1
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
2
|
McFetridge ML, Kulkarni K, Lee TH, Del Borgo MP, Aguilar MI, Ricardo SD. Elucidating the cell penetrating properties of self-assembling β-peptides. NANOSCALE 2023; 15:14971-14980. [PMID: 37661822 DOI: 10.1039/d3nr03673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Self-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-β3-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel. We therefore assessed the self-assembling lipidated-β3-peptides for cell-penetrating properties in mesenchymal stems cells (MSC) using fluorescence microscopy and membrane association with surface plasmon resonance spectroscopy (SPR). The results demonstrated that lipidated β3-peptides penetrate the MSC plasma membrane and localise to the mitochondrial network. While self-assembling lipopeptide hydrogels have shown tremendous potential for delivery of therapeutics, further optimisation may be required to minimise the membrane uptake of the lipidated-β3-peptides for cell encapsulation applications.
Collapse
Affiliation(s)
- Meg L McFetridge
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
3
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
4
|
Sun W, Gregory DA, Zhao X. Designed peptide amphiphiles as scaffolds for tissue engineering. Adv Colloid Interface Sci 2023; 314:102866. [PMID: 36898186 DOI: 10.1016/j.cis.2023.102866] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
5
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
6
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
7
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
8
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
9
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
10
|
Tian H, Guo A, Li K, Tao B, Lei D, Deng Z. Effects of a novel self-assembling peptide scaffold on bone regeneration and controlled release of two growth factors. J Biomed Mater Res A 2021; 110:943-953. [PMID: 34873824 DOI: 10.1002/jbm.a.37342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
RADA16 is a self-assembling peptide material with good bioactivity. To improve the bioactivity of a material, some specific functional motifs can be added to its peptide sequence. Here, we report a self-assembling peptide nanogel, RADA16-RGD, that has better bioactivity than RADA16 and can simultaneously carry and control the release of two growth factors, VEGF and BMP-2, which have synergistic effects on bone formation. The peptide materials were characterized by transmission electron microscopy and scanning electron microscopy. The mechanical properties of the peptides were evaluated by the rheology test. The biocompatibility of the materials was evaluated via the use of the CCK-8 test, live/dead staining and confocal laser scanning microscopy. Osteogenesis capability in vitro was evaluated by means of ALP staining, extracellular matrix mineralization and detection of osteogenic markers. The controlled release of growth factors was examined by ELISA. The results showed that RADA16-RGD exhibited a better ability than RADA16 to promote cell proliferation, adhesion and bone formation. In addition, RADA16-RGD had good biocompatibility and exhibited effective controlled release of VEGF and BMP-2. More importantly, compared with RADA16-RGD loaded with single growth factor or without growth factors, RADA16-RGD loaded with two growth factors exhibited a stronger ability to promote cell proliferation and osteogenesis. This study provides a promising strategy for the application of self-assembling peptides to promote osteogenesis and controlled release of proteins.
