1
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
2
|
Borys BS, Dang T, Worden H, Larijani L, Corpuz JM, Abraham BD, Gysel EJ, Malinovska J, Krawetz R, Revay T, Argiropoulos B, Rancourt DE, Kallos MS, Jung S. Robust bioprocess design and evaluation of commercial media for the serial expansion of human induced pluripotent stem cell aggregate cultures in vertical-wheel bioreactors. Stem Cell Res Ther 2024; 15:232. [PMID: 39075528 PMCID: PMC11288049 DOI: 10.1186/s13287-024-03819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used. Design of a reproducible and robust bioprocess should be dynamic and include a continuous effort to understand how the process will respond over time and to different stresses before transitioning into large-scale production where stresses will be amplified. METHODS This study utilizes a baseline protocol, developed for the short-term culture of PSC aggregates in Vertical-Wheel® bioreactors, to evaluate key process attributes through long-term (serial passage) suspension culture. This was done to access overall process robustness when performed with various commercially available media and cell lines. Process output variables including growth kinetics, aggregate morphology, harvest efficiency, genomic stability, and functional pluripotency were assessed through short and long-term culture. RESULTS The robust nature of the expansion protocol was demonstrated over a six-day culture period where spherical aggregate formation and expansion were observed with high-fold expansions for all five commercial media tested. Profound differences in cell growth and quality were revealed only through long-term serial expansion and in-vessel dissociation operations. Some commercial media formulations tested demonstrated maintenance of cell growth rates, aggregate morphology, and high harvest recovery efficiencies through three bioreactor serial passages using multiple PSC lines. Exceptional bioprocess robustness was even demonstrated with sustained growth and quality maintenance over 10 serial bioreactor passages. However, some commercial media tested proved less equipped for serial passage cultures in bioreactors as cultures led to cell lysis during dissociation, reduction in growth rates, and a loss of aggregate morphology. CONCLUSIONS This study demonstrates the importance of systematic selection and testing of bioprocess input variables, with multiple bioprocess output variables through serial passages to create a truly reproducible and robust protocol for clinical and commercial PSC production using scalable bioreactor systems.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Hannah Worden
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Leila Larijani
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Jessica M Corpuz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Brett D Abraham
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Emilie J Gysel
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Julia Malinovska
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Tamas Revay
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sunghoon Jung
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA.
| |
Collapse
|
3
|
Hoyle H, Stenger C, Przyborski S. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents in vitro. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100063. [PMID: 36824373 PMCID: PMC9934498 DOI: 10.1016/j.bbiosy.2022.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These advanced techniques can recapitulate some of the properties of tissue in vivo, however fluid flow is a key aspect that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are becoming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is continuously being developed to tailor systems for specific applications and to allow compatibility with a range of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects such as temperature fluctuations. A thorough understanding of these properties and their implications on the culture model can aid with a more accurate interpretation of results. Improved and more complete characterisation of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding experimental reproducibility, and allowing more precise comparison of results between different systems. In this review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors and their potential biological impacts across a range of applications.
Collapse
Key Words
- 3D, three-dimensional
- ABS, acrylonitrile butadiene styrene
- ALI, air-liquid interface
- Bioreactors
- CFD, computational fluid dynamics
- Cell culture
- ECM, extracellular matrix
- FDM, fused deposition modelling
- Fluid flow
- PC, polycarbonate
- PET, polyethylene terephthalate
- PLA, polylactic acid
- PTFE, polytetrafluoroethylene
- SLA, stereolithography
- Tissue engineering
- UL, unstirred layer
- UV, ultraviolet light
Collapse
Affiliation(s)
- H.W. Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C.M.L. Stenger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S.A. Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,NETPark Incubator, Reprocell Europe Ltd., Thomas Wright Way, Sedgefield TS21 3FD, UK,Corresponding author at: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
4
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
5
|
Wang L, Isobe R, Kanemaru Y, Okano Y, Kino-Oka M. Numerical Optimization of Particle Dispersion in Wave Bioreactor for Static Cell Cultivation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liya Wang
- Department of Materials Engineering Science, Osaka University
| | - Ryosuke Isobe
- Department of Materials Engineering Science, Osaka University
| | | | - Yasunori Okano
- Department of Materials Engineering Science, Osaka University
| | | |
Collapse
|
6
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Cruvinel E, Ogusuku I, Cerioni R, Rodrigues S, Gonçalves J, Góes ME, Alvim JM, Silva AC, Lino VDS, Boccardo E, Goulart E, Pereira A, Dariolli R, Valadares M, Biagi D. Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity. SAGE Open Med 2020; 8:2050312120966456. [PMID: 33149912 PMCID: PMC7586033 DOI: 10.1177/2050312120966456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. Methods: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. Results: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. Conclusions: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Elisa Góes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Pereira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
8
|
Rohani L, Borys BS, Razian G, Naghsh P, Liu S, Johnson AA, Machiraju P, Holland H, Lewis IA, Groves RA, Toms D, Gordon PMK, Li JW, So T, Dang T, Kallos MS, Rancourt DE. Stirred suspension bioreactors maintain naïve pluripotency of human pluripotent stem cells. Commun Biol 2020; 3:492. [PMID: 32895477 PMCID: PMC7476926 DOI: 10.1038/s42003-020-01218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Due to their ability to standardize key physiological parameters, stirred suspension bioreactors can potentially scale the production of quality-controlled pluripotent stem cells (PSCs) for cell therapy application. Because of differences in bioreactor expansion efficiency between mouse (m) and human (h) PSCs, we investigated if conversion of hPSCs, from the conventional "primed" pluripotent state towards the "naïve" state prevalent in mPSCs, could be used to enhance hPSC production. Through transcriptomic enrichment of mechano-sensing signaling, the expression of epigenetic regulators, metabolomics, and cell-surface protein marker analyses, we show that the stirred suspension bioreactor environment helps maintain a naïve-like pluripotent state. Our research corroborates that converting hPSCs towards a naïve state enhances hPSC manufacturing and indicates a potentially important role for the stirred suspension bioreactor's mechanical environment in maintaining naïve-like pluripotency.
