1
|
Jiang D, Jin F, Zhang Y, Wu Y, Deng P, Wang X, Zhang X, Wu Y. Electrospun lignin-loaded artificial periosteum for bone regeneration and elimination of bacteria. Int J Biol Macromol 2024; 282:137149. [PMID: 39510467 DOI: 10.1016/j.ijbiomac.2024.137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Recently, the non-negligible role of the periosteum in bone repair has attracted the attention of researchers. In this study, poly(ε-caprolactone) (PCL)/lignin nano-fibrous membranes prepared by electrospinning are proposed as an artificial periosteum. Both in vitro and in vivo studies confirmed that PCL/lignin membranes have a pro-osteogenic effect. This effect was dependent on the lignin concentration, and there was an optimal concentration at which the membrane possessed the highest osteogenesis-potentiating activity among those tested in this study. In addition, the PCL/lignin membranes exhibited promising antibacterial properties against both E. coli and S. aureus, with high lignin concentrations corresponding to high-bactericidal activity. The prepared PCL/lignin membranes displayed promising osteogenic and antibacterial properties. With satisfactory hydrophilicity and mechanical properties, they hold great potential in serving as an artificial periosteum for bone tissue repair. This study provides both theoretical and laboratory evidence for the application of the renewable resource lignin in the repair of the periosteum and bone injuries.
Collapse
Affiliation(s)
- Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Fanqi Jin
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Yilu Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Yujun Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Pingfu Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiaoshan Zhang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China.
| | - Yunqi Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China.
| |
Collapse
|
2
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Baptista-Perianes A, Simbara MMO, Malmonge SM, da Cunha MR, Buchaim DV, Miglino MA, Kassis EN, Buchaim RL, Santos AR. Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers (Basel) 2024; 16:3054. [PMID: 39518269 PMCID: PMC11548402 DOI: 10.3390/polym16213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness and porosity of the scaffolds were determined. Functional assessments of mesenchymal stem cells (MSCs) included the MTT assay, alkaline phosphatase (ALP) production, and morphological and cytochemical analyses. Moreover, these polymers were implanted into rats to evaluate their in vivo performance. The morphology and FTIR spectra of the scaffolds were consistent with the expected results. Porous polymers were thicker than dense polymers, and porosity was higher than 92% in all samples. The cells exhibited good viability, activity, and growth on the scaffolds. A higher number of cells was observed on dense polymers, likely due to their smaller surface area. ALP production occurred in all samples, but enzyme activity was more intense in PCL samples. The scaffolds did not interfere with the osteogenic capacity of MSCs, and mineralized nodules were present in all samples. Histological analysis revealed new bone formation in all samples, although pure PHBV exhibited lower results compared to the other blends. In vivo results indicated that dense PCL and the dense 75/25 blend were the best materials tested, with PCL tending to improve the performance of PHBV in vivo.
Collapse
Affiliation(s)
- Amália Baptista-Perianes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| | - Marcia Mayumi Omi Simbara
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Sônia Maria Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Marcelo Rodrigues da Cunha
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Elias Naim Kassis
- University Center of the North of São Paulo (UNORTE), São José Do Rio Preto 15020-040, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Arnaldo Rodrigues Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| |
Collapse
|
4
|
Zhang M, Jia G, Weng J, Zhu Y, Lin J, Yang Q, Fang C, Zeng H, Yuan G, Yang J, Yu F. A Novel Scaffold of Icariin/Porous Magnesium Alloy-Repaired Knee Cartilage Defect in Rat by Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2024; 10:5796-5806. [PMID: 39155687 DOI: 10.1021/acsbiomaterials.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Cartilage defects caused by joint diseases are difficult to treat clinically. Tissue engineering materials provide a new means to promote the repair of cartilage defects. The purpose of this study is to design a novel scaffold of porous magnesium alloy loaded with icariin and sustained release in order to explore the effect and possible mechanism of this scaffold in repairing SD rat knee articular cartilage defect. We constructed a novel type of icariin/porous magnesium alloy scaffold, observed the structure of the scaffold by electron microscope, detected the drug release of icariin in the scaffold and the biological safety, and established an animal model of cartilage defect in the femoral intercondylar fossa of the knee joint in rats; the scaffold was placed in the defect. After 12 weeks of repair, the rat knee articular cartilage repair was evaluated by gross specimens and micro-CT, HE, safranin O-fast green, and toluidine blue staining combined with the modified Mankin's score. The protein expressions of the Wnt/β-catenin signaling pathway-related factors (β-catenin, Wnt5a, Wnt1, sFRP1) and chondrogenic differentiation-related factors (Sox9, Aggrecan, Col2α1) were detected by immunohistochemical staining. We found that the novel scaffold of icariin/porous magnesium alloy can release icariin slowly and has biosafety in rats. Compared with other groups, icariin/porous magnesium alloy can significantly promote the repair of cartilage defects and the expressions of β-catenin, Wnt5a, Wnt1, Sox9, Aggrecan, and Col2α1 (P < 0.05). This novel scaffold can promote the repair of rat knee cartilage defects, and this process may be achieved by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianjin Lin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chongzhou Fang
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Orthopedics, Shenzhen Second Peoples Hospital, Shenzhen 518000, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
5
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
6
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
7
|
Thonglam J, Nuntanaranont T, Kong X, Meesane J. Tissue scaffolds mimicking hierarchical bone morphology as biomaterials for oral maxillofacial surgery with augmentation: structure, properties, and performance evaluation for in vitrotesting. Biomed Mater 2024; 19:055035. [PMID: 39094618 DOI: 10.1088/1748-605x/ad6ac4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
In this study, tissue scaffolds mimicking hierarchical morphology are constructed and proposed for bone augmentation. The scaffolds are fabricated using lyophilization, before coating them with collagen (Col). Subsequently, the Col-coated scaffolds undergo a second lyophilization, followed by silk fibroin (SF) coating, and a third lyophilization. Thereafter, the scaffolds are divided into six groups with varying ratios of Col to SF: Col/SF = 7:3, 5:5, 3:7, 10:0, and 0:10, with an SF scaffold serving as the control group. The scaffold morphology is examined using a scanning electron microscope, while molecular and structural formations are characterized by Fourier transform infrared spectrometer and differential scanning calorimeter, respectively. Physical and mechanical properties including swelling and compression are tested. Biological functions are assessed throughin vitroosteoblast cell culturing. Biomarkers indicative of bone formation-cell viability and proliferation, alkaline phosphatase activity, and calcium content-are analyzed. Results demonstrate that scaffolds coated with Col and SF exhibit sub-porous formations within the main pore. The molecular formation reveals interactions between the hydrophilic groups of Col and SF. The scaffold structure contains bound water and SF formation gets disrupted by Col. Physical and mechanical properties are influenced by the Col/SF ratio and morphology due to coating. The biological functions of scaffolds with Col and SF coating show enhanced potential for promoting bone tissue formation, particularly the Col/SF (7:3) ratio, which is most suitable for bone augmentation in small defect areas.