Collapse
Affiliation(s)
- Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Najafi H, Jafari M, Farahavar G, Abolmaali SS, Azarpira N, Borandeh S, Ravanfar R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf 2021; 4:735-756. [PMID: 34306798 PMCID: PMC8294290 DOI: 10.1007/s42242-021-00149-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Abstract The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance, especially in societies with a large elderly population. Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility, tunable mechanical stability, injectability, trigger capability, lack of immunogenic reactions, and the ability to load cells and active pharmaceutical agents for tissue regeneration. Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals, which can mimic the extracellular matrix. Thus, peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods. This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration, including ionic self-complementary peptides, amphiphilic (surfactant-like) peptides, and triple-helix (collagen-like) peptides. Special attention is given to the main bioactive peptides, the role and importance of self-assembled peptide hydrogels, and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. Graphic abstract
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, 7193711351 Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Raheleh Ravanfar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
12
|
Xu H, Wang C, Liu C, Li J, Peng Z, Guo J, Zhu L. Stem cell-seeded 3D-printed scaffolds combined with self-assembling peptides for bone defect repair. Tissue Eng Part A 2021; 28:111-124. [PMID: 34157886 DOI: 10.1089/ten.tea.2021.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone defects caused by infection, tumor, trauma and so on remain difficult to treat clinically. Bone tissue engineering (BTE) has great application prospect in promoting bone defect repair. Polycaprolactone (PCL) is a commonly used material for creating BTE scaffolds. In addition, self-assembling peptides (SAPs) can function as the extracellular matrix and promote osteogenesis and angiogenesis. In the work, a PCL scaffold was constructed by 3D printing, then integrated with bone marrow mesenchymal stem cells (BMSCs) and SAPs. The research aimed to assess the bone repair ability of PCL/BMSC/SAP implants. BMSC proliferation in PCL/SAP scaffolds was assessed via Cell Counting Kit-8. In vitro osteogenesis of BMSCs cultured in PCL/SAP scaffolds was assessed by alkaline phosphatase staining and activity assays. Enzyme linked immunosorbent assays were also performed to detect the levels of osteogenic factors. The effects of BMSC-conditioned medium from 3D culture systems on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were assessed by scratch, transwell, and tube formation assays. After 8 weeks of in vivo transplantation, radiography and histology were used to evaluate bone regeneration, and immunohistochemistry staining was utilized to detect neovascularization. In vitro results demonstrated that PCL/SAP scaffolds promoted BMSC proliferation and osteogenesis compared to PCL scaffolds, and the PCL/BMSC/SAP conditional medium (CM) enhanced HUVEC migration and angiogenesis compared to the PCL/BMSC CM. In vivo results showed that, compared to the blank control, PCL, and PCL/BMSC groups, the PCL/BMSC/SAP group had significantly increased bone and blood vessel formation. Thus, the combination of BMSC-seeded 3D-printed PCL and SAPs can be an effective approach for treating bone defects.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Chengqiang Wang
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Chun Liu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Jianjun Li
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Ziyue Peng
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Jiasong Guo
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou, China.,Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province, Guangzhou, China;
| | - Lixin Zhu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| |
Collapse
|
13
|
Self-assembling peptide hydrogel SPG-178 as a pancreatic fistula-preventing agent. Langenbecks Arch Surg 2021; 407:189-196. [PMID: 34100123 DOI: 10.1007/s00423-021-02226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Pancreatic fistula (PF) is a common and challenging complication after pancreatic surgery. The aim of this study was to investigate the efficacy of a new method for preventing PF utilizing self-assembling peptide hydrogel SPG-178 as a preclinical study. METHODS The degradability of SPG-178 was confirmed by mixing it with protease. A PF rat model was then established to investigate the efficacy of SPG-178 at preventing PF. After transecting the pancreatic duct toward the spleen, SPG-178 was attached to both sides of the pancreatic stump. The levels of amylase and lipase in both the serum and ascites were measured and surgical specimens investigated pathologically. RESULTS The hardness of SPG-178 did not change when treated with protease over a short period. The ascitic amylase level was significantly lower in rats treated with SPG-178 than rats who were not 3 days after transection of the pancreatic duct toward the spleen. Pathological examination showed fewer inflammatory cells and presence of a structure body on the surface of the pancreatic stump in the SPG-178-treated group. SPG-178 remained on the surface and many cells that covered it formed fibrous tissue or mesothelium. CONCLUSION Self-assembling peptide hydrogel SPG-178 has potential as a tool for preventing PF.