Collapse
Affiliation(s)
- Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Golsa Razian
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Pranav Machiraju
- Department of Paediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul M K Gordon
- CSM Center for Health Genomic and Informatics, University of Calgary, Calgary, AB, Canada
| | - Joyce W Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020; 16:506-518. [PMID: 32587391 PMCID: PMC9188823 DOI: 10.1038/s41574-020-0375-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic 'cells' or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.
Collapse
Affiliation(s)
- Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel S Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
|
11
|
Ghasemian M, Layton C, Nampe D, zur Nieden NI, Tsutsui H, Princevac M. Hydrodynamic characterization within a spinner flask and a rotary wall vessel for stem cell culture. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Borys BS, So T, Roberts EL, Ferrie L, Larijani L, Abraham B, Krawetz R, Rancourt DE, Kallos MS. Large-scale expansion of feeder-free mouse embryonic stem cells serially passaged in stirred suspension bioreactors at low inoculation densities directly from cryopreservation. Biotechnol Bioeng 2020; 117:1316-1328. [PMID: 31960947 DOI: 10.1002/bit.27279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Embryonic stem cells (ESCs) have almost unlimited proliferation capacity in vitro and can retain the ability to contribute to all cell lineages, making them an ideal platform material for cell-based therapies. ESCs are traditionally cultured in static flasks on a feeder layer of murine embryonic fibroblast cells. Although sufficient to generate cells for research purposes, this approach is impractical to achieve large quantities for clinical applications. In this study, we have developed protocols that address a variety of challenges that currently bottleneck clinical translation of ESCs expanded in stirred suspension bioreactors. We demonstrated that mouse ESCs (mESCs) cryopreserved in the absence of feeder cells could be thawed directly into stirred suspension bioreactors at extremely low inoculation densities (100 cells/ml). These cells sustained proliferative capacity through multiple passages and various reactor sizes and geometries, producing clinically relevant numbers (109 cells) and maintaining pluripotency phenotypic and functional properties. Passages were completed in stirred suspension bioreactors of increasing scale, under defined batch conditions which greatly improved resource efficiency. Output mESCs were analyzed for pluripotency marker expression (SSEA-1, SOX-2, and Nanog) through flow cytometry, and spontaneous differentiation and teratoma analysis was used to demonstrate functional maintenance of pluripotency.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Leah Ferrie
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Leila Larijani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Addressing Manufacturing Challenges for Commercialization of iPSC-Based Therapies. Methods Mol Biol 2020; 2286:179-198. [PMID: 32430594 DOI: 10.1007/7651_2020_288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of reprogramming technology to generate human induced pluripotent stem cells (iPSCs) has tremendously influenced the field of regenerative medicine and clinical therapeutics where curative cell replacement therapies can be used in the treatment of devastating diseases such as Parkinson's disease (PD) and diabetes. In order to commercialize these therapies to treat a large number of individuals, it is important to demonstrate the safety and efficacy of these therapies and ensure that the manufacturing process for iPSC-derived functional cells can be industrialized at an affordable cost. However, there are a number of manufacturing obstacles that need to be addressed in order to meet this vision. It is important to note that the manufacturing process for generation of iPSC-derived specialized cells is relatively long and fairly complex and requires differentiation of high-quality iPSCs into specialized cells in a controlled manner. In this chapter, we have summarized our efforts to address the main challenges present in the industrialization of iPSC-derived cell therapy products with focus on the development of a current Good Manufacturing Practice (cGMP)-compliant iPSC manufacturing process, a comprehensive iPSC characterization platform, long-term stability of cGMP compliant iPSCs, and innovative technologies to address some of the scale-up challenges in establishment of iPSC processing in 3D computer-controlled bioreactors.
Collapse
|
14
|
Abstract
Bioreactors for large-scale culture of mammalian cells are playing vital roles in biotechnology and bioengineering. Various bioreactors have been developed, but their capacity and efficiency are often limited by insufficient mass transfer rate and high shear stress. A rolled scaffold (RS) is a fully defined scaffold for high-density adherent culture of mammalian cells. The RS is a polymer film with spacers, that is rolled into a cylinder with a pre-determined gap between each turn. Cells are cultured on its inner surfaces, while media flows through the gap. The RS exhibits high surface-area-to-volume ratio over 100 cm2/mL and can transport nutrients and gases with significantly reduced shear stress via convection in a unidirectional laminar flow, rather than diffusion and random turbulent flow as in stirred-tank bioreactors. In this paper, we expanded Chinese Hamster Ovary cells with RS bioreactors and demonstrated cell culture density over 60 million cells/mL with a growth rate higher than conventional suspension culture. Besides, murine embryonic stem cells were successfully expanded without losing their pluripotency. The RS will provide an affordable, scalable, and reliable platform for large-scale culture of recombinant cells in biopharmaceutical industries and shear-sensitive stem cells for tissue engineering.