Collapse
Affiliation(s)
- Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
8
|
Mohaghegh S, Nokhbatolfoghahaei H, Baniameri S, Farajpour H, Fakhr MJ, Shokrolahi F, Khojasteh A. Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with β-TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation. Int J Biomater 2024; 2024:1365080. [PMID: 39376511 PMCID: PMC11458296 DOI: 10.1155/2024/1365080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/30/2024] [Accepted: 07/12/2024] [Indexed: 10/09/2024] Open
Abstract
Bone tissue engineering necessitates the development of scaffolds with optimal properties to provide a suitable microenvironment for cell adhesion, proliferation, and osteogenic differentiation. The selection of appropriate scaffold materials remains a critical challenge in this field. In this study, we aimed to address this challenge by evaluating and comparing the performance of hydrogel scaffolds reinforced with β-tricalcium phosphate (β-TCP), allograft, and a combination of allograft and strontium hydroxyapatite (SrHA). In this study, scaffolds containing the following compounds with a weight ratio of 75 : 25 : 50 were made using a 3D printer: group (1) alginate + gelatin + β-TCP (TCP), group (2) alginate + gelatin + allograft (Allo), and group (3) alginate + gelatin + allograft + strontium hydroxyapatite (Str). Stem cells extracted from rat bone marrow (rBMSCs) were cultured on scaffolds, and cell proliferation and differentiation tests were performed. Also, the physical and chemical properties of the scaffolds were investigated. The two/one-way analysis of variance (ANOVA) by Tukey's post hoc test was performed. There was no significant difference between scaffolds with pore size and porosity. TCP scaffolds' mechanical strength and degradation rate were significantly lower than the other two groups (P < 0.05). Also, the swelling ratio of Allo scaffolds was higher than in other samples. The amount of cell proliferation in the samples of the TCP group was lower than the other two, and the Allo samples had the best results in this concern (P < 0.01). However, the scaffolds containing strontium hydroxyapatite had significantly higher bone differentiation compared to the other two groups, and the lowest results were related to the scaffolds containing β-TCP. Hydrogel scaffolds reinforced with allograft or its combination with strontium showed better physicochemical and biological behavior compared to those reinforced with β-TCP. Besides, adding strontium had a limited impact on the physicochemical features of allograft-containing scaffolds while improving their potential to induce osteogenic differentiation.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Baniameri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | | | | | - Arash Khojasteh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
10
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
11
|
Zhen C, Shi Y, Wang W, Zhou G, Li H, Lin G, Wang F, Tang B, Li X. Advancements in gradient bone scaffolds: enhancing bone regeneration in the treatment of various bone disorders. Biofabrication 2024; 16:032004. [PMID: 38688259 DOI: 10.1088/1758-5090/ad4595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Bone scaffolds are widely employed for treating various bone disorders, including defects, fractures, and accidents. Gradient bone scaffolds present a promising approach by incorporating gradients in shape, porosity, density, and other properties, mimicking the natural human body structure. This design offers several advantages over traditional scaffolds. A key advantage is the enhanced matching of human tissue properties, facilitating cell adhesion and migration. Furthermore, the gradient structure fosters a smooth transition between scaffold and surrounding tissue, minimizing the risk of inflammation or rejection. Mechanical stability is also improved, providing better support for bone regeneration. Additionally, gradient bone scaffolds can integrate drug delivery systems, enabling controlled release of drugs or growth factors to promote specific cellular activities during the healing process. This comprehensive review examines the design aspects of gradient bone scaffolds, encompassing structure and drug delivery capabilities. By optimizing the scaffold's inherent advantages through gradient design, bone regeneration outcomes can be improved. The insights presented in this article contribute to the academic understanding of gradient bone scaffolds and their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Wenguang Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Guangzhen Zhou
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, People's Republic of China
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan 250031, People's Republic of China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
12
|
Llorente JJ, Junquera L, Gallego L, Pérez-Basterrechea M, Suárez LI, Llorente S. Design, In Vitro Evaluation and In Vivo Biocompatibility of Additive Manufacturing Three-Dimensional Printing of β beta-Tricalcium Phosphate Scaffolds for Bone Regeneration. Biomedicines 2024; 12:1049. [PMID: 38791011 PMCID: PMC11118782 DOI: 10.3390/biomedicines12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The reconstruction of bone deficiencies remains a challenge due to the limitations of autologous bone grafting. The objective of this study is to evaluate the bone regeneration efficacy of additive manufacturing of tricalcium phosphate (TCP) implants using lithography-based ceramic manufacturing (LCM). LCM uses LithaBone TCP 300 slurry for 3D printing, producing cylindrical scaffolds. Four models of internal scaffold geometry were developed and compared. The in vitro studies included cell culture, differentiation, seeding, morphological studies and detection of early osteogenesis. The in vivo studies involved 42 Wistar rats divided into four groups (control, membrane, scaffold (TCP) and membrane with TCP). In each animal, unilateral right mandibular defects with a total thickness of 5 mm were surgically performed. The animals were sacrificed 3 and 6 months after surgery. Bone neoformation was evaluated by conventional histology, radiology, and micro-CT. Model A (spheres with intersecting and aligned arrays) showed higher penetration and interconnection. Histological and radiological analysis by micro-CT revealed increased bone formation in the grafted groups, especially when combined with a membrane. Our innovative 3D printing technology, combined with precise scaffold design and efficient cleaning, shows potential for bone regeneration. However, further refinement of the technique and long-term clinical studies are crucial to establish the safety and efficacy of these advanced 3D printed scaffolds in human patients.
Collapse
Affiliation(s)
| | - Luis Junquera
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Central University Hospital, 33011 Oviedo, Spain
| | - Lorena Gallego
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Cabueñes University Hospital, 33394 Gijón, Spain
| | | | | | | |
Collapse
|
13
|
Alonso-Fernández I, Haugen HJ, Nogueira LP, López-Álvarez M, González P, López-Peña M, González-Cantalapiedra A, Muñoz-Guzón F. Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures. Polymers (Basel) 2024; 16:1243. [PMID: 38732711 PMCID: PMC11085737 DOI: 10.3390/polym16091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the effect of scaffold architecture on bone regeneration, focusing on 3D-printed polylactic acid-bioceramic calcium phosphate (PLA-bioCaP) composite scaffolds in rabbit femoral condyle critical defects. We explored two distinct scaffold designs to assess their influence on bone healing and scaffold performance. Structures with alternate (0°/90°) and helical (0°/45°/90°/135°/180°) laydown patterns were manufactured with a 3D printer using a fused deposition modeling technique. The scaffolds were meticulously characterized for pore size, strut thickness, porosity, pore accessibility, and mechanical properties. The in vivo efficacy of these scaffolds was evaluated using a femoral condyle critical defect model in eight skeletally mature New Zealand White rabbits. Then, the results were analyzed micro-tomographically, histologically, and histomorphometrically. Our findings indicate that both scaffold architectures are biocompatible and support bone formation. The helical scaffolds, characterized by larger pore sizes and higher porosity, demonstrated significantly greater bone regeneration than the alternate structures. However, their lower mechanical strength presented limitations for use in load-bearing sites.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (H.J.H.); (L.P.N.)