Collapse
|
14
|
Alshehri S, Susapto HH, Hauser CAE. Scaffolds from Self-Assembling Tetrapeptides Support 3D Spreading, Osteogenic Differentiation, and Angiogenesis of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:2094-2106. [PMID: 33908763 PMCID: PMC8382244 DOI: 10.1021/acs.biomac.1c00205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Indexed: 01/01/2023]
Abstract
The apparent rise of bone disorders demands advanced treatment protocols involving tissue engineering. Here, we describe self-assembling tetrapeptide scaffolds for the growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The rationally designed peptides are synthetic amphiphilic self-assembling peptides composed of four amino acids that are nontoxic. These tetrapeptides can quickly solidify to nanofibrous hydrogels that resemble the extracellular matrix and provide a three-dimensional (3D) environment for cells with suitable mechanical properties. Furthermore, we can easily tune the stiffness of these peptide hydrogels by just increasing the peptide concentration, thus providing a wide range of peptide hydrogels with different stiffnesses for 3D cell culture applications. Since successful bone regeneration requires both osteogenesis and vascularization, our scaffold was found to be able to promote angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. The results presented suggest that ultrashort peptide hydrogels are promising candidates for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Salwa Alshehri
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hepi H. Susapto
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Pal S, Sayeed M, Kumar A, Verma DP, Harioudh MK, Verma NK, Porwal K, Sharma S, Kulkarni C, Bandyopadhyay A, Mugale MN, Mitra K, Ghosh JK, Chattopadhyay N. Self-Assembling Nano-Globular Peptide from Human Lactoferrin Acts as a Systemic Enhancer of Bone Regeneration: A Novel Peptide for Orthopedic Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17300-17315. [PMID: 33830736 DOI: 10.1021/acsami.1c01513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a β-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis. LP2 has skeletal bioavailability and is safe at the 15× osteogenic dose. Thus, LP2 is a novel peptide that can be administered systemically for the medical management of hard-to-heal fractures.
Collapse
Affiliation(s)
- Subhashis Pal
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohd Sayeed
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Devesh P Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Munesh K Harioudh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neeraj K Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Konica Porwal
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivani Sharma
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Chirag Kulkarni
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Madhav N Mugale
- Academy of Scientific and Innovative Research, New Delhi 110001, India
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research, New Delhi 110001, India
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jimut K Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Naibedya Chattopadhyay
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
16
|
Yang J, Jing X, Wang Z, Liu X, Zhu X, Lei T, Li X, Guo W, Rao H, Chen M, Luan K, Sui X, Wei Y, Liu S, Guo Q. In vitro and in vivo Study on an Injectable Glycol Chitosan/Dibenzaldehyde-Terminated Polyethylene Glycol Hydrogel in Repairing Articular Cartilage Defects. Front Bioeng Biotechnol 2021; 9:607709. [PMID: 33681156 PMCID: PMC7928325 DOI: 10.3389/fbioe.2021.607709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
The normal anatomical structure of articular cartilage determines its limited ability to regenerate and repair. Once damaged, it is difficult to repair it by itself. How to realize the regeneration and repair of articular cartilage has always been a big problem for clinicians and researchers. Here, we conducted a comprehensive analysis of the physical properties and cytocompatibility of hydrogels, and evaluated their feasibility as cell carriers for Adipose-derived mesenchymal stem cell (ADSC) transplantation. Concentration-matched hydrogels were co-cultured with ADSCs to confirm ADSC growth in the hydrogel and provide data supporting in vivo experiments, which comprised the hydrogel/ADSCs, pure-hydrogel, defect-placement, and positive-control groups. Rat models of articular cartilage defect in the knee joint region was generated, and each treatment was administered on the knee joint cartilage area for each group; in the positive-control group, the joint cavity was surgically opened, without inducing a cartilage defect. The reparative effect of injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol (GCS/DF-PEG) hydrogel on injured articular cartilage was evaluated by measuring gross scores and histological score of knee joint articular-cartilage injury in rats after 8 weeks. The 1.5% GCS/2% DF-PEG hydrogels degraded quickly in vitro. Then, We perform in vivo and in vitro experiments to evaluate the feasibility of this material for cartilage repair in vivo and in vitro.
