1
|
Xiao J, Zhang Q, Wu B, Wang M, Zhu Y, Zhao D, Zhao F, Xie Y. Effect of placental mesenchymal stem cells on promoting the healing of chronic burn wounds. Heliyon 2024; 10:e36584. [PMID: 39281490 PMCID: PMC11401119 DOI: 10.1016/j.heliyon.2024.e36584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
The treatment of chronic burn wounds is difficult in clinical practice. The ideal therapy is required to be continuously explored. Mesenchymal stem cells revolutionize the treatment of many diseases. The placental mesenchymal stem cells (PMSCs) have the characteristics of easy access, strong proliferation ability and multi-directional differentiation potential. The aim of this study was to investigate the potential of PMSCs in chronic burn wound healing. In this study, species of bacteria of 317 patients with chronic burn wounds have been analyzed. Samples of chronic burn wound fluid were collected from representative patients and then co-cultured with cells. In vitro studies showed that chronic burn wound fluid inhibited the proliferation of human keratinocytes and fibroblasts, while PMSCs can counteract the effects of burn wound fluid on inhibiting the proliferation and migration of human keratinocytes and fibroblasts. In addition, in vivo studies showed that a rat chronic burn wound model was successfully created. The expression of MMP-2, MMP-9, MDA, IL-6 and TNF-α in chronic burn wounds was significantly higher than that in acute burn wounds. Finally, the rat chronic burn wound model was used to verify that placental mesenchymal stem cell transplantation increased the wound healing rate, decreased the wound healing time, and promoted wound healing by increasing the thickness of epidermis and promoting the expression of P63 and CK10. The findings provide support for the hypothesis that PMSCs promote the repair of chronic burn wounds and key scientific data for the application of PMSCs as a new method for treating chronic burn wounds.
Collapse
Affiliation(s)
- Jinli Xiao
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bowen Wu
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Maomao Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yongzhao Zhu
- Surgery Lab, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dan Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk-Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403729. [PMID: 39246220 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbruecken, Germany
| | - Felipe P Perona Martínez
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
3
|
Lim PLK, Balakrishnan Y, Goh G, Tham KC, Ng YZ, Lunny DP, Leavesley DI, Bonnard C. Automated Electrical Stimulation Therapy Accelerates Re-Epithelialization in a Three-Dimensional In Vitro Human Skin Wound Model. Adv Wound Care (New Rochelle) 2024; 13:217-234. [PMID: 38062745 DOI: 10.1089/wound.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Priscilla L K Lim
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yamini Balakrishnan
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Gracia Goh
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Khek-Chian Tham
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yi Zhen Ng
- Tissue Technologies, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - Declan P Lunny
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Asian Skin Biobank, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - David I Leavesley
- Tissue Technologies, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - Carine Bonnard
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Asian Skin Biobank, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| |
Collapse
|
4
|
McCall B, Rana K, Sugden K, Junaid S. In-vitro external fixation pin-site model proof of concept: A novel approach to studying wound healing in transcutaneous implants. Proc Inst Mech Eng H 2024; 238:403-411. [PMID: 38602217 PMCID: PMC11010558 DOI: 10.1177/09544119241234154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/05/2024] [Indexed: 04/12/2024]
Abstract
External fixation is an essential surgical technique for treating trauma, limb lengthening and deformity correction, however infection is common, with infection rates ranging from 4.5 to 100% of cases. Throughout the literature researchers and clinicians have highlighted a relationship between excessive movement of the pin and skin and an increase in the patient's risk of infection, however, currently no studies have addressed this role of pin-movement on pin-site wounds. This preliminary study describes a novel in vitro pin-site model, developed using a full-thickness human skin equivalent (HSE) model in conjunction with a bespoke mechanical system which simulates pin-movement. The effect of pin-movement on the wound healing response of the skin equivalents was assessed by measuring the expression of pro-inflammatory cytokines. Six human skin equivalent models were divided into three test groups: no pin as the control, static pin-site wound and dynamic pin-site wound (n = 3). On day 3 concentrations of IL-1α and IL-8 showed a significant increase compared to the control when a static fixation pin was implanted into the skin equivalent (p < 0.05) and (p < 0.005) respectively. Levels of IL-1α and IL-8 increased further in the dynamic sample compared to the static sample (p < 0.05) and (p < 0.0005). This study demonstrates for the first time the application of HSE model to study external-fixation pin-movement in vitro. The results of this study demonstrated pin-movement has a negative effect on soft-tissue wound-healing, supporting the anecdotal evidence reported in the literature, however further analysis of wound heading would be required to verify this hypothesis.