| | - Liebert Parreiras Nogueira
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (H.J.H.); (L.P.N.)
| | - Miriam López-Álvarez
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain; (M.L.-Á.); (P.G.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Pío González
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain; (M.L.-Á.); (P.G.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| | - Fernando Muñoz-Guzón
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; (M.L.-P.); (A.G.-C.); (F.M.-G.)
| |
Collapse
|
14
|
Zhang X, Bai L, Zhou J, Gao H, Chen Q, Cui W, Yang X, Hao Y. Injectable microspheres adhering to the cartilage matrix promote rapid reconstruction of partial-thickness cartilage defects. Acta Biomater 2024; 179:220-233. [PMID: 38554890 DOI: 10.1016/j.actbio.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China
| | - Lang Bai
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China
| | - Jing Zhou
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China
| | - Hua Gao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China
| | - Qi Chen
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Xing Yang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China.
| | - Yuefeng Hao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou 215006, China.
| |
Collapse
|
15
|
Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing Biomaterial Driven Clinical Bioactivity Over Designing Intricacy during Bioprinting of Trabecular Microarchitecture: A Clinician's Perspective. ACS OMEGA 2024; 9:12426-12435. [PMID: 38524444 PMCID: PMC10956407 DOI: 10.1021/acsomega.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Bone tissue engineering has witnessed a historical shift from three perspectives. From a biomaterial perspective, materials have now become smarter and dynamic; from a bioengineering perspective the bioprinting techniques have now advanced to 4D bioprinting; and from a clinical perspective scaffold bioactivity has progressed toward enhanced osteoinductive scaffolds driven by intricate biomechanical, biophysical, biochemical, and biological cues. Though all of these advancements are indicative of improvised scaffold engineering, a pivotal question regarding the critical role and need of designing and replicating the intricacies of trabecular microarchitecture for enhanced, clinically appreciable osteoangiogenicity needs to be answered. This review hence critically evaluates the rationale and the need of investing substantial effort into designing complex microarchitectures amidst the era of "smart biomaterials" and dynamic 4D bioprinting aimed toward enhancing clinically appreciable bioactivity. The article explores the concept of integrating intricate designs into a scaffold microarchitecture to bolster bioactivity and the practical challenges encountered in 3D bioprinting of complex designs and meticulously examines the pivotal role of biomaterials in scaffold bioactivity, proposing a comprehensive approach to bioprinting geared toward achieving clinical bioactivity and striking a judicious balance between design intricacy and functional outcomes in bone bioprinting.
Collapse
Affiliation(s)
- Sahith Kumar Shetty
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shyam Sundar Santhanakrishnan
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shubha Padurao
- Department
of Material Science, Mangalagangothri Mangalore
University, Konaja 571449, India
| | | |
Collapse
|
16
|
Chen C, Wu D, Wang Z, Liu L, He J, Li J, Chu B, Wang S, Yu B, Liu W. Peptide-Based Hydrogel Scaffold Facilitates Articular Cartilage Damage Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11336-11348. [PMID: 38407027 DOI: 10.1021/acsami.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Articular cartilage injury is a common disease in clinical medicine. Because of its special physiological structure and lack of blood, lymph, and nerves, its ability to regenerate once damaged is very limited. In this study, we designed and synthesized a series of self- and coassembled cartilage-inducing functional peptide molecules and constructed a coassembled functional peptide hydrogel based on phenylboronic acid-o-dihydroxy "click chemistry" cross-linking to promote aggregation and signal transduction of mesenchymal stem cells (MSCs) in the early stage and differentiation toward cartilage, thereby promoting the repair of cartilage damage. Three functional peptide molecules were produced using solid-phase peptide synthesis technology, yielding a purity higher than 95%. DOPA-FEFEFEFEGHSNGLPL (DFP) and PBA-FKFKFKFKGHAVDI (BFP) were coassembled at near-neutral pH to form hydrogels (C Gels) based on phenylboronic acid-o-dihydroxy click chemistry cross-linking and effectively loaded transforming growth factor (TGF)-β1 with a release period of up to 2 weeks. Furthermore, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) were cocultured with functional peptide hydrogels, and the results displayed that the coassembled functional peptide hydrogel group C Gels significantly promoted the proliferation of chondrocytes and MSCs. The chondrocyte markers collagen type I, collagen type II, and glycosaminoglycan (GAG) in the coassembled functional peptide hydrogel group were significantly higher than those in the control group, indicating that it can induce the differentiation of MSCs into cartilage. In vivo experiments demonstrated that the size and thickness of the new cartilage in the compound gel group were the most beneficial to cartilage regeneration. These results indicated that peptide hydrogels are a promising therapeutic option for cartilage regeneration.
Collapse
Affiliation(s)
- Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Deguang Wu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Zhen Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jinmei He
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Bin Chu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, P. R. China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Weiqiang Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
18
|
Ortega-Sánchez C, Melgarejo-Ramírez Y, Rodríguez-Rodríguez R, Jiménez-Ávalos JA, Giraldo-Gomez DM, Gutiérrez-Gómez C, Rodriguez-Campos J, Luna-Bárcenas G, Velasquillo C, Martínez-López V, García-Carvajal ZY. Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture. Polymers (Basel) 2024; 16:479. [PMID: 38399857 PMCID: PMC10892533 DOI: 10.3390/polym16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 μm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.
Collapse
Affiliation(s)
- Carmina Ortega-Sánchez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Rogelio Rodríguez-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - Jorge Armando Jiménez-Ávalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - David M. Giraldo-Gomez
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Claudia Gutiérrez-Gómez
- División de Cirugía Plástica y Reconstructiva, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Jacobo Rodriguez-Campos
- Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing Tecnológico de Monterrey, Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Querétaro, Mexico;
| | - Cristina Velasquillo
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Zaira Y. García-Carvajal
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
19
|
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol 2024; 11:1287714. [PMID: 38304105 PMCID: PMC10831513 DOI: 10.3389/fbioe.2023.1287714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Promoting complete periodontal regeneration of damaged periodontal tissues, including dental cementum, periodontal ligament, and alveolar bone, is one of the challenges in the treatment of periodontitis. Therefore, it is urgent to explore new treatment strategies for periodontitis. Exosomes generated from stem cells are now a promising alternative to stem cell therapy, with therapeutic results comparable to those of their blast cells. It has great potential in regulating immune function, inflammation, microbiota, and tissue regeneration and has shown good effects in periodontal tissue regeneration. In addition, periodontal tissue engineering combines exosomes with biomaterial scaffolds to maximize the therapeutic advantages of exosomes. Therefore, this article reviews the progress, challenges, and prospects of exosome and exosome-loaded composite scaffolds in periodontal regeneration.