Collapse
Affiliation(s)
- Jianhua Yang
- Orthopedics Department, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoguang Jing
- The Second Affiliated Hospital of Luohe Medical College, Luohe, China.,Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Zimin Wang
- The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Xuejian Liu
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Xiaofeng Zhu
- School of Medicine, Jiamusi University, Jiamusi, China.,Medical Research Center of Mudanjiang Medical School, Mudanjiang, China
| | - Tao Lei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry, Tsinghua University, Beijing, China
| | - Xu Li
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Weimin Guo
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Haijun Rao
- Orthopedics Department, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, China
| | - Mingxue Chen
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Kai Luan
- The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Xiang Sui
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuyun Liu
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China
| |
Collapse
|
17
|
Chen CH, Hsu EL, Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone 2020; 141:115565. [PMID: 32745692 PMCID: PMC7680412 DOI: 10.1016/j.bone.2020.115565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Recombinant human bone morphogenetic proteins (BMPs) have shown clinical success in promoting bone healing, but they are also associated with unwanted side effects. The development of improved BMP carriers that can retain BMP at the defect site and maximize its efficacy would decrease the therapeutic BMP dose and thus improve its safety profile. In this review, we discuss the advantages of using self-assembling peptides, a class of synthetic supramolecular biomaterials, to deliver recombinant BMPs. Peptide amphiphiles (PAs) are a broad class of self-assembling peptides, and the use of PAs for BMP delivery and bone regeneration has been explored extensively over the past decade. Like many self-assembling peptide systems, PAs can be designed to form nanofibrous supramolecular biomaterials in which molecules are held together by non-covalent bonds. Chemical and biological functionality can be added to PA nanofibers, through conjugation of chemical moieties or biological epitopes to PA molecules. For example, PA nanofibers have been designed to bind heparan sulfate, a natural polysaccharide that is known to bind BMPs and potentiate their signal. Alternatively, PA nanofibers have been designed to synthetically mimic the structure and function of heparan sulfate, or to directly bind BMP specifically. In small animal models, these bio-inspired PA materials have shown the capacity to promote bone regeneration using BMP at doses 10-100 times lower than established therapeutic doses. These promising results have motivated further evaluation of PAs in large animal models, where their safety and efficacy must be established before clinical translation. We conclude with a discussion on the possiblity of combining PAs with other materials used in orthopaedic surgery to maximize their utility for clinical translation.
Collapse
Affiliation(s)
- Charlotte H Chen
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Erin L Hsu
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Orthopaedic Surgery, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
19
|
Maynard SA, Winter CW, Cunnane EM, Stevens MM. Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 7:553-547. [PMID: 34805482 PMCID: PMC8594271 DOI: 10.1007/s40883-020-00180-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue-engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell–material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of regenerative therapies is limited due to poor material integration, rapid clearance, and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell–material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, and the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine. Lay Summary The combination of biology, chemistry, materials science, and imaging technology affords exciting opportunities to better diagnose and treat a wide range of diseases. Recent advances in imaging technologies have enabled better understanding of the specific interactions that occur between human cells and their immediate surroundings in both health and disease. This biological understanding can be used to design smart therapies and tissue replacements that better mimic native tissue. Here, we discuss the advances in molecular biology and technologies that can be employed to functionalize materials and characterize their interaction with biological entities to facilitate the design of more sophisticated medical therapies.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Eoghan M. Cunnane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
20
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
21
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
22
|
Matsushita K, Kawashima R, Uesugi K, Okada H, Sakaguchi H, Quantock AJ, Nishida K. Assessment of a self-assembling peptide gel, SPG-178, in providing a clear operative field for trabeculectomy surgery for glaucoma in an animal model. Sci Rep 2020; 10:11326. [PMID: 32647319 PMCID: PMC7347556 DOI: 10.1038/s41598-020-68171-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
The presence of blood during ophthalmic surgery is problematic, as it can obstruct a surgeon’s view of the operative field. This is particularly true when performing trabeculectomy surgery to enhance ocular fluid outflow and reduce intraocular pressure as a treatment for glaucoma, one of the most common vision loss conditions worldwide. In this study, we investigated the performance of a transparent, self-assembling peptide gel (SPG-178) and its ability to maintain visibility during trabeculectomy surgery. Unlike the hyaluronic acid gel commonly used in ophthalmic surgery, SPG-178 did not permit the ingress of blood into the gel itself. Rather, it forced blood to flow peripherally to the gel. Moreover, if bleeding occurred under the SPG-178 gel, perfusion with saline was able to effectively flush the blood away along the interface between the SPG-178 and the ocular tissue (in this case scleral) to clear the surgical field of view. In experimental trabeculectomy surgeries with mitomycin C used as an adjuvant, there were no differences in the postoperative recovery of intraocular pressure or bleb morphology with or without the use of SPG-178. SPG-178, therefore, when used in a gel formulation, represents a new material for use in intraocular surgery to ensure a clear operative field with likely beneficial treatment outcomes.