Collapse
|
15
|
Nogueira DES, Rodrigues CAV, Carvalho MS, Miranda CC, Hashimura Y, Jung S, Lee B, Cabral JMS. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel™ bioreactors. J Biol Eng 2019; 13:74. [PMID: 31534477 PMCID: PMC6744632 DOI: 10.1186/s13036-019-0204-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Since their inception, human induced pluripotent stem cells (hiPSCs) have held much promise for pharmacological applications and cell-based therapies. However, their potential can only be realised if large numbers of cells can be produced reproducibly on-demand. While bioreactors are ideal systems for this task, due to providing agitation and control of the culture parameters, the common impeller geometries were not designed for the expansion of mammalian cells, potentially leading to sub-optimal results. Results This work reports for the first time the usage of the novel Vertical-Wheel single-use bioreactors for the expansion of hiPSCs as floating aggregates. Cultures were performed in the PBS MINI 0.1 bioreactor with 60 mL of working volume. Two different culture media were tested, mTeSR1 and mTeSR3D, in a repeated batch or fed-batch mode, respectively, as well as dextran sulfate (DS) supplementation. mTeSR3D was shown to sustain hiPSC expansion, although with lower maximum cell density than mTeSR1. Dextran sulfate supplementation led to an increase in 97 and 106% in maximum cell number when using mTeSR1 or mTeSR3D, respectively. For supplemented media, mTeSR1 + DS allowed for a higher cell density to be obtained with one less day of culture. A maximum cell density of (2.3 ± 0.2) × 106 cells∙mL− 1 and a volumetric productivity of (4.6 ± 0.3) × 105 cells∙mL− 1∙d− 1 were obtained after 5 days with mTeSR1 + DS, resulting in aggregates with an average diameter of 346 ± 11 μm. The generated hiPSCs were analysed by flow cytometry and qRT-PCR and their differentiation potential was assayed, revealing the maintenance of their pluripotency after expansion. Conclusions The results here described present the Vertical-Wheel bioreactor as a promising technology for hiPSC bioprocessing. The specific characteristics of this bioreactor, namely in terms of the innovative agitation mechanism, can make it an important system in the development of hiPSC-derived products under current Good Manufacturing Practices.
Collapse
Affiliation(s)
- Diogo E S Nogueira
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marta S Carvalho
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia C Miranda
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | - Joaquim M S Cabral
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Borys BS, Le A, Roberts EL, Dang T, Rohani L, Hsu CYM, Wyma AA, Rancourt DE, Gates ID, Kallos MS. Using computational fluid dynamics (CFD) modeling to understand murine embryonic stem cell aggregate size and pluripotency distributions in stirred suspension bioreactors. J Biotechnol 2019; 304:16-27. [PMID: 31394111 DOI: 10.1016/j.jbiotec.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Computational fluid dynamics (CFD) modeling can be applied to understand hydrodynamics in stirred suspension bioreactors, which can in turn affect cell viability, proliferation, pluripotency and differentiation. In this study, we developed a CFD model to determine the effects of average shear rates and turbulent eddies on the formation and growth of murine embryonic stem cell aggregates. We found a correlation between average eddy size and aggregate size, which depended on bioreactor agitation rates. By relating these computational and biological variables, CFD modeling can predict optimal agitation rates to grow embryonic stem cell aggregates in stirred suspension bioreactors. To examine the effect of hydrodynamics on pluripotency, mESCs cultured in bioreactors under various agitation rates were tested for SSEA-1, Sox-2, and Nanog expression. Cells maintained a minimum of 95% positive expression with no change in the intensity distribution pattern between the different bioreactor conditions. This indicates that the average level of pluripotency marker expression is independent of changes in the hydrodynamic profile and resulting aggregate size distribution. The findings here can be further extended to other cell types that grow as aggregates in stirred suspension bioreactors and offer important insights necessary to realize cell therapies.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - An Le
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Charlie Yu-Ming Hsu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Alexander A Wyma
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada; Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
17
|
Hoffman T, Khademhosseini A, Langer R. Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering. Tissue Eng Part A 2019; 25:679-687. [PMID: 30727841 PMCID: PMC6533781 DOI: 10.1089/ten.tea.2019.0032] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
IMPACT STATEMENT In this Perspective, we discuss the impact of the past 25 years of tissue engineering on the development of clinical therapies. Based on their success and other significant research accomplishments, platforms of innovation were identified. Their discoveries will enable tissue engineering inspired therapies to meet the requirements necessary for large-scale manufacturing and Food and Drug Administration (FDA) approval for a diverse range of indications.
Collapse
Affiliation(s)
- Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, California
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, California
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
18
|
Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System. Stem Cells Int 2019; 2019:9704945. [PMID: 30805013 PMCID: PMC6362483 DOI: 10.1155/2019/9704945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
The number of high-quality cells required for engineering an adult human-sized bioartificial organ is greater than one billion. Until the emergence of induced pluripotent stem cells (iPSCs), autologous cell sources of this magnitude and with the required complexity were not available. Growing this number of cells in a traditional 2D cell culture system requires extensive time, resources, and effort and does not always meet clinical requirements. The use of a closed cell culture system is an efficient and clinically applicable method that can be used to expand cells under controlled conditions. We aimed to use the Quantum Cell Expansion System (QES) as an iPSC monolayer-based expansion system. Human iPSCs were expanded (up to 14-fold) using the QES on two different coatings (laminin 521 (LN521) and vitronectin (VN)), and a karyotype analysis was performed. The cells were characterized for spontaneous differentiation and pluripotency by RT-PCR and flow cytometry. Our results demonstrated that the QES provides the necessary environment for exponential iPSC growth, reaching 689.75 × 106 ± 86.88 × 106 in less than 7 days using the LN521 coating with a population doubling level of 3.80 ± 0.19. The same result was not observed when VN was used as a coating. The cells maintained normal karyotype (46-XX), expressed pluripotency markers (OCT4, NANOG, LIN28, SOX2, REX1, DPPA4, NODAL, TDGFb, TERT3, and GDF), and expressed high levels of OCT4, SOX2, NANOG, SSEA4, TRA1-60, and TRA1-81. Spontaneous differentiation into ectoderm (NESTIN, TUBB3, and NEFH), mesoderm (MSX1, BMP4, and T), and endoderm (GATA6, AFP, and SOX17) lineages was detected by RT-PCR with both coating systems. We conclude that the QES maintains the stemness of iPSCs and is a promising platform to provide the number of cells necessary to recellularize small human-sized organ scaffolds for clinical purposes.