Collapse
Affiliation(s)
- Tingyu Wang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Yanxing Zhou
- Institute of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziteng Xiao
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yanfang Zhou
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Luo Y, Kim J. Achieving the ideal balance between biological and mechanical requirements in composite bone scaffolds through a voxel-based approach. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 38231253 DOI: 10.1080/10255842.2024.2304709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Achieving successful bone regeneration necessitates the design of scaffolds that meet diverse biological and mechanical requirements, often leading to conflicts in the design parameters. A key conflict arises between scaffold porosity and stiffness. Increasing porosity facilitates cell infiltration and nutrient exchange, promoting bone regeneration. However, higher porosity compromises scaffold stiffness, which is crucial for providing structural support in the defective region. Furthermore, appropriate scaffold stiffness is crucial for preventing stress shielding. Conventional geometry-based design methods utilizing single-phase materials have limited flexibility in resolving such conflicts. To address this challenge, we propose a voxel-based method for designing composite scaffolds composed of hydroxyapatite (HA) and polylactic acid (PLA). Our strategy involves first satisfying primary biological requirements by selecting appropriate porosity, pore shape, and size. Subsequently, scaffold stiffness requirements are met by selecting suitable phase materials and tuning their contents. The study demonstrates that the voxel-based approach effectively balances both biological and mechanical requirements in scaffold design. This method addresses the limitations of traditional designs by achieving an optimal balance between porosity and stiffness, which is crucial for scaffold performance in biomedical applications. Moreover, the scaffolds designed using this method can be manufactured using voxel-based 3D printing technology, which is emerging in the field. Future advancements in voxel-based 3D printing technology will further enhance the feasibility and practicality of this approach for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | - Jonghyun Kim
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
21
|
Ghasemi S, Alibabaie A, Saberi R, Esmaeili M, Semnani D, Karbasi S. Evaluation of the effects of zein incorporation on physical, mechanical, and biological properties of polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. Int J Biol Macromol 2023; 253:126843. [PMID: 37703978 DOI: 10.1016/j.ijbiomac.2023.126843] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Materials and fabrication methods significantly influence the scaffold's final features in tissue engineering. This study aimed to blend zein with polyhydroxybutyrate (PHB) at 5, 10, and 15 wt%, fabricate scaffolds using electrospinning, and then characterize them. SEM and mechanical analyses identified the scaffold with 10 wt% zein (PHB-10Z) as the optimal sample. Incorporating 10 wt% zein reduced fiber diameter from 894 ± 122 to 531 ± 42 nm while increasing ultimate tensile strength and elongation at break by approximately 53 % and 70 %, respectively. FTIR proved zein's presence in the scaffolds and possible hydrogen bonding with PHB. TGA confirmed the miscibility of polymers. DSC and XRD analyses indicated lower crystallinity for the PHB-10Z than for PHB. AFM evaluation indicated a rougher surface for the PHB-10Z in comparison to PHB. The PHB-10Z demonstrated a more hydrophobic surface and less weight loss after 100 days of degradation in PBS than PHB. The free radical scavenging assay exhibited antioxidant activity for the zein-containing scaffold. Eventually, enhanced cell attachment, viability, and differentiation in the PHB-10Z scaffold drawn from SEM, MTT, ALP activity, and Alizarin red staining of MG-63 cells confirmed that PHB-zein electrospun scaffold is a potent candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Saeid Ghasemi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Alibabaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Reyhane Saberi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahdie Esmaeili
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Semnani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Dobaj Štiglic A, Lackner F, Nagaraj C, Beaumont M, Bračič M, Duarte I, Kononenko V, Drobne D, Madhan B, Finšgar M, Kargl R, Stana Kleinschek K, Mohan T. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2023; 6:5596-5608. [PMID: 38050684 PMCID: PMC10731651 DOI: 10.1021/acsabm.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.
Collapse
Affiliation(s)
- Andreja Dobaj Štiglic
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Chandran Nagaraj
- Ludwig
Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Marco Beaumont
- Department
of Chemistry, Institute of Chemistry o Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), A-3430 Tulln, Austria
| | - Matej Bračič
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Isabel Duarte
- Department
of Mechanical Engineering, Centre for Mechanical Technology and Automation
(TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veno Kononenko
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Balaraman Madhan
- CSIR-Central
Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Matjaž Finšgar
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
| | - Tamilselvan Mohan
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
23
|
Zhu Y, Chen J, Liu H, Zhang W. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair. ACS Biomater Sci Eng 2023; 9:6567-6585. [PMID: 37956022 DOI: 10.1021/acsbiomaterials.3c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photo-cross-linked hydrogels, which respond to light and induce structural or morphological transitions, form a microenvironment that mimics the extracellular matrix of native tissue. In the last decades, photo-cross-linked hydrogels have been widely used in cartilage and osteochondral tissue engineering due to their good biocompatibility, ease of fabrication, rapid in situ gel-forming ability, and tunable mechanical and degradable properties. In this review, we systemically summarize the different types and physicochemical properties of photo-cross-linked hydrogels (including the materials and photoinitiators) and explore the biological properties modulated through the incorporation of additives, including cells, biomolecules, genes, and nanomaterials, into photo-cross-linked hydrogels. Subsequently, we compile the applications of photo-cross-linked hydrogels with a specific focus on cartilage and osteochondral repair. Finally, current limitations and future perspectives of photo-cross-linked hydrogels are also discussed.
Collapse
Affiliation(s)
- Yue Zhu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
24
|
Kalvand E, Bakhshandeh H, Nadri S, Habibizadeh M, Rostamizadeh K. Poly-ε-caprolactone (PCL)/poly-l-lactic acid (PLLA) nanofibers loaded by nanoparticles-containing TGF-β1 with linearly arranged transforming structure as a scaffold in cartilage tissue engineering. J Biomed Mater Res A 2023; 111:1838-1849. [PMID: 37395312 DOI: 10.1002/jbm.a.37574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to present a novel three-dimensional nanocomposite scaffold using poly-ε-caprolactone (PCL), containing transforming growth factor-beta 1 (TGF-β1)-loaded chitosan-dextran nanoparticles and poly-l-lactic acid (PLLA), to make use of nanofibers and nanoparticles simultaneously. The electrospinning method fabricated a bead-free semi-aligned nanofiber composed of PLLA, PCL, and chitosan-dextran nanoparticles containing TGF-β1. A biomimetic scaffold was constructed with the desired mechanical properties, high hydrophilicity, and high porosity. Transmission electron microscopy findings showed a linear arrangement of nanoparticles along the core of fibers. Based on the results, burst release was not observed. The maximum release was achieved within 4 days, and sustained release was up to 21 days. The qRT-PCR results indicated an increase in the expression of aggrecan and collagen type Ι genes compared to the tissue culture polystyrene group. The results indicated the importance of topography and the sustained release of TGF-β1 from bifunctional scaffolds in directing the stem cell fate in cartilage tissue engineering.