Collapse
Affiliation(s)
- Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Koji Uesugi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Menicon Co., Ltd., 5-1-10 Takamoridai, Kasugai, Aichi, 487-0032, Japan
| | - Haruka Okada
- Menicon Co., Ltd., 5-1-10 Takamoridai, Kasugai, Aichi, 487-0032, Japan
| | - Hirokazu Sakaguchi
- Department of Advanced Device Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
De Leon-Rodriguez LM, Park YE, Naot D, Musson DS, Cornish J, Brimble MA. Design, characterization and evaluation of β-hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery. RSC Adv 2020; 10:18222-18230. [PMID: 35692623 PMCID: PMC9122575 DOI: 10.1039/d0ra03011b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
The use of peptide hydrogels is of growing interest in bone regeneration. Self-assembling peptides form hydrogels and can be used as injectable drug delivery matrices. Injected into the defect site, they can gel in situ, and release factors that aid bone growth. We report on the design, synthesis and characterization of three β-hairpin peptide hydrogels, and on their osteoblast cytocompatibility as well as delivery of the lactoferrin glycoprotein, a bone anabolic factor. Osteoblasts cultured in hydrogels of the peptide with sequence NH2-Leu-His-Leu-His-Leu-Lys-Leu-Lys-Val-dPro-Pro-Thr-Lys-Leu-Lys-Leu-His-Leu-His-Leu-Arg-Gly-Asp-Ser-CONH2 (H4LMAX-RGDS) increased the osteoblast cell number and the cells appeared healthy after seven days. Furthermore, we showed that H4LMAX-RGDS was capable of releasing up to 60% of lactoferrin (pre-encapsulated in the gel) over five days while retaining the rest of the glycoprotein. Thus, H4LMAX-RGDS hydrogels are cytocompatible with primary osteoblasts and capable of delivering bio-active lactoferrin that increases osteoblast cell number. Self-assembling peptide H4LMAX-RGDS hydrogels, designed to enhance bone regeneration, are cytocompatible and capable of delivering the bone anabolic factor lactoferrin to increase osteoblast cell number.![]()
Collapse
Affiliation(s)
| | - Young-Eun Park
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Dorit Naot
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - David S. Musson
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Jillian Cornish
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
24
|
Yoshida W, Matsugami D, Murakami T, Bizenjima T, Imamura K, Seshima F, Saito A. Combined effects of systemic parathyroid hormone (1-34) and locally delivered neutral self-assembling peptide hydrogel in the treatment of periodontal defects: An experimental in vivo investigation. J Clin Periodontol 2019; 46:1030-1040. [PMID: 31292977 DOI: 10.1111/jcpe.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
AIM To evaluate in vivo combination therapy of systemic parathyroid hormone (PTH) and locally delivered neutral self-assembling peptide (SAP) hydrogel for periodontal treatment. MATERIALS AND METHODS Viability/proliferation of rat periodontal ligament cells in a neutral SAP nanofibre hydrogel (SPG-178) was evaluated using WST-1 assay. Periodontal defects were created mesially to the maxillary first molars in 40 Wistar rats. Defects were filled with 1.5% SPG-178 or left unfilled. Animals received PTH (1-34) or saline injections every 2 days. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing at 2 or 4 weeks postoperative. RESULTS At 72 hr, cells in 1.5% SPG-178 showed increased viability/proliferation compared to cells in 0.8% SPG-178 or untreated controls. In vivo, systemic PTH resulted in significantly greater bone volume in the Unfilled group at 2 weeks (p = .01) and 4 weeks (p < .0001) than in the saline control. At 4 weeks, a significantly greater bone volume was observed in the PTH/SPG-178 (p = .0003) and PTH/Unfilled (p = .004) groups than in Saline/SPG-178 group. Histologically, greater bone formation was observed in PTH/SPG-178 at 4 weeks than in other groups. In the PTH/SPG-178 group, increased proportions of PCNA-, VEGF-, and Osterix-positive cells were observed in the treated sites. CONCLUSIONS These findings suggest that intermittent systemic PTH and locally delivered neutral SAP hydrogel enhance periodontal healing.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
25
|
Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol 2019; 46 Suppl 21:12-32. [PMID: 30624807 DOI: 10.1111/jcpe.13053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physiological bone formation and bone regeneration occurring during bone repair can be considered distinct but similar processes. Mesenchymal stem cells (MSC) and associated biologic factors are crucial to both bone formation and bone regeneration. AIM To perform a narrative review of the current literature regarding the role of MSC and biologic factors in bone formation with the aim of discussing the clinical relevance of in vitro and in vivo animal studies. METHODS The literature was searched for studies on MSC and biologic factors associated with the formation of bone in the mandible and maxilla. The search specifically targeted studies on key aspects of how stem cells and biologic factors are important in bone formation and how this might be relevant to bone regeneration. The results are summarized in a narrative review format. RESULTS Different types of MSC and many biologic factors are associated with bone formation in the maxilla and mandible. CONCLUSION Bone formation and regeneration involve very complex and highly regulated cellular and molecular processes. By studying these processes, new clinical opportunities will arise for therapeutic bone regenerative treatments.
Collapse
Affiliation(s)
- Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
26
|
Koch F, Ekat K, Kilian D, Hettich T, Germershaus O, Lang H, Peters K, Kreikemeyer B. A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. Adv Healthc Mater 2019; 8:e1900167. [PMID: 30985084 DOI: 10.1002/adhm.201900167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Periodontitis is a chronic inflammatory and tissue-destructive disease. Since the polymicrobiome in the oral cavity makes it difficult to treat, novel therapeutic strategies are required. Hydrogels based on self-assembling peptides (SAP) can be suitable candidates for periodontal therapy due to their injectability, biocompatibility, cargo-loading capacity, and tunable physicochemical and mechanical properties. In this study, two SAP hydrogels (P11-4 and P11-28/29) are examined for their intrinsic antimicrobial activity, regenerative potential, and antibiotic delivery capacity. A significant antibacterial effect of P11-28/29 hydrogels on the periodontal pathogen Porphyromonas gingivalis and a less pronounced effect for P11-4 hydrogels is demonstrated. The metabolic activity rates of human dental follicle stem cells (DFSCs), which reflect cell viability and may thus indicate the regenerative capacity, are similar on tissue culture polystyrene (TCPS) and on P11-4 hydrogels after 14 days of culture. Noticeably, both SAP hydrogels strengthen the osteogenic differentiation of DFSCs compared with TCPS. The incorporation of tetracycline, ciprofloxacin, and doxycycline does not affect fibril formation of either SAP hydrogel and results in favorable release kinetics up to 120 h. In summary, this study reveals that P11-SAP hydrogels combine many favorable properties required to make them applicable as prospective novel treatment strategy for periodontal therapy.
Collapse
Affiliation(s)
- Franziska Koch
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Katharina Ekat
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - David Kilian
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Timm Hettich
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Oliver Germershaus
- School of Life SciencesInstitute of Pharma TechnologyUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Herrmann Lang
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Kirsten Peters
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Bernd Kreikemeyer
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
| |
Collapse
|
27
|
Millar-Haskell CS, Dang AM, Gleghorn JP. Coupling synthetic biology and programmable materials to construct complex tissue ecosystems. MRS COMMUNICATIONS 2019; 9:421-432. [PMID: 31485382 PMCID: PMC6724541 DOI: 10.1557/mrc.2019.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 05/17/2023]
Abstract
Synthetic biology combines engineering and biology to produce artificial systems with programmable features. Specifically, engineered microenvironments have advanced immensely over the past few decades, owing in part to the merging of materials with biological mimetic structures. In this review, we adapt a traditional definition of community ecology to describe "cellular ecology", or the study of the distribution of cell populations and interactions within their microenvironment. We discuss two exemplar hydrogel platforms: (1) self-assembling peptide (SAP) hydrogels and (2) Poly(ethylene) glycol (PEG) hydrogels and describe future opportunities for merging smart material design and synthetic biology within the scope of multicellular platforms.