Collapse
|
19
|
Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:189-224. [PMID: 31740987 DOI: 10.1007/10_2019_117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.
Collapse
|
20
|
Junne S, Neubauer P. How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 2018; 53:240-247. [DOI: 10.1016/j.copbio.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
|
21
|
A fully defined static suspension culture system for large-scale human embryonic stem cell production. Cell Death Dis 2018; 9:892. [PMID: 30166524 PMCID: PMC6117302 DOI: 10.1038/s41419-018-0863-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022]
Abstract
Human embryonic stem cells (hESCs) play an important role in regenerative medicine due to their potential to differentiate into various functional cells. However, the conventional adherent culture system poses challenges to mass production of high-quality hESCs. Though scientists have made many attempts to establish a robust and economical hESC suspension culture system, there are existing limitations, including suboptimal passage methods and shear force caused by dynamic stirring. Here, we report on an efficient large-scale culture system, which enables long-term, GMP grade, single-cell inoculation, and serial expansion of hESCs with a yield of about 1.5 × 109 cells per 1.5-L culture, while maintaining good pluripotency. The suspension culture system was enlarged gradually from a 100-mm dish to a 1.8-L culture bag with methylcellulose involvement to avoid sphere fusion. Under the optimal experimental protocol, this 3D system resolves current problems that limit mass production and clinical application of hESCs, and thus can be used in commercial-level hESC production for cell therapy and pharmaceutics screening in the future.
Collapse
|
22
|
Meng G, Liu S, Poon A, Rancourt DE. Optimizing Human Induced Pluripotent Stem Cell Expansion in Stirred-Suspension Culture. Stem Cells Dev 2017; 26:1804-1817. [DOI: 10.1089/scd.2017.0090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guoliang Meng
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Shiying Liu
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Anna Poon
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Derrick E. Rancourt
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
Chen X, Harkness L, Jia Z, Prowse A, Monteiro MJ, Gray PP. Methods for Expansion of Three-Dimensional Cultures of Human Embryonic Stem Cells Using a Thermoresponsive Polymer. Tissue Eng Part C Methods 2017; 24:146-157. [PMID: 29239281 DOI: 10.1089/ten.tec.2017.0331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are viewed as promising candidates for applications in regenerative medicine and therapy due to their proliferative and pluripotent properties. However, obtaining clinically significant numbers of hPSCs remains a limiting factor and impedes their use in therapeutic applications. Conventionally, hPSCs are cultured on two-dimensional surfaces coated with a suitable substrate, such as Matrigel™. This method, however, requires a large surface area to generate sufficient cell numbers to meet clinical needs and is therefore impractical as a manufacturing platform for cell expansion. In addition, the use of enzymes for cell detachment and small molecule inhibitors to increase plating efficiency may impact future cell behavior when used for routine subculturing. In this study, we describe a protocol to generate and maintain hPSC aggregates in a three-dimensional suspension culture by utilizing thermoresponsive nanobridges. The property of the polymer used in the nanobridges enables passaging and expansion through a temperature change in combination with mechanically applied shear to dissociate aggregates; thus, we eliminate the need of enzymes or small molecules for cell dissociation and viability, respectively. Utilizing this platform, maintenance of human embryonic stem cells for three continuous passages demonstrated high expression levels in key pluripotent markers.
Collapse
Affiliation(s)
- Xiaoli Chen
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Linda Harkness
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Zhongfan Jia
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Andrew Prowse
- 2 The Garvan Institute of Medical Research , Sydney, Australia
| | - Michael J Monteiro
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Peter P Gray
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| |
Collapse
|
24
|
Tohyama S, Fujita J, Fujita C, Yamaguchi M, Kanaami S, Ohno R, Sakamoto K, Kodama M, Kurokawa J, Kanazawa H, Seki T, Kishino Y, Okada M, Nakajima K, Tanosaki S, Someya S, Hirano A, Kawaguchi S, Kobayashi E, Fukuda K. Efficient Large-Scale 2D Culture System for Human Induced Pluripotent Stem Cells and Differentiated Cardiomyocytes. Stem Cell Reports 2017; 9:1406-1414. [PMID: 28988990 PMCID: PMC5829307 DOI: 10.1016/j.stemcr.2017.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/08/2023] Open
Abstract
Cardiac regenerative therapies utilizing human induced pluripotent stem cells (hiPSCs) are hampered by ineffective large-scale culture. hiPSCs were cultured in multilayer culture plates (CPs) with active gas ventilation (AGV), resulting in stable proliferation and pluripotency. Seeding of 1 × 106 hiPSCs per layer yielded 7.2 × 108 hiPSCs in 4-layer CPs and 1.7 × 109 hiPSCs in 10-layer CPs with pluripotency. hiPSCs were sequentially differentiated into cardiomyocytes (CMs) in a two-dimensional (2D) differentiation protocol. The efficiency of cardiac differentiation using 10-layer CPs with AGV was 66%–87%. Approximately 6.2–7.0 × 108 cells (4-layer) and 1.5–2.8 × 109 cells (10-layer) were obtained with AGV. After metabolic purification with glucose- and glutamine-depleted and lactate-supplemented media, a massive amount of purified CMs was prepared. Here, we present a scalable 2D culture system using multilayer CPs with AGV for hiPSC-derived CMs, which will facilitate clinical applications for severe heart failure in the near future. Efficient mass production of hiPSCs by multilayer culture plates with AGV Efficient mass production of hiPSC-CMs using a massive 2D culture system with AGV Mass production of pure hiPSC-CMs via metabolic selection
Collapse
Affiliation(s)
- Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Organ Fabrication, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Chihana Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Miho Yamaguchi
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayaka Kanaami
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rei Ohno
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuho Sakamoto
- Department of Pharmacology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan; Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masami Kodama
- Department of Bio-informational Pharmacology, Medical Research Institute, National University Corporation Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuaki Nakajima
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akinori Hirano
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinji Kawaguchi
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
25
|
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
27
|
Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci Rep 2017; 7:2850. [PMID: 28588295 PMCID: PMC5460280 DOI: 10.1038/s41598-017-03246-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.