Collapse
Affiliation(s)
- Elham Kalvand
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nanobiotechnology, Pasteur Institute of Tehran, Tehran, Iran
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research of Tehran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, Pasteur Institute of Tehran, Tehran, Iran
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Samad Nadri
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Pharmaceutical Biomaterials Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
25
|
Wang B, Guo Y, Xu J, Zeng F, Ren T, Guo W. Efficacy of bone defect therapy involving various surface treatments of titanium alloy implants: an in vivo and in vitro study. Sci Rep 2023; 13:20116. [PMID: 37978333 PMCID: PMC10656537 DOI: 10.1038/s41598-023-47495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Multiple surface treatment methods for titanium alloy prostheses, widely used in orthopedics, are available; however, these can affect bone integration and regeneration efficiency. In this study, through cell and animal experiments, we devised seven bone implant categories of Ti6Al4V based on surface preparation and post-processing technology (polishing, grit-blasting, fine titanium spraying, coarse titanium spraying, electron beam melting [EBM] printing, selective laser melting [SLM] printing, and post-processed SLM printing) and imaged each microscopic surface structure with a scanning electron microscope (SEM). Mechanical testing revealed excessive post-processing damaged the mechanical properties of the implants. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were cultured with implants, and the morphology of the cells adhering to the implant surface was observed using SEM and confocal laser scanning microscopy. Cell Counting Kit-8 (CCK-8) semi-quantitatively determined cell activity, indirectly reflecting the proliferation of hBMSCs. Alizarin red and alkaline phosphatase experiments assessed osteogenic differentiation. In vivo, experiments utilized the New Zealand rabbit femoral condyle bone defect model to assess bone regeneration and integration using micro-computed tomography, Van Giesen staining, and Masson staining. We found that 3D-printed implants with regular pore structures were more conducive to hBMSC osteogenic differentiation, while the presence of metal powder on NPT-SLM-printed implants hindered such differentiation. The post-treatment SLM scaffold surface may have some residual semi-melted powder; however, these powder residues have no significant effect on cell activity and differentiation. Surface treatment (grit-blasting and titanium spraying) of planar structures can enhance hBMSC adhesion but does not necessarily promote their differentiation. The framework structure of 3D printing may affect the osteogenic differentiation of hBMSCs, and for SLM-printed implants, excessive pursuit of a "powderless" state will damage the mechanical properties of the implant.
Collapse
Affiliation(s)
- Boyang Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The role of microfluidics and 3D-bioprinting in the future of exosome therapy. Trends Biotechnol 2023; 41:1343-1359. [PMID: 37302911 DOI: 10.1016/j.tibtech.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.
Collapse
Affiliation(s)
- Mikele Amondarain
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Idoia Gallego
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Carlos Luzzani
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - José Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
27
|
Ben Messaoud G, Aveic S, Wachendoerfer M, Fischer H, Richtering W. 3D Printable Gelatin Methacryloyl (GelMA)-Dextran Aqueous Two-Phase System with Tunable Pores Structure and Size Enables Physiological Behavior of Embedded Cells In Vitro. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208089. [PMID: 37403299 DOI: 10.1002/smll.202208089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/23/2023] [Indexed: 07/06/2023]
Abstract
The restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging. Herein, an ATPS consisting of photo-crosslinkable gelatin methacryloyl (GelMA) and dextran is presented. The phase behavior, monophasic or biphasic, is tuned via the pH and dextran concentration. This, in turn, allows the formation of hydrogels with three distinct microstructures: homogenous nonporous, regular disconnected-pores, and bicontinuous with interconnected-pores. The pore size of the latter two hydrogels can be tuned from ≈4 to 100 µm. Cytocompatibility of the generated ATPS hydrogels is confirmed by testing the viability of stromal and tumor cells. Their distribution and growth pattern are cell-type specific but are also strongly defined by the microstructure of the hydrogel. Finally, it is demonstrated that the unique porous structure is sustained when processing the bicontinuous system by inkjet and microextrusion techniques. The proposed ATPS hydrogels hold great potential for 3D tissue engineering applications due to their unique tunable interconnected porosity.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, European Union, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, European Union, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Mattis Wachendoerfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, European Union, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, European Union, 52074, Aachen, Germany
| |
Collapse
|
28
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
29
|
Rasheed S, Lughmani WA, Khan MM, Brabazon D, Obeidi MA, Ahad IU. The Porosity Design and Deformation Behavior Analysis of Additively Manufactured Bone Scaffolds through Finite Element Modelling and Mechanical Property Investigations. J Funct Biomater 2023; 14:496. [PMID: 37888161 PMCID: PMC10607099 DOI: 10.3390/jfb14100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Additively manufactured synthetic bone scaffolds have emerged as promising candidates for the replacement and regeneration of damaged and diseased bones. By employing optimal pore architecture, including pore morphology, sizes, and porosities, 3D-printed scaffolds can closely mimic the mechanical properties of natural bone and withstand external loads. This study aims to investigate the deformation pattern exhibited by polymeric bone scaffolds fabricated using the PolyJet (PJ) 3D printing technique. Cubic and hexagonal closed-packed uniform scaffolds with porosities of 30%, 50%, and 70% are utilized in finite element (FE) models. The crushable foam plasticity model is employed to analyze the scaffolds' mechanical response under quasi-static compression. Experimental validation of the FE results demonstrates a favorable agreement, with an average percentage error of 12.27% ± 7.1%. Moreover, the yield strength and elastic modulus of the scaffolds are evaluated and compared, revealing notable differences between cubic and hexagonal closed-packed designs. The 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds exhibit significantly higher yield strengths of 46.89%, 58.29%, and 66.09%, respectively, compared to the hexagonal closed-packed bone scaffolds at percentage strains of 5%, 6%, and 7%. Similarly, the elastic modulus of the 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds is 42.68%, 59.70%, and 58.18% higher, respectively, than the hexagonal closed-packed bone scaffolds at the same percentage strain levels. Furthermore, it is observed in comparison with our previous study the μSLA-printed bone scaffolds demonstrate 1.5 times higher elastic moduli and yield strengths compared to the PJ-printed bone scaffolds.
Collapse
Affiliation(s)
- Shummaila Rasheed
- Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan; (S.R.); (M.M.K.)
| | - Waqas Akbar Lughmani
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Pakistan;
| | - Muhammad Mahabat Khan
- Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan; (S.R.); (M.M.K.)
| | - Dermot Brabazon
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Mechanical and Manufacturing Engineering, Dublin City University, 09 Dublin, Ireland; (D.B.); (M.A.O.)
| | - Muhannad Ahmed Obeidi
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Mechanical and Manufacturing Engineering, Dublin City University, 09 Dublin, Ireland; (D.B.); (M.A.O.)
| | - Inam Ul Ahad
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Mechanical and Manufacturing Engineering, Dublin City University, 09 Dublin, Ireland; (D.B.); (M.A.O.)
| |
Collapse
|
30
|
Pan Q, Su W, Yao Y. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering. Biomed Mater 2023; 18:062004. [PMID: 37751762 DOI: 10.1088/1748-605x/acfd78] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Bone/cartilage repair and regeneration have been popular and difficult issues in medical research. Tissue engineering is rapidly evolving to provide new solutions to this problem, and the key point is to design the appropriate scaffold biomaterial. In recent years, microsphere-based scaffolds have been considered suitable scaffold materials for bone/cartilage injury repair because microporous structures can form more internal space for better cell proliferation and other cellular activities, and these composite scaffolds can provide physical/chemical signals for neotissue formation with higher efficiency. This paper reviews the research progress of microsphere-based scaffolds in bone/chondral tissue engineering, briefly introduces types of microspheres made from polymer, inorganic and composite materials, discusses the preparation methods of microspheres and the exploration of suitable microsphere pore size in bone and cartilage tissue engineering, and finally details the application of microsphere-based scaffolds in biomimetic scaffolds, cell proliferation and drug delivery systems.
