1
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
2
|
Kamal BM, El-Gendy SAA, Rashwan AM, Abd-Elhafeez HH, Soliman S, El-Bakary NER, El-Mansi AA, Eldesoqui MB, Alsafy MAM. A new insight for investigating the prenatal and postnatal ossification centers of pelvic and femur bones in white New Zealand rabbits (Oryctolagus cuniculus) using 3D CT, double stain technique, and morphometry. Ann Anat 2024; 256:152316. [PMID: 39191298 DOI: 10.1016/j.aanat.2024.152316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The ossification centers in rabbit limbs are related to fetal age and bone maturation. OBJECTIVE To address the limited studies on ossification in the hind limbs of New Zealand rabbits, we investigated the prenatal and postnatal development of the pelvic and femur bones. METHODS Double staining with Alcian Blue and Alizarin Red, computed tomography (CT), and 3D reconstruction were employed to visualize and analyze ossification centers in detail. RESULTS Using double staining, we observed these patterns: At prenatal days 18 and 21, ossification centers appeared in the ilium. By prenatal days 23 and 25, ossification began in the ischium. On postnatal day 1, ilium ossification centers spread across most of the ilium wings, except for the iliac crest, and new centers appeared in the pubis and cotyloid bones. Most bones had ossified by the third week and one month postnatal, except for the iliac crest and ischial tuberosity. At 1.5 months, both were fully ossified. On day 18 post coitum, an ossification center was visible in the middle of the femur shaft. By day 28 post coitum, ossification extended through the shaft, and postnatally, new ossification spots appeared at the extremities by day one and week one. By the third week, complete ossification of the femur head, lesser trochanter, third trochanter, medial condyle, and lateral condyle was observed. At 1.5 months, the entire proximal extremity was ossified. CONCLUSION 3D CT provided clear imaging of ossification progression in the pelvic and femur bones. This study enhances our understanding of vertebrate skeletal development.
Collapse
Affiliation(s)
- Basma M Kamal
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Samir A A El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abis 10th P.O., Alexandria 21944, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Laboratory of Life science frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Soha Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | | | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mamdouh B Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A M Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abis 10th P.O., Alexandria 21944, Egypt.
| |
Collapse
|
3
|
Lin CH, Srioudom JR, Sun W, Xing M, Yan S, Yu L, Yang J. The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration. BIOMATERIALS TRANSLATIONAL 2024; 5:236-256. [PMID: 39734701 PMCID: PMC11681182 DOI: 10.12336/biomatertransl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 12/31/2024]
Abstract
Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection. The development of tissue engineering techniques opens new avenues for enhanced tissue regeneration. Nowadays, the expectations of tissue engineering scaffolds have gone beyond merely providing physical support for cell attachment. Ideal scaffolds should also provide biological cues to actively boost tissue regeneration. As a new type of injectable biomaterial, hydrogel microspheres have been increasingly recognised as promising therapeutic carriers for the local delivery of cells and drugs to enhance tissue regeneration. Compared to traditional tissue engineering scaffolds and bulk hydrogel, hydrogel microspheres possess distinct advantages, including less invasive delivery, larger surface area, higher transparency for visualisation, and greater flexibility for functionalisation. Herein, we review the materials characteristics of hydrogel microspheres and compare their fabrication approaches, including microfluidics, batch emulsion, electrohydrodynamic spraying, lithography, and mechanical fragmentation. Additionally, based on the different requirements for bone, cartilage, nerve, skin, and muscle tissue regeneration, we summarize the applications of hydrogel microspheres as cell and drug delivery carriers for the regeneration of these tissues. Overall, hydrogel microspheres are regarded as effective therapeutic delivery carriers to enhance tissue regeneration in regenerative medicine. However, significant effort is required before hydrogel microspheres become widely accepted as commercial products for clinical use.
Collapse
Affiliation(s)
- Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse R. Srioudom
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Wei Sun
- Leicester International Institute, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China
- Research Centre for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
5
|
Zhang Q, Wen H, Liao G, Cai X. Tendon stem cells seeded on dynamic chondroitin sulfate and chitosan hydrogel scaffold with BMP2 enhance tendon-to-bone healing. Heliyon 2024; 10:e25206. [PMID: 38370180 PMCID: PMC10867601 DOI: 10.1016/j.heliyon.2024.e25206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Failure to adequately reconstruct the tendon-to-bone interface constitutes the primary etiology underlying rotator cuff retear after surgery. The purpose of this study is to construct a dynamic chondroitin sulfate and chitosan hydrogel scaffold (CHS) with bone morphogenetic protein 2 (BMP2), then seed tendon stem cells (TSCs) on BMP2-CHS for the rotator cuff reconstruction of tendon-to-bone interface. In this dynamic hydrogel system, the scaffold could not only have good biocompatibility and degradability but also significantly promote the proliferation and differentiation of TSCs. The ability of BMP2-CHS combined with TSCs to promote regeneration of tendon-to-bone interface was further verified in the rabbit rotator cuff tear model. The results showed that BMP2-CHS combined with TSCs could induce considerable collagen, fibrocartilage, and bone arrangement and growth at the tendon-to-bone interface and promote the biomechanical properties. Overall, TSCs seeded on CHS with BMP2 can enhance tendon-to-bone healing and provide a new possibility for improving the poor prognosis of rotator cuff surgery.
