1
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Andrade da Silva LH, Heuer RA, Roque CB, McGuire TL, Hosoya T, Kimura H, Tamura K, Matsuoka AJ. Enhanced survival of hypoimmunogenic otic progenitors following intracochlear xenotransplantation: repercussions for stem cell therapy in hearing loss models. Stem Cell Res Ther 2023; 14:83. [PMID: 37046329 PMCID: PMC10099643 DOI: 10.1186/s13287-023-03304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.
Collapse
Affiliation(s)
- Luisa H Andrade da Silva
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Kouichi Tamura
- Kobe Research Institute, HEALIOS K.K., Kobe, Hyogo, Japan
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Department of Otolaryngology and Head and Neck Surgery, University of California San Diego, 9444 Medical Center Drive, MC7895, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Lyu Q, Gong S, Lees JG, Yin J, Yap LW, Kong AM, Shi Q, Fu R, Zhu Q, Dyer A, Dyson JM, Lim SY, Cheng W. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nat Commun 2022; 13:7259. [PMID: 36433978 PMCID: PMC9700778 DOI: 10.1038/s41467-022-34860-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an 'Atomic Force Microscope-like' engaging process. This allows for instantaneous detection of the organoids' minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.
Collapse
Affiliation(s)
- Quanxia Lyu
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Shu Gong
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Jarmon G. Lees
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine and Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Jialiang Yin
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Lim Wei Yap
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Anne M. Kong
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Qianqian Shi
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Runfang Fu
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Qiang Zhu
- grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| | - Ash Dyer
- grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| | - Jennifer M. Dyson
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Faculty of Engineering, Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800 Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine and Surgery, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia ,grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Wenlong Cheng
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia ,grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| |
Collapse
|
4
|
Bridging the electrode-neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear. Acta Biomater 2022; 151:360-378. [PMID: 36007779 DOI: 10.1016/j.actbio.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Although cochlear implant (CI) technology has allowed for the partial restoration of hearing over the last few decades, persistent challenges (e.g., poor performance in noisy environments and limited ability to decode intonation and music) remain. The "electrode-neuron gap" is inherent to these challenges and poses the most significant obstacle to advancing past the current plateau in CI performance. We propose the development of a "neuro-regenerative nexus"-a biological interface that doubly preserves native spiral ganglion neurons (SGNs) while precisely directing the growth of neurites arising from transplanted human pluripotent stem cell (hPSC)-derived otic neuronal progenitors (ONPs) toward the native SGN population. We hypothesized that the Polyhedrin Delivery System (PODS®-recombinant human brain-derived neurotrophic factor [rhBDNF]) could stably provide the adequate BDNF concentration gradient to hPSC-derived late-stage ONPs to facilitate otic neuronal differentiation and directional neurite outgrowth. To test this hypothesis, a finite element model (FEM) was constructed to simulate BDNF concentration profiles generated by PODS®-rhBDNF based on initial concentration and culture device geometry. For biological validation of the FEM, cell culture experiments assessing survival, differentiation, neurite growth direction, and synaptic connections were conducted using a multi-chamber microfluidic device. We were able to successfully generate the optimal BDNF concentration gradient to enable survival, neuronal differentiation toward SGNs, directed neurite extension of hPSC-derived SGNs, and synaptogenesis between two hPSC-derived SGN populations. This proof-of-concept study provides a step toward the next generation of CI technology. STATEMENT OF SIGNIFICANCE: Our study demonstrates that the generation of in vitro neurotrophin concentration gradients facilitates survival, neuronal differentiation toward auditory neurons, and directed neurite extension of human pluripotent stem cell-derived auditory neurons. These findings are indispensable to designing a bioactive cochlear implant, in which stem cell-derived neurons are integrated into a cochlear implant electrode strip, as the strategy will confer directional neurite growth from the transplanted cells in the inner ear. This study is the first to present the concept of a "neuro-regenerative nexus" congruent with a bioactive cochlear implant to eliminate the electrode-neuron gapthe most significant barrier to next-generation cochlear implant technology.
Collapse
|