Collapse
Affiliation(s)
| | - Allyson M. Dang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
28
|
Lin CY, Kuo PJ, Chin YT, Weng IT, Lee HW, Huang HM, Lin HY, Hsiung CN, Chan YH, Lee SY. Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. J Endod 2019; 45:435-441. [DOI: 10.1016/j.joen.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
|
29
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
30
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Feasibility and effects of a self-assembling peptide as a scaffold in bone healing: An in vivo study in rabbit lumbar posterolateral fusion and tibial intramedullary models. J Orthop Res 2018; 36:3285-3293. [PMID: 30054932 DOI: 10.1002/jor.24109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023]
Abstract
Spinal fusion and bone defects after injuries, removal of bone tumors, and infections require repair by implantation. In this study, we show self-assembling peptide (SPG-178) hydrogel-induced bone healing in vivo. Posterolateral lumbar fusion and tibial intramedullary models of rabbits were prepared. In the tibia model, micro-CT analysis revealed a significantly higher degree of newly formed bone matrix in the SPG-178 group compared to the other groups. SEM/3D micrographs showed that the cavity filled with SPG-178 had collagen fibers attached to host bone. After 28 days, samples from the SPG-178 group showed significant repair of the defect. In the posterolateral lumbar fusion models, micro-CT showed a tendency for a higher degree of newly formed bone matrix in the SPG-178 group compared to the β-TCP and bone chips only groups. Von Kossa staining showed marked new bone formation attached to the lamina that was most prominent at the implanted SPG-178 composite margin. SPG-178 is a material that is likely to be used in clinical applications because it has several benefits. These include its favorable bone conduction properties, its ability to act as a support for various cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and be combined with a wide range of other materials. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3285-3293, 2018.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
31
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
32
|
He B, Zhao J, Ou Y, Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:728-738. [PMID: 29853144 DOI: 10.1016/j.msec.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Bone tissue had moderate self-healing capabilities, but biomaterial scaffolds were required for the repair of some defects such as large bone defects. Peptide nanofiber scaffolds demonstrated important potential in regenerative medicine. Functional modification and controlled release of signal molecules were two significant approaches to increase the bioactivity of biofunctionalized peptide nanofiber scaffolds, but peptide scaffolds were limited by insufficient mechanical strength. Thus, it was necessary to combine peptide scaffolds with other materials including polymers, hydroxyapatite, demineralized bone matrix (DBM) and metal materials based on the requirement of different bone defects. As the development of peptide-based composite scaffolds continued to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes for bone repair.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
33
|
Zhou M, Liu NX, Shi SR, Li Y, Zhang Q, Ma QQ, Tian TR, Ma WJ, Cai XX, Lin YF. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1227-1236. [PMID: 29458214 DOI: 10.1016/j.nano.2018.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan-Xin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan-Quan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao-Ran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Juan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20:479-498. [PMID: 29449086 DOI: 10.1016/j.jcyt.2017.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| |
Collapse
|
35
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Effects of a self-assembling peptide as a scaffold on bone formation in a defect. PLoS One 2018; 13:e0190833. [PMID: 29304115 PMCID: PMC5755907 DOI: 10.1371/journal.pone.0190833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal fusion and bone defect after injuries, removal of bone tumors, and infections need to be repaired by implantation. In an aging society, recovery from these procedures is often difficult. In this study, we found that injection of SPG-178 leads to expression of several bone marker genes and mineralization in vitro, and revealed a significantly higher degree of newly formed bone matrix with use of SPG-178 in vivo. MC3T3-E1 cells were used to evaluate osteoblast differentiation promoted by SPG-178. To analyze gene expression, total RNA was isolated from MC3T3-E1 cells cultured