Collapse
|
28
|
Nampe D, Joshi R, Keller K, Zur Nieden NI, Tsutsui H. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture. Biotechnol Bioeng 2017; 114:2109-2120. [PMID: 28480972 DOI: 10.1002/bit.26334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Nampe
- Department of Mechanical Engineering, University of California, Riverside, California 92521.,Department of Bioengineering, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| | - Ronak Joshi
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Kevin Keller
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Nicole I Zur Nieden
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, California 92521.,Department of Bioengineering, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| |
Collapse
|
29
|
Azizi H, Skutella T, Shahverdi A. Generation of Mouse Spermatogonial Stem-Cell-Colonies in A Non-Adherent Culture. CELL JOURNAL 2017; 19:238-249. [PMID: 28670516 PMCID: PMC5412782 DOI: 10.22074/cellj.2016.4184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The properties of self-renewal and division in spermatogonial stem cells (SSCs) support spermatogenesis. There is a number of reported methods for in vitro SSC culture systems. The development of a culture system that effectively supports isolation and selfrenewal of germline stem cells (GSCs) is of tremendous benefit for clinical trials, experimental research, and as potential treatment for male infertility. The current study aims to consider the cultivation and behavior of GSCs in a non-adherent culture system. MATERIALS AND METHODS In this experimental study, we cultured testicular cells from neonatal mice in agarose coated plates in the presence of Dulbecco's modified Eagle's medium (DMEM) medium (CTRL group), 10% fetal bovine serum (FBS)+DMEM (10% group), and growth factor (G group) that contained 2% FBS, glial cell-derived neurotrophic factor (GDNF), epidermal growth factor (EGF), and fibroblast growth factor (FGF). Mouse spermatogonial stem-like colonies were isolated approximately 3 weeks after digestion of the testis tissue. After passages 2-3, the identity of the mouse spermatogonial stem-like cells was confirmed by immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry against the germ cell markers α6, β1, c-Kit, Thy-1, c-Ret, Plzf, and Oct4. The statistical significance between mean values in different groups was determined by one-way analysis of variance (ANOVA). RESULTS We observed spermatogonial stem-like colonies in the G and 10% groups, but not the CTRL group. Immunocytochemistry, flow cytometry, and RT-PCR confirmed expressions of germ cell markers in these cells. In the spermatogonial stem-like cells, we observed a significant expression (P<0.05) of germ cell markers in the G and 10% groups versus the testis cells (T). Their proliferative and apoptotic activities were examined by Ki67 and PI/annexin V-FITC. Alkaline phosphatase assay showed that mouse spermato- gonial stem-like colonies were partially positive. CONCLUSION A non-adherent culture system could provide a favorable method for in vitro short-term culture of spermatogonial stem-like cell colonies.
Collapse
Affiliation(s)
- Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Abdolhossein Shahverdi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Mirfeizi L, Stratton JA, Kumar R, Shah P, Agabalyan N, Stykel MG, Midha R, Biernaskie J, Kallos MS. Serum-free bioprocessing of adult human and rodent skin-derived Schwann cells: implications for cell therapy in nervous system injury. J Tissue Eng Regen Med 2017; 11:3385-3397. [PMID: 28176458 DOI: 10.1002/term.2252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/19/2016] [Accepted: 07/03/2016] [Indexed: 02/06/2023]
Abstract
Peripheral nerve injury affects 2.8% of trauma patients with severe cases often resulting in long-lived permanent disability, despite nerve repair surgery. Autologous Schwann cell (SC) therapy currently provides an exciting avenue for improved outcomes for these patients, particularly with the possibility to derive SCs from easily-accessible adult skin. However, due to current challenges regarding the efficient expansion of these cells, further optimization is required before they can be seriously considered for clinical application. Here, a microcarrier-based bioreactor system is proposed as a means to scale-up large numbers of adult skin-derived SCs for transplantation into the injured nerve. Bioprocessing parameters that allow for the expansion of adult rodent SCs have been identified, whilst maintaining similar rates of proliferation (as compared to static-grown SCs), expression of SC markers, and, importantly, their capacity to myelinate axons following transplant into the injured sciatic nerve. The same bioprocessing parameters can be applied to SCs derived from adult human skin, and like rodent cells, they sustain their proliferative potential and expression of SC markers. Taken together, this dataset demonstrates the basis for a scalable bioprocess for the production of SCs, an important step towards clinical use of these cells as an adjunct therapy for nerve repair. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Leila Mirfeizi
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjan Kumar
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Natacha Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morgan G Stykel
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Liu L, Kamei KI, Yoshioka M, Nakajima M, Li J, Fujimoto N, Terada S, Tokunaga Y, Koyama Y, Sato H, Hasegawa K, Nakatsuji N, Chen Y. Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials 2017; 124:47-54. [PMID: 28187394 DOI: 10.1016/j.biomaterials.2017.01.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/06/2017] [Accepted: 01/28/2017] [Indexed: 01/22/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold great potential for industrial and clinical applications. Clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products. Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECMs) and cell culture wares. We developed a layered nano-on-micro fibrous cellular matrix mimicking ECM, named "fiber-on-fiber (FF)" matrix, which enables easy handling and manipulation of cultured cells. While non-woven sheets of cellulose and polyglycolic acid were used as a microfiber layer facilitating mechanical stability, electrospun gelatin nanofibers were crosslinked on the microfiber layer, generating a mesh structure with connected nanofibers facilitating cell adhesion and growth. Our results showed that the FF matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion, with fold increases of 54.1 ± 15.6 and 40.4 ± 8.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively. This simple approach to mimick the ECM may have important implications after further optimization to generate lineage-specific products.