Collapse
Affiliation(s)
- Qian Pan
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Weixian Su
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongchang Yao
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
31
|
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. EXPLORATION (BEIJING, CHINA) 2023; 3:20210043. [PMID: 37933242 PMCID: PMC10624381 DOI: 10.1002/exp.20210043] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 11/08/2023]
Abstract
Repairing articular osteochondral defects present considerable challenges in self-repair due to the complex tissue structure and low proliferation of chondrocytes. Conventional clinical therapies have not shown significant efficacy, including microfracture, autologous/allograft osteochondral transplantation, and cell-based techniques. Therefore, tissue engineering has been widely explored in repairing osteochondral defects by leveraging the natural regenerative potential of biomaterials to control cell functions. However, osteochondral tissue is a gradient structure with a smooth transition from the cartilage to subchondral bone, involving changes in chondrocyte morphologies and phenotypes, extracellular matrix components, collagen type and orientation, and cytokines. Bioinspired scaffolds have been developed by simulating gradient characteristics in heterogeneous tissues, such as the pores, components, and osteochondrogenesis-inducing factors, to satisfy the anisotropic features of osteochondral matrices. Bioinspired gradient scaffolds repair osteochondral defects by altering the microenvironments of cell growth to induce osteochondrogenesis and promote the formation of osteochondral interfaces compared with homogeneous scaffolds. This review outlines the meaningful strategies for repairing osteochondral defects by tissue engineering based on gradient scaffolds and predicts the pros and cons of prospective translation into clinical practice.
Collapse
Affiliation(s)
- Yachen Peng
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Mingran Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Kai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yanbo Zhang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianlin Zuo
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiP. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| |
Collapse
|
32
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng 2023; 9:4020-4044. [PMID: 37339247 PMCID: PMC10336748 DOI: 10.1021/acsbiomaterials.3c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
In bone tissue engineering, the performance of scaffolds underpins the success of the healing of bone. Microbial infection is the most challenging issue for orthopedists. The application of scaffolds for healing bone defects is prone to microbial infection. To address this challenge, scaffolds with a desirable shape and significant mechanical, physical, and biological characteristics are crucial. 3D printing of antibacterial scaffolds with suitable mechanical strength and excellent biocompatibility is an appealing strategy to surmount issues of microbial infection. The spectacular progress in developing antimicrobial scaffolds, along with beneficial mechanical and biological properties, has sparked further research for possible clinical applications. Herein, the significance of antibacterial scaffolds designed by 3D, 4D, and 5D printing technologies for bone tissue engineering is critically investigated. Materials such as antibiotics, polymers, peptides, graphene, metals/ceramics/glass, and antibacterial coatings are used to impart the antimicrobial features for the 3D scaffolds. Polymeric or metallic biodegradable and antibacterial 3D-printed scaffolds in orthopedics disclose exceptional mechanical and degradation behavior, biocompatibility, osteogenesis, and long-term antibacterial efficiency. The commercialization aspect of antibacterial 3D-printed scaffolds and technical challenges are also discussed briefly. Finally, the discussion on the unmet demands and prevailing challenges for ideal scaffold materials for fighting against bone infections is included along with a highlight of emerging strategies in this field.
Collapse
Affiliation(s)
- Anshu Dubey
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| | - Henri Vahabi
- Université
de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vignesh Kumaravel
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
34
|
Budi HS, Anitasari S, Shen YK, Tangwattanachuleeporn M, Nuraini P, Setiabudi NA. Novel Application of 3D Scaffolds of Poly(E-Caprolactone)/Graphene as Osteoinductive Properties in Bone Defect. Eur J Dent 2023; 17:790-796. [PMID: 36351454 PMCID: PMC10569855 DOI: 10.1055/s-0042-1755550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Scaffolds provided a surface on which cells could attach, proliferate, and differentiate. Nowadays, bone tissue engineering offers hope for treating bone cancer. Poly(e-caprolactone) (PCL)/graphene have capability as an osteogenic and regenerative therapy. It could be used to produce bone tissue engineering scaffolds. The purpose of this study was to investigate the ability of PCL/graphene to enhance the osteoinductive mechanism. MATERIALS AND METHODS The PCL/graphene scaffold was developed utilizing a particulate-leaching process and cultured with osteoblast-like cells MG63 at 0.5, 1.5, and 2.5 wt% of graphene. We evaluated the porosity, pore size, migratory cells, and cell attachment of the scaffold. STATISTICAL ANALYSIS Data was expressed as the mean ± standard error of the mean and statistical analyses were performed using one-way analysis of variance and Tukey's post hoc at a level of p-value < 0.05. RESULTS Porosity of scaffold with various percentage of graphene was nonsignificant (p > 0.05). There were differences in the acceleration of cell migration following wound closure between groups at 24 hours (p < 0.01) and 48 hours (p < 0.00). Adding the graphene on the scaffolds enhanced migration of osteoblast cells culture and possibility to attach. Graphene on 2.5 wt% exhibited good characteristics over other concentrations. CONCLUSION This finding suggests that PCL/graphene composites may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Silvia Anitasari
- Department of Dental Material and Devices, Dentistry Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
- Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Marut Tangwattanachuleeporn
- Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
- Research Unit for Sensor Innovation, Burapha University, Chon Buri, Thailand
| | - Prawati Nuraini
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
35
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
36
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
37
|
McKenzie TJ, Cawood C, Davis C, Ayres N. Synthesis of patterned polyHIPE-hydrogel composite materials using thiol-ene chemistry. J Colloid Interface Sci 2023; 645:502-512. [PMID: 37159992 DOI: 10.1016/j.jcis.2023.04.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Elastomeric materials combining multiple properties within a single composite are highly desired in applications including biomaterials interfaces, actuators, and soft robotics. High spatial resolution is required to impart different properties across the composite for the intended application, but many techniques used to prepare these composites rely on multistep and complex methods. There is a need for the development of simple and efficient platforms to design layered composite materials. Here, we report the synthesis of horizontally- and vertically-patterned composites consisting of PDMS-based polymerized high internal phase emulsion (polyHIPE) porous elastomers and PDMS/PEG hydrogels. Composites with defined interfaces that were mechanically robust were prepared, and rheological analysis of the polyHIPE and hydrogel layers showed storage moduli values of ∼ 35 kPa and 45 kPa respectively. The compressive Young's Modulus and maximum strain of the polyHIPEs were dependent on the thiol to ene ratio in the formulation and obtained values ranging from 6 to 25 kPa and 50-65% respectively. The mechanical properties, total porosity of the polyHIPE, and swelling ratio of the hydrogel were unaffected by the patterning technique compared to non-patterned controls. PolyHIPE-hydrogel composite materials having up to 7-different horizontally pattered layers could be prepared that could expand and contract up hydration and drying.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Christian Cawood
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Chelsea Davis
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States.