Collapse
Affiliation(s)
- Qingsong Zhang
- The First School Clinical Medicine, Southern Medical University, Guangdong 510515, China
- Wuhan Fourth Hospital, Wuhan 430030, China
| | - Huawei Wen
- Wuhan Fourth Hospital, Wuhan 430030, China
| | | | - Xianhua Cai
- The First School Clinical Medicine, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
6
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
7
|
Kaur K, Sannoufi R, Butler JS, Murphy CM. Biomimetic Inspired Hydrogels for Regenerative Vertebral Body Stenting. Curr Osteoporos Rep 2023; 21:806-814. [PMID: 38001387 DOI: 10.1007/s11914-023-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the potential of biomimetic hydrogels as an alternative to bone cement in vertebral body stenting (VBS), a minimally invasive treatment for vertebral compression fractures. RECENT FINDINGS The use of bone cement in VBS procedures can lead to complications such as incomplete fracture reduction and cement leakage. Biomimetic hydrogels have gained significant attention as potential biomaterial alternatives for VBS due to their unique properties, including tuneable therapeutic and mechanical properties. Over the past decade, there has been significant advancements in the development of biomimetic hydrogels for bone regeneration, employing a wide range of approaches to enhance the structural and functional properties of hydrogels. Biomimetic hydrogels hold significant promise as safer and reparative alternatives to bone cement for VBS procedures. However, further research and development in this field are necessary to explore the full potential of hydrogel-based systems for vertebral bone repair.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
- School of Pharmacy and Biomolecular Science, RCSI, Dublin, Ireland
| | - Ruby Sannoufi
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University of College Dublin, Belfield, Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
8
|
Zhang D, Li Z, Yang L, Ma H, Chen H, Zeng X. Architecturally designed sequential-release hydrogels. Biomaterials 2023; 303:122388. [PMID: 37980822 DOI: 10.1016/j.biomaterials.2023.122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Drug synergy has made significant strides in clinical applications in recent decades. However, achieving a platform that enables "single administration, multi-stage release" by emulating the natural physiological processes of the human body poses a formidable challenge in the field of molecular pharmaceutics. Hydrogels, as the novel generation of drug delivery systems, have gained widespread utilization in drug platforms owing to their exceptional biocompatibility and modifiability. Sequential drug delivery hydrogels (SDDHs), which amalgamate the advantages of hydrogel and sequential release platforms, offer a promising solution for effectively navigating the intricate human environment and accomplishing drug sequential release. Inspired by architectural design, this review establishes connections between three pivotal factors in SDDHs construction, namely mechanisms, carrier spatial structure, and stimuli-responsiveness, and three aspects of architectural design, specifically building materials, house structures, and intelligent interactive furniture, aiming at providing insights into recent developments in SDDHs. Furthermore, the dual-drug collocation and cutting-edge hydrogel preparation technologies as well as the prevailing challenges in the field were elucidated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
10
|
Lin S, Maekawa H, Moeinzadeh S, Lui E, Alizadeh HV, Li J, Kim S, Poland M, Gadomski BC, Easley JT, Young J, Gardner M, Mohler D, Maloney WJ, Yang YP. An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats. Nat Commun 2023; 14:4455. [PMID: 37488113 PMCID: PMC10366099 DOI: 10.1038/s41467-023-40149-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.
Collapse
Affiliation(s)
- Sien Lin
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hirotsugu Maekawa
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Mechanical Engineering, School of Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hossein Vahid Alizadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael Poland
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Benjamin C Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael Gardner
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - David Mohler
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - William J Maloney
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Materials Science and Engineering, School of Engineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Huang NF, Zaitseva TS, Paukshto MV. Biomedical Applications of Collagen. Bioengineering (Basel) 2023; 10:90. [PMID: 36671662 PMCID: PMC9854710 DOI: 10.3390/bioengineering10010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Extracellular matrix proteins (ECMs) provide structural support and dynamic signaling cues that regulate cell behavior and tissue morphogenesis [...].
Collapse
Affiliation(s)
- Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
13
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
14
|
Advances in bone regeneration with growth factors for spinal fusion: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100193. [PMID: 36605107 PMCID: PMC9807829 DOI: 10.1016/j.xnsj.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone morphogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically for the treatment of refractory orthopedic conditions. Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two decades, a major challenge-considerable side effects associated with the acute release of high doses of BMPs-has also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used in conjunction with BMPs is currently underway. In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with BMPs to provide synergistic effects, and novel BMP carriers.
Collapse
|
15
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|