Collapse
Affiliation(s)
- Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Nanae Fujimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sato
- QOL Research Center, Gunze Limited, Kyoto, 623-8512 Japan
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France.
| |
Collapse
|
32
|
|
33
|
Adil MM, Rodrigues GMC, Kulkarni RU, Rao AT, Chernavsky NE, Miller EW, Schaffer DV. Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform. Sci Rep 2017; 7:40573. [PMID: 28091566 PMCID: PMC5238378 DOI: 10.1038/srep40573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson's Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research.
Collapse
Affiliation(s)
- Maroof M. Adil
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Gonçalo M. C. Rodrigues
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Antara T. Rao
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Nicole E. Chernavsky
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Evan W. Miller
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
34
|
Galvanauskas V, Grincas V, Simutis R, Kagawa Y, Kino-oka M. Current state and perspectives in modeling and control of human pluripotent stem cell expansion processes in stirred-tank bioreactors. Biotechnol Prog 2017; 33:355-364. [DOI: 10.1002/btpr.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Vykantas Grincas
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Rimvydas Simutis
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Yuki Kagawa
- Department of Biotechnology; Osaka University; Osaka Japan
| | | |
Collapse
|
35
|
Miranda CC, Fernandes TG, Diogo MM, Cabral JMS. Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells. Biotechnol J 2016; 11:1628-1638. [PMID: 27754603 DOI: 10.1002/biot.201600446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023]
Abstract
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems.
Collapse
Affiliation(s)
- Cláudia C Miranda
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Margarida Diogo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Kamei KI, Koyama Y, Tokunaga Y, Mashimo Y, Yoshioka M, Fockenberg C, Mosbergen R, Korn O, Wells C, Chen Y. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions. Adv Healthc Mater 2016; 5:2951-2958. [PMID: 27775225 DOI: 10.1002/adhm.201600893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Rowland Mosbergen
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic 3010 Australia
| | - Othmar Korn
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
| | - Christine Wells
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic 3010 Australia
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
- Ecole Normale Supérieure; CNRS-ENS-UPMC UMR 8640; 24 Rue L'homond Paris 75005 France
| |
Collapse
|
37
|
Weegman BP, Essawy A, Nash P, Carlson AL, Voltzke KJ, Geng Z, Jahani M, Becker BB, Papas KK, Firpo MT. Nutrient Regulation by Continuous Feeding for Large-scale Expansion of Mammalian Cells in Spheroids. J Vis Exp 2016:52224. [PMID: 27768027 PMCID: PMC5092061 DOI: 10.3791/52224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this demonstration, spheroids formed from the β-TC6 insulinoma cell line were cultured as a model of manufacturing a mammalian islet cell product to demonstrate how regulating nutrient levels can improve cell yields. In previous studies, bioreactors facilitated increased culture volumes over static cultures, but no increase in cell yields were observed. Limitations in key nutrients such as glucose, which were consumed between batch feedings, can lead to limitations in cell expansion. Large fluctuations in glucose levels were observed, despite the increase in glucose concentrations in the media. The use of continuous feeding systems eliminated fluctuations in glucose levels, and improved cell growth rates when compared with batch fed static and SSB culture methods. Additional increases in growth rates were observed by adjusting the feed rate based on calculated nutrient consumption, which allowed the maintenance of physiological glucose over three weeks in culture. This method can also be adapted for other cell types.