| |
Collapse
|
38
|
Marcelino P, Silva JC, Moura CS, Meneses J, Cordeiro R, Alves N, Pascoal-Faria P, Ferreira FC. A Novel Approach for Design and Manufacturing of Curvature-Featuring Scaffolds for Osteochondral Repair. Polymers (Basel) 2023; 15:polym15092129. [PMID: 37177275 PMCID: PMC10181173 DOI: 10.3390/polym15092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments. Scaffold design is a key element in providing appropriate structures for tissue growth and maturation. This study presents a novel method for designing scaffolds with a mathematically defined curvature, based on the geometry of a sphere, to obtain TE constructs mimicking native OC tissue shape. The lower the designed radius, the more curved the scaffold obtained. The printability of the scaffolds using fused filament fabrication (FFF) was evaluated. For the case-study scaffold size (20.1 mm × 20.1 mm projected dimensions), a limit sphere radius of 17.064 mm was determined to ensure printability feasibility, as confirmed by scanning electron microscopy (SEM) and micro-computed tomography (μ-CT) analysis. The FFF method proved suitable to reproduce the curved designs, showing good shape fidelity and replicating the expected variation in porosity. Additionally, the mechanical behavior was evaluated experimentally and by numerical modelling. Experimentally, curved scaffolds showed strength comparable to conventional orthogonal scaffolds, and finite element analysis was used to identify the scaffold regions more susceptible to higher loads.
Collapse
Affiliation(s)
- Pedro Marcelino
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - João Meneses
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Rachel Cordeiro
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Alves
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Paula Pascoal-Faria
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
39
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Effect of Storage Time and Temperature on the Bioactivity of a Chitosan-Derived Epigenetic Modulation Scaffold. Mar Drugs 2023; 21:md21030175. [PMID: 36976224 PMCID: PMC10054179 DOI: 10.3390/md21030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The appropriate storage protocol is one of the main limitations of translating tissue engineering technology to commercialized clinical applications. Recently, the development of a chitosan-derived composite scaffold incorporated with bioactive molecules has been reported as an excellent material to repair a critical size bony defect in mice calvaria. This study aims to determine the storage time and appropriate storage temperature of Chitosan/Biphasic Calcium Phosphate/Trichostatin A composite scaffold (CS/BCP/TSA scaffold) in vitro. The mechanical properties and in vitro bioactivity of trichostatin A (TSA) released from CS/BCP/TSA scaffolds in different storage times and temperatures were evaluated. Different storage times (0, 14, and 28 days) and temperatures (−18, 4, and 25 °C) did not affect the porosity, compressive strength, shape memory, and amount of TSA released. However, scaffolds stored at 25 °C and 4 °C were found to lose their bioactivity after 3- and 7-day storage periods, respectively. Thus, the CS/BCP/TSA scaffold should be stored in freezing conditions to preserve the long-term stability of TSA.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral Surgery, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruchanee Salingcarnboriboon Ampornaramveth
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-81-422-4546
| |
Collapse
|
40
|
Wasupalli GK, Verma D. Development of chitosan-polygalacturonic acid polyelectrolyte complex fibrous scaffolds using the hydrothermal treatment for bone tissue engineering. J Biomed Mater Res A 2023; 111:354-366. [PMID: 36251016 DOI: 10.1002/jbm.a.37461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
An ideal bone regeneration scaffold system needs to meet the high compressive properties of the bone. The stiffness of the scaffold extracellular matrix determines the cell's fate via cell adhesion migration and differentiation in-vitro and in-vivo. This study aims to investigate the effect of hydrothermal treatment on polyelectrolyte complex (PEC) fibrous biomaterials and its effect on scaffold morphology, cell viability, and function in-vitro. FTIR analysis revealed the ability of the thermal treatment to set the interaction of HAp with polymeric PEC fibers. FESEM analysis showed that with an increase in temperature, the interconnectivity and pore size increased (control-82.38 ± 12.92 μm; at 120°C-335.48 ± 85.10 μm). Mechanical tests showed that the scaffolds heated at 90°C showed the highest stiffness in both dry and wet states (dry state: 1.82 ± 0.07 MPa, wet state: 122 ± 1.78 kPa). Additionally, the hydrothermal treatment also improved the aqueous stability as well as swelling capacity. According to the experimental findings, hydrothermal treatment is a useful technique for crosslinker-free gelation with improved mechanical strength and nanofibrous structure. Furthermore, the cell adhesion, proliferation, and osteogenic differentiation of the MG63 cells on the hydrogel scaffolds in-vitro were evaluated by MTT assay, confocal imaging, alkaline phosphatase assay, and collagen estimation. The in-vitro study showed that scaffolds fabricated at 90°C promoted better MG63 cell attachment, proliferation, and differentiation. These results suggest the potential use of hydrothermal treated chitosan-polygalacturonic acid (PgA) fibrous scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Geeta Kumari Wasupalli
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
41
|
Souza AP, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan/Hydroxyapatite-graphene oxide porous scaffold associated with mesenchymal stem cells for dentin-pulp complex regeneration. J Biomater Appl 2023; 37:1605-1616. [PMID: 36740600 DOI: 10.1177/08853282231155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this paper was to synthesize and characterize polymeric scaffolds of Chitosan/Xanthan/Hydroxyapatite-Graphene Oxide nanocomposite associated with mesenchymal stem cells for regenerative dentistry application. The chitosan-xanthan gum (CX) complex was associated with Hydroxyapatite-Graphene Oxide (HA-GO) nanocomposite with different Graphene Oxides (GO) concentration (0.5 wt%; 1.0 wt%; 1.5 wt%). The scaffolds characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and contact angle. The mechanical properties were assessed by compressive strength. The in vitro bioactivity and the in vitro cytotoxicity test (MTT test) were analyzed as well. The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by ANOVA two-way, followed by Tukey's test (α = 0.05). Compressive strength and contact angle data were statistically analyzed by one-way ANOVA, followed by Tukey's test (α = 0.05). XRD showed the presence of Hydroxyapatite (HA) peaks in the structures CXHA, CXHAGO 0.5%,1.0% and 1.5%. FT-IR showed amino and carboxylic bands characteristic of CX. Raman spectroscopy analysis evidenced a high quality of the GO. In the TGA it was observed the mass loss associated with the CX degradation by depolymerization. SEM analysis showed pores in the scaffolds, in addition to HA incorporated and adhered to the polymer. Contact angle test showed that scaffolds have a hydrophilic characteristic, with the CX group the highest contact angle and CXHA the lowest (p < 0.05). 1.0 wt% GO significantly increased the compressive strength compared to other compositions. In the bioactivity test, the apatite crystals precipitation on the scaffold surface was observed. MTT test showed high cell viability in CXHAGO 1.0% and CXHAGO 1.5% scaffold. CXHAGO scaffolds are promising for regenerative dentistry application because they have morphological characteristics, mechanical and biological properties favorable for the regeneration process.
