotarget.19749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Bone tissue engineering provides a substitute for bone transplantation in spinal fusion. This study examined if combined bone marrow-derived mesenchymal stem cells (BMSCs) sheet with platelet-rich plasma (PRP) could promote bone regeneration in a rabbit posterolateral spinal fusion model. BMSCs was isolated and confirmed by Flow cytometric analysis and immunofluorescence staining. The morphology of BMSCs was examined by Hematoxylin and Eosin staining, scanning and transmission electron microscopy. BMSCs were cultured in induction medium or control medium. The osteogenic ability of BMSCs was investigated by various histochemical staining, immunofluorescence staining and qRT-PCR analysis. The BMSCs/PRP was constructed by encapsulating the PRP block with BMSCs sheet. Twenty-four adult rabbits were randomly divided into four groups based on the implanted biomaterials: BMSCs/PRP, BMSCs, iliac crest autograft, and control group. Manual palpation and digital radiography analysis showed that the fusion rate was 100%, 0, 83.3%, and 0 in these 4 groups, respectively. Formation of continuous bone masses in BMSCs/PRP group was confirmed by computed tomography scanning and 3D-reconstruction. These studies demonstrated that BSMCs/PRP significantly accelerated bone regeneration in the rabbit posterolateral spinal fusion model.
Collapse
Affiliation(s)
- Zunpeng Liu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Orthopedics, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Rui Ge
- Department of Orthopedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiajun Zhu
- Department of Orthopedics, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoning He
- Department of Stomatology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Xinchun Liu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Xu WL, Ong HS, Zhu Y, Liu SW, Liu LM, Zhou KH, Xu ZQ, Gao J, Zhang Y, Ye JH, Yang WJ. In Situ Release of VEGF Enhances Osteogenesis in 3D Porous Scaffolds Engineered with Osterix-Modified Adipose-Derived Stem Cells. Tissue Eng Part A 2017; 23:445-457. [PMID: 28107808 DOI: 10.1089/ten.tea.2016.0315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can differentiate into various cell types and thus have great potential for regenerative medicine. Herein, rat ADSCs were isolated; transduced with lentiviruses expressing Osterix (Osx), a transcriptional factor essential for osteogenesis. Osx overexpression upregulated key osteogenesis-related genes, such as special AT-rich binding protein 2, alkaline phosphatase, osteocalcin, and osteopontin, at both mRNA and protein levels. In addition, mineral nodule formation and alkaline phosphatase activity were enhanced in Osx-overexpressing ADSCs. The expression of dickkopf-related protein 1, a potent Wnt signaling pathway inhibitor, was also increased, whereas that of β-catenin, an intracellular signal transducer in the Wnt pathway, was decreased. β-catenin expression was partially recovered by treatment with lithium chloride, a canonical Wnt pathway activator. The Osx-expressing ADSCs were then combined with 3D gelatin-coated porous poly(ɛ-caprolactone) scaffolds with a unique release prolife of entrapped recombinant human vascular endothelial growth factor (VEGF). The controlled release of VEGF promoted osteogenic differentiation capacity in vitro. When the scaffold-ADSC complexes were transplanted into rat calvarial critical-sized defects, more bone formed on the gelatin/VEGF-coated scaffolds than on other scaffold types. Taken together, the results indicate that, Osx-overexpression promotes ADSCs' osteogenesis both in vitro and in vivo, which could be enhanced by release of VEGF.
Collapse
Affiliation(s)
- Wan-Lin Xu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China .,3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Hui-Shan Ong
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Yun Zhu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Sheng-Wen Liu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Li-Min Liu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Kai-Hua Zhou
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Zeng-Qi Xu
- 3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Jun Gao
- 4 Key Laboratory of Human Functional Genomics of Jiangsu, Department of Neurobiology, Nanjing Medical University , Nanjing, China
| | - Yan Zhang
- 5 Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Jin-Hai Ye
- 3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Wen-Jun Yang
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| |
Collapse
|
32
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
33
|
Zhou Y, van den Beucken JJJP. Special Collection: Cell-Based Therapy for Bone Regeneration. Tissue Eng Part A 2016; 22:1127-1128. [PMID: 27393469 DOI: 10.1089/ten.tea.2016.0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yinghong Zhou
- 1 The Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT) , Brisbane, Australia .,2 Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM) , Brisbane, Australia
| | | |
Collapse
|
34
|
Frese L, Dijkman PE, Hoerstrup SP. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother 2016; 43:268-274. [PMID: 27721702 DOI: 10.1159/000448180] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Petra E Dijkman
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|