Collapse
|
38
|
Agabalyan NA, Borys BS, Sparks HD, Boon K, Raharjo EW, Abbasi S, Kallos MS, Biernaskie J. Enhanced Expansion and Sustained Inductive Function of Skin-Derived Precursor Cells in Computer-Controlled Stirred Suspension Bioreactors. Stem Cells Transl Med 2016; 6:434-443. [PMID: 28191777 PMCID: PMC5442802 DOI: 10.5966/sctm.2016-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Endogenous dermal stem cells (DSCs) reside in the adult hair follicle mesenchyme and can be isolated and grown in vitro as self‐renewing colonies called skin‐derived precursors (SKPs). Following transplantation into skin, SKPs can generate new dermis and reconstitute the dermal papilla and connective tissue sheath, suggesting they could have important therapeutic value for the treatment of skin disease (alopecia) or injury. Controlled cell culture processes must be developed to efficiently and safely generate sufficient stem cell numbers for clinical use. Compared with static culture, stirred‐suspension bioreactors generated fivefold greater expansion of viable SKPs. SKPs from each condition were able to repopulate the dermal stem cell niche within established hair follicles. Both conditions were also capable of inducing de novo hair follicle formation and exhibited bipotency, reconstituting the dermal papilla and connective tissue sheath, although the efficiency was significantly reduced in bioreactor‐expanded SKPs compared with static conditions. We conclude that automated bioreactor processing could be used to efficiently generate large numbers of autologous DSCs while maintaining their inherent regenerative function. Stem Cells Translational Medicine2017;6:434–443
Collapse
Affiliation(s)
- Natacha A. Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Breanna S. Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Holly D. Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn Boon
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Eko W. Raharjo
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S. Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Surrao DC, Boon K, Borys B, Sinha S, Kumar R, Biernaskie J, Kallos MS. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors. Biotechnol Bioeng 2016; 113:2725-2738. [PMID: 27345530 DOI: 10.1002/bit.26040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 01/07/2023]
Abstract
Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P < 0.05) at 60 rpm in SSBs than in static cultures. Furthermore, the utility of the SSBs, at 60 rpm is demonstrated by serial passaging of hSKPs from a small starting population, which can be isolated from an autologous skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P < 0.05) from static cultures, which recorded acidic pH conditions. The nutrient concentrations of the media in all the SSBs and static cultures did not drop below acceptable limits. Furthermore, there was no significant build-up of waste products to limit hSKP expansion in the SSBs. In addition, hSKP markers were maintained in the 60 rpm SSB as demonstrated by immunocytochemistry. This method of growing hSKPs in a batch culture at 60 rpm in a SSB represents an important first step in developing an automated bioprocess to produce substantial numbers of clinically viable hSKPs aimed at regenerating the dermis to improve healing of severe skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Denver C Surrao
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Kathryn Boon
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Breanna Borys
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Sarthak Sinha
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjan Kumar
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada. .,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
Kropp C, Kempf H, Halloin C, Robles-Diaz D, Franke A, Scheper T, Kinast K, Knorpp T, Joos TO, Haverich A, Martin U, Zweigerdt R, Olmer R. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors. Stem Cells Transl Med 2016; 5:1289-1301. [PMID: 27369897 DOI: 10.5966/sctm.2015-0253] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022] Open
Abstract
: The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 106 cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. SIGNIFICANCE Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to compare established conditions with this novel culture strategy, unexpected physiological features of hPSCs were discovered. These data allow a more rational process development, providing significant progress in the field of translational stem cell research and medicine.
Collapse
Affiliation(s)
- Christina Kropp
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Caroline Halloin
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Diana Robles-Diaz
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University Hannover, Hannover, Germany
| | | | - Thomas Knorpp
- Natural and Medical Science Institute (NMI) at the University of Tuebingen, Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Science Institute (NMI) at the University of Tuebingen, Reutlingen, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Martin
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ruth Olmer
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Badenes SM, Fernandes TG, Cordeiro CSM, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JMS. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems. PLoS One 2016; 11:e0151264. [PMID: 26999816 PMCID: PMC4801338 DOI: 10.1371/journal.pone.0151264] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/19/2016] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells.
Collapse
Affiliation(s)
- Sara M. Badenes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Cláudia S. M. Cordeiro
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Shayne Boucher
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - David Kuninger
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Maria Margarida Diogo
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Joaquim M. S. Cabral
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| |
Collapse
|
42
|
Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2016; 11:1658-1674. [PMID: 26777594 DOI: 10.1002/term.2117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
The derivation of pluripotent stem cells from human embryos and the generation of induced pluripotent stem cells (iPSCs) from somatic cells opened a new chapter in studies on the regeneration of the post-infarction heart and regenerative medicine as a whole. Thus, protocols for obtaining iPSCs were enthusiastically adopted and widely used for further experiments on cardiac differentiation. iPSC-mediated cardiomyocytes (iPSC-CMs) under in vitro culture conditions are generated by simulating natural cardiomyogenesis and involve the wingless-type mouse mammary tumour virus integration site family (WNT), transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) signalling pathways. New strategies have been proposed to take advantage of small chemical molecules, organic compounds and even electric or mechanical stimulation. There are three main approaches to support cardiac commitment in vitro: embryoid bodis (EBs), monolayer in vitro cultures and inductive co-cultures with visceral endoderm-like (END2) cells. In EB technique initial uniform size of pluripotent stem cell (PSC) colonies has a pivotal significance. Hence, some methods were designed to support cells aggregation. Another well-suited procedure is based on culturing cells in monolayer conditions in order to improve accessibility of growth factors and nutrients. Other distinct tactics are using visceral endoderm-like cells to culture them with PSCs due to secretion of procardiac cytokines. Finally, the appropriate purification of the obtained cardiomyocytes is required prior to their administration to a patient under the prospective cellular therapy strategy. This goal can be achieved using non-genetic methods, such as the application of surface markers and fluorescent dyes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jarosław Lewandowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz J Kolanowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
43
|
Ashok P, Fan Y, Rostami MR, Tzanakakis ES. Aggregate and Microcarrier Cultures of Human Pluripotent Stem Cells in Stirred-Suspension Systems. Methods Mol Biol 2016; 1502:35-52. [PMID: 26659793 PMCID: PMC5642038 DOI: 10.1007/7651_2015_312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pluripotent stem cells can differentiate to any cell type and contribute to damaged tissue repair and organ function reconstitution. The scalable culture of pluripotent stem cells is essential to furthering the use of stem cell products in a wide gamut of applications such as screening of candidate drugs and cell replacement therapies. Human stem cell cultivation in stirred-suspension vessels enables the expansion of stem cells and the generation of differentiated progeny in quantities suitable for use in animal models and clinical studies. We describe methods of culturing human pluripotent stem cells in spinner flasks either as aggregates or on microcarriers. Techniques for assessing the quality of the culture and characterizing the cells based on the presentation of pertinent markers are also presented. Spinner flask culture with its relatively low capital and operating costs is appealing to laboratories interested in scaling up their production of stem/progenitor cells.