for 7 and 14 days with control medium or SPG-178 medium. Among the several bone marker genes examined, SPG-178 significantly increased the mRNA levels for ALP, BMP-2 and Osteocalcin, OPN, BSP and for the Osterix. Ten-week-old female Wistar rats were used for all transplantation procedures. A PEEK cage was implanted into a bony defect (5 mm) within the left femoral mid-shaft, and stability was maintained by an external fixator. The PEEK cages were filled with either a SPG-178 hydrogel plus allogeneic bone chips (n = 4) or only allogeneic bone chips (n = 4). The rats were then kept for 56 days. Newly formed bone matrix was revealed inside the PEEK cage and there was an increased bone volume per total volume with the cage filled with SPG-178, compared to the control group. SPG-178 has potential in clinical applications because it has several benefits. These include its favorable bone conduction properties its ability to act as a support for various different cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and combined with a wide range of other materials.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
36
|
Ercal P, Pekozer GG, Kose GT. Dental Stem Cells in Bone Tissue Engineering: Current Overview and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:113-127. [PMID: 29498025 DOI: 10.1007/5584_2018_171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment of bone that is impaired due to disease, trauma or tumor resection creates a challenge for both clinicians and researchers. Critical size bone defects are conventionally treated with autografts which are associated with risks such as donor site morbidity and limitations like donor shortage. Bone tissue engineering has become a promising area for the management of critical size bone defects by the employment of biocompatible materials and the discovery of novel stem cell sources. Mesenchymal stem cells (MSCs) can be isolated with ease from various dental tissues including dental pulp stem cells, stem cells from apical papilla, dental follicle stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, gingival stem cells and tooth germ derived stem cells. Outcomes of dental MSC mediated bone tissue engineering is explored in various in vivo and in vitro preclinical studies. However, there are still obscurities regarding the mechanisms underlying in MSC mediated bone regeneration and challenges in applications of dental stem cells. In this review, we summarized dental stem cell sources and their characterizations, along with currently used biomaterials for cell delivery and future perspectives for dental MSCs in the field of bone tissue engineering. Further efforts are necessary before moving to clinical trials for future applications.
Collapse
|
37
|
Ndong JDLC, Stephenson Y, Davis ME, García AJ, Goudy S. Controlled JAGGED1 delivery induces human embryonic palate mesenchymal cells to form osteoblasts. J Biomed Mater Res A 2017; 106:552-560. [PMID: 28913955 DOI: 10.1002/jbm.a.36236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
Osteoblast commitment and differentiation are controlled by multiple growth factors including members of the Notch signaling pathway. JAGGED1 is a cell surface ligand of the Notch pathway that is necessary for murine bone formation. The delivery of JAGGED1 to induce bone formation is complicated by its need to be presented in a bound form to allow for proper Notch receptor signaling. In this study, we investigate whether the sustained release of JAGGED1 stimulates human mesenchymal cells to commit to osteoblast cell fate using polyethylene glycol malemeide (PEG-MAL) hydrogel delivery system. Our data demonstrated that PEG-MAL hydrogel constructs are stable in culture for at least three weeks and maintain human mesenchymal cell viability with little cytotoxicity in vitro. JAGGED1 loaded on PEG-MAL hydrogel (JAGGED1-PEG-MAL) showed continuous release from the gel for up to three weeks, with induction of Notch signaling using a CHO cell line with a Notch1 reporter construct, and qPCR gene expression analysis in vitro. Importantly, JAGGED1-PEG-MAL hydrogel induced mesenchymal cells towards osteogenic differentiation based on increased Alkaline phosphatase activity and osteoblast genes expression including RUNX2, ALP, COL1, and BSP. These results thus indicated that JAGGED1 delivery in vitro using PEG-MAL hydrogel induced osteoblast commitment, suggesting that this may be a viable in vivo approach to bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 552-560, 2018.
Collapse
Affiliation(s)
| | | | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Steven Goudy
- Emory University, Department of Otolaryngology, Atlanta, Georgia.,Emory University, Department of Pediatrics, Atlanta, Georgia
| |
Collapse
|