Collapse
Affiliation(s)
- Alana Pc Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil.,Department of Bioengineering, 28132R-Crio Criogenia S.A., Campinas, SP, Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, 28132University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| |
Collapse
|
42
|
Yao T, Chen H, Wang R, Rivero R, Wang F, Kessels L, Agten SM, Hackeng TM, Wolfs TG, Fan D, Baker MB, Moroni L. Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis. Bioact Mater 2023; 20:306-317. [PMID: 35755423 PMCID: PMC9192696 DOI: 10.1016/j.bioactmat.2022.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
|
43
|
Li J, Li J, Yang Y, He X, Wei X, Tan Q, Wang Y, Xu S, Chang S, Liu W. Biocompatibility and osteointegration capability of β-TCP manufactured by stereolithography 3D printing: In vitro study. Open Life Sci 2023; 18:20220530. [PMID: 36742452 PMCID: PMC9883693 DOI: 10.1515/biol-2022-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 01/26/2023] Open
Abstract
Beta-tricalcium phosphate (β-TCP) bioceramics have an inorganic composition similar to the human bone. While conventional methods can only produce ceramic scaffolds with poor controllability, the advancement of 3D-printing, especially stereolithography, made it possible to manufacture controllable, highly precise, micropore ceramic scaffolds. In this study, the stereolithography was applied to produce β-TCP bioceramics, while ZrO2, Al2O3, Ti6Al4V, and polyetheretherketone (PEEK) were used as controls. Phase analysis, water contact angle tests, and Micro-CT were applied to evaluate the surface properties and scaffold. Hemolytic toxicity, cell proliferation, and morphological assessment were performed to evaluate the biocompatibility. Alkaline phosphatase (ALP) level, mineralization, and qRT-PCR were measured to evaluate the osteointegration. During the manufacturing of β-TCP, no evident impurity substance and hemolytic toxicity was found. Cells on β-TCP had good morphologies, and their proliferation capability was similar to Ti6Al4V, which was higher than the other materials. Cells on β-TCP had higher ALP levels than PEEK. The degree of mineralization was significantly higher on β-TCP. The expression of osteogenesis-related genes on β-TCP was similar to Ti6Al4V and higher than the other materials. In this study, the β-TCP produced by stereolithography had no toxicity, high accuracy, and excellent osteointegration capability, thus resulting as a good choice for bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiaxi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Qinghua Tan
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yiqun Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Siyue Xu
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Sue Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Weiwei Liu
- Department of Precision Medicine Group, Equipment Research Institute, National Innovation Institute of Additive Manufacturing, Xi’an, Shaanxi Province, China
| |
Collapse
|
44
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
45
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
46
|
Ahmadian E, Eftekhari A, Janas D, Vahedi P. Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: A perspective. Nanotheranostics 2023; 7:61-69. [PMID: 36593799 PMCID: PMC9760364 DOI: 10.7150/ntno.78611] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Articular cartilage has a low self-repair capacity due to the lack of vessels and nerves. In recent times, nanofiber scaffolds have been widely used for this purpose. The optimum nanofiber scaffold should stimulate new tissue's growth and mimic the articular cartilage nature. Furthermore, the characteristics of the scaffold should match those of the cellular matrix components of the native tissue to best merge with the target tissue. Therefore, selective modification of prefabricated scaffolds based on the structure of the repaired tissues is commonly conducted to promote restoring the tissue. A thorough analysis is required to find out the architectural features of scaffolds that are essential to make the treatment successful. The current review aims to target this challenge. The article highlights different optimization approaches of nanofibrous scaffolds for improved cartilage tissue engineering. In this context, the influence of the architecture of nanoscaffolds on performance is discussed in detail. Finally, based on the gathered information, a future outlook is provided to catalyze development in this promising field.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,✉ Corresponding authors: Aziz Eftekhari (), Dawid Janas (), Parviz Vahedi ()
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland,✉ Corresponding authors: Aziz Eftekhari (), Dawid Janas (), Parviz Vahedi ()
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran,✉ Corresponding authors: Aziz Eftekhari (), Dawid Janas (), Parviz Vahedi ()
| |
Collapse
|
47
|
Kadoya K, Hara ES, Okada M, Jiao YY, Nakano T, Sasaki A, Matsumoto T. Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments. Regen Biomater 2022; 10:rbac088. [PMID: 36683756 PMCID: PMC9845518 DOI: 10.1093/rb/rbac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.
Collapse
Affiliation(s)
- Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan,Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yu Yang Jiao
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Osaka University, Osaka 565-0871, Japan
| | - Akira Sasaki
- Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
48
|
Zhong J, Shibata Y. The structural motifs of mineralized hard tissues from nano- to mesoscale: A future perspective for material science. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:348-356. [DOI: 10.1016/j.jdsr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
|
49
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
50
|
A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390:399-411. [PMID: 36152061 DOI: 10.1007/s00441-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Since scaffolds are engineered to support functional tissue formation, their design and materials play an essential role in medical fields by providing different mechanical function. The aim of this study was to investigate the synthesis and structural characterization of collagen-gelatin (COL-GEL) composite scaffolds containing fluorapatite (FA) nanoparticles as well as evaluation of the osteogenic differentiation of human adipose-derived stem cells (hADSCs). First, the composite scaffolds were evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity of scaffolds and various concentrations of FA nanoparticles was studied through MTT assay and acridine orange/ethidium bromide staining. Next, the differentiated hADSCs were analyzed using Alizarin red and von Kossa staining, calcium content assay, alkaline phosphatase (ALP) activity, real-time RT-PCR, and immunocytochemical analyses. According to the characterization analyses, the composite scaffolds were properly integrated. The results also illustrated that COL-GEL composite scaffolds in the presence of FA nanoparticles not only showed no cytotoxicity but also increased ALP activity and calcium deposition as well as the expression of osteogenic genes, including Runx2, Col-I, ALP, and osteocalcin and the synthesis of proteins such as osteocalcin and osteopontin in vitro. The obtained data were confirmed by Alizarin red and von Kossa staining. These results are very promising for further tissue engineering experiments, in which FA nanoparticle incorporation into COL-GEL composite scaffolds is a novel approach that improves the surface COL-GEL composite scaffolds for tissue engineering application in vitro.
Collapse
|