High glucose-induced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1.
Biochim Biophys Acta Mol Basis Dis 2014;
1842:2266-75. [PMID:
25108283 DOI:
10.1016/j.bbadis.2014.07.030]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/09/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE
Hyperglycemia leads to adaptive cell responses in part due to hyperosmolarity. In endothelial and epithelial cells, hyperosmolarity induces aquaporin-1 (AQP1) which plays a role in cytoskeletal remodeling, cell proliferation and migration. Whether such impairments also occur in human induced pluripotent stem cells (iPS) is not known. We therefore investigated whether high glucose-induced hyperosmolarity impacts proliferation, migration, expression of pluripotency markers and actin skeleton remodeling in iPS cells in an AQP1-dependent manner.
METHODS AND RESULTS
Human iPS cells were generated from skin fibroblasts by lentiviral transduction of four reprogramming factors (Oct4, Sox2, Klf4, c-Myc). After reprogramming, iPS cells were characterized by their adaptive responses to high glucose-induced hyperosmolarity by incubation with 5.5mmol/L glucose, high glucose (HG) at 30.5mM, or with the hyperosmolar control mannitol (HM). Exposure to either HG or HM increased the expression of AQP1. AQP1 co-immunoprecipitated with β-catenin. HG and HM induced the expression of β-catenin. Under these conditions, iPS cells showed increased ratios of F-actin to G-actin and formed increased tubing networks. Inhibition of AQP1 with small interfering RNA (siRNA) reverted the inducing effects of HG and HM.
CONCLUSIONS
High glucose enhances human iPS cell proliferation and cytoskeletal remodeling due to hyperosmolarity-induced upregulation of AQP1.
Collapse