Collapse
Affiliation(s)
- Preeti Ashok
- Department of Chemical and Biological Engineering, Tufts University, Medford MA 02155
| | - Yongjia Fan
- Department of Chemical and Biological Engineering, Tufts University, Medford MA 02155
| | - Mahboubeh R. Rostami
- Department of Chemical and Biological Engineering, Tufts University, Medford MA 02155
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford MA 02155,Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA 02111,Corresponding author: E. S. Tzanakakis, Associate Professor, Chemical and Biological Engineering, 4 Colby St, 276A, Tufts University, Medford, MA 02155
| |
Collapse
|
44
|
Abstract
Spermatogenesis is a stem cell based system. Both therapeutic and biomedical research applications of spermatogonial stem cells require a large number of cells. However, there are only few germ line stem cells in the testis, contained in the fraction of undifferentiated spermatogonia. The lack of specific markers makes it difficult to isolate these cells. The long term maintenance and proliferation of nonrodent germ cells in culture has so far been met with limited success, partially due to the lack of highly enriched starting populations. Differential plating, which depends on the differential adhesion properties of testicular somatic and germ cells to tissue culture dishes, has been the method of choice for germ cell enrichment, especially for nonrodent germ cells. However, for large animals, this process becomes labor intensive and increases variability due to the need for extensive handling. Here, we describe the use of stirred suspension bioreactors, as a novel system for enriching undifferentiated germ cells from 1-week-old pigs. This method capitalizes on the adherent properties of somatic cells within a controlled environment, thus promoting the enrichment of progenitor cells with minimal handling and variability.
Collapse
|
45
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
46
|
Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015; 15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022] Open
Abstract
To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(9) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.
Collapse
Affiliation(s)
- Vincent C Chen
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jingjing Ye
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Praveen Shukla
- Center for Applied Technology Development, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Giau Hua
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Danlin Chen
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ziguang Lin
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jian-chang Liu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jing Chai
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joseph Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Larry A Couture
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Center for Applied Technology Development, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
47
|
Silva MM, Rodrigues AF, Correia C, Sousa MFQ, Brito C, Coroadinha AS, Serra M, Alves PM. Robust Expansion of Human Pluripotent Stem Cells: Integration of Bioprocess Design With Transcriptomic and Metabolomic Characterization. Stem Cells Transl Med 2015; 4:731-42. [PMID: 25979863 DOI: 10.5966/sctm.2014-0270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED : Human embryonic stem cells (hESCs) have an enormous potential as a source for cell replacement therapies, tissue engineering, and in vitro toxicology applications. The lack of standardized and robust bioprocesses for hESC expansion has hindered the application of hESCs and their derivatives in clinical settings. We developed a robust and well-characterized bioprocess for hESC expansion under fully defined conditions and explored the potential of transcriptomic and metabolomic tools for a more comprehensive assessment of culture system impact on cell proliferation, metabolism, and phenotype. Two different hESC lines (feeder-dependent and feeder-free lines) were efficiently expanded on xeno-free microcarriers in stirred culture systems. Both hESC lines maintained the expression of stemness markers such as Oct-4, Nanog, SSEA-4, and TRA1-60 and the ability to spontaneously differentiate into the three germ layers. Whole-genome transcriptome profiling revealed a phenotypic convergence between both hESC lines along the expansion process in stirred-tank bioreactor cultures, providing strong evidence of the robustness of the cultivation process to homogenize cellular phenotype. Under low-oxygen tension, results showed metabolic rearrangement with upregulation of the glycolytic machinery favoring an anaerobic glycolysis Warburg-effect-like phenotype, with no evidence of hypoxic stress response, in contrast to two-dimensional culture. Overall, we report a standardized expansion bioprocess that can guarantee maximal product quality. Furthermore, the "omics" tools used provided relevant findings on the physiological and metabolic changes during hESC expansion in environmentally controlled stirred-tank bioreactors, which can contribute to improved scale-up production systems. SIGNIFICANCE The clinical application of human pluripotent stem cells (hPSCs) has been hindered by the lack of robust protocols able to sustain production of high cell numbers, as required for regenerative medicine. In this study, a strategy was developed for the expansion of human embryonic stem cells in well-defined culture conditions using microcarrier technology and stirred-tank bioreactors. The use of transcriptomic and metabolic tools allowed detailed characterization of the cell-based product and showed a phenotypic convergence between both hESC lines along the expansion process. This study provided valuable insights into the metabolic hallmarks of hPSC expansion and new information to guide bioprocess design and media optimization for the production of cells with higher quantity and improved quality, which are requisite for translation to the clinic.
Collapse
Affiliation(s)
- Marta M Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
48
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
49
|
Dores C, Rancourt D, Dobrinski I. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis. Andrology 2015; 3:590-7. [PMID: 25877677 DOI: 10.1111/andr.12031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling.
Collapse
Affiliation(s)
- C Dores
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - D Rancourt
- Department of Oncology, Biochemistry and Molecular Biology and Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - I Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Martin-Manso G, Hanley PJ. Using the quantum cell expansion system for the automated expansion of clinical-grade bone marrow-derived human mesenchymal stromal cells. Methods Mol Biol 2015; 1283:53-63. [PMID: 25523809 DOI: 10.1007/7651_2014_164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bone marrow-derived human mesenchymal stromal cells (hMSCs) constitute a promising therapeutic approach. However, the extremely low frequency of hMSCs in bone marrow makes the translation of these regulatory cells to clinical therapies difficult for large patient populations. Here, we describe a good manufacturing practices-compliant procedure for the expansion of hMSCs using the Quantum Cell Expansion System. This closed and automated system allows the large-scale expansion of hMSCs while maintaining their multipotency, immunophenotype, morphology, and karyotype.
Collapse
Affiliation(s)
- Gema Martin-Manso
- Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | | |
Collapse
|