Collapse
Affiliation(s)
- Blake McCall
- Biomedical Engineering Research Group, School of Engineering and Applied Science, Aston University, Birmingham, UK
| | - Karan Rana
- Aston Research Centre for Healthy Ageing, School of Life and Health Science, Aston University, Birmingham, UK
| | - Kate Sugden
- Aston Institute of Photonics Technology, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Sarah Junaid
- Biomedical Engineering Research Group, School of Engineering and Applied Science, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Pranantyo D, Yeo CK, Wu Y, Fan C, Xu X, Yip YS, Vos MIG, Mahadevegowda SH, Lim PLK, Yang L, Hammond PT, Leavesley DI, Tan NS, Chan-Park MB. Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing. Nat Commun 2024; 15:954. [PMID: 38296937 PMCID: PMC10830466 DOI: 10.1038/s41467-024-44968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic polyimidazolium and antioxidative N-acetylcysteine. In a murine diabetic wound model, the hydrogel accelerates the closure of wounds infected with methicillin-resistant Staphylococcus aureus or carbapenem-resistant Pseudomonas aeruginosa biofilm. Furthermore, a three-dimensional ex vivo human skin equivalent model shows that N-acetylcysteine promotes the keratinocyte differentiation and accelerates the re-epithelialization process. Our hydrogel dressing can be made into different formats for the healing of both flat and deep infected chronic wounds without contamination of the wound or needing other modalities such as photothermal irradiation.
Collapse
Affiliation(s)
- Dicky Pranantyo
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Chun Kiat Yeo
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yang Wu
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Xiaofei Xu
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Surendra H Mahadevegowda
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Priscilla Lay Keng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Paula T Hammond
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - David Ian Leavesley
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
6
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
8
|
Hofmann E, Fink J, Pignet AL, Schwarz A, Schellnegger M, Nischwitz SP, Holzer-Geissler JCJ, Kamolz LP, Kotzbeck P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023; 11:biomedicines11041056. [PMID: 37189674 DOI: 10.3390/biomedicines11041056] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Skin wound healing is essential to health and survival. Consequently, high amounts of research effort have been put into investigating the cellular and molecular components involved in the wound healing process. The use of animal experiments has contributed greatly to the knowledge of wound healing, skin diseases, and the exploration of treatment options. However, in addition to ethical concerns, anatomical and physiological inter-species differences often influence the translatability of animal-based studies. Human in vitro skin models, which include essential cellular and structural components for wound healing analyses, would improve the translatability of results and reduce animal experiments during the preclinical evaluation of novel therapy approaches. In this review, we summarize in vitro approaches, which are used to study wound healing as well as wound healing-pathologies such as chronic wounds, keloids, and hypertrophic scars in a human setting.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna-Lisa Pignet
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Marlies Schellnegger
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Sebastian P Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Judith C J Holzer-Geissler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
9
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
10
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
11
|
Air-Pressure-Supported Application of Cultured Human Keratinocytes in a Fibrin Sealant Suspension as a Potential Clinical Tool for Large-Scale Wounds. J Clin Med 2022; 11:jcm11175032. [PMID: 36078961 PMCID: PMC9456662 DOI: 10.3390/jcm11175032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of large-scale skin wounds remains a therapeutic challenge. In most cases there is not enough autologous material available for full coverage. Cultured epithelial autografts are efficient in restoring the lost epidermal cover; however, they have some disadvantages, such as difficult application and protracted cell cultivation periods. Transplanting a sprayed keratinocyte suspension in fibrin sealant as biological carrier is an option to overcome those disadvantages. Here, we studied different seeding techniques regarding their applicability and advantages on cell survival, attachment, and outgrowth in vitro and thereby improve the cell transfer to the wound bed. Human primary keratinocytes were suspended in a fibrin sealant. WST-8 assay was used to evaluate the vitality for 7 days. Furthermore, the cells were labeled with CellTracker™ CM-Di-I and stained with a life/dead staining. Cell morphology, shape, and distribution were microscopically analyzed. There was a significant increase in vitality while cultivating the cells in fibrin. Sprayed cells were considerably more homogenously distributed. Sprayed cells reached the confluent state earlier than dripped cells. There was no difference in the vitality and morphology in both groups over the observation period. These findings indicate that the sprayed keratinocytes are superior to the application of the cells as droplets. The sprayed application may offer a promising therapeutic option in the treatment of large chronic wounds.
Collapse
|
12
|
Smith CJ, Parkinson EK, Yang J, Pratten J, O'Toole EA, Caley MP, Braun KM. Investigating wound healing characteristics of gingival and skin keratinocytes in organotypic cultures. J Dent 2022; 125:104251. [PMID: 35961474 DOI: 10.1016/j.jdent.2022.104251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVES The gingiva heals at an accelerated rate with reduced scarring when compared to skin. Potential well-studied factors include immune cell number, angiogenesis disparities and fibroblast gene expression. Differential keratinocyte gene expression, however, remains relatively understudied. This study explored the contrasting healing efficiencies of gingival and skin keratinocytes, alongside their differential gene expression patterns. METHODS 3D organotypic culture models of human gingiva and skin were developed using temporarily immortalised primary keratinocytes. Models were wounded for visualisation of re-epithelialisation and analysis of keratinocyte migration to close the wound gap. Concurrently, differentially expressed genes between primary gingival and skin keratinocytes were identified, validated, and functionally assessed. RESULTS Characterisation of the 3D cultures of gingiva and skin showed differentiation markers that recapitulated organisation of the corresponding in vivo tissue. Upon wounding, gingival models displayed a significantly higher efficiency in re-epithelialisation and stratification versus skin, repopulating the wound gap within 24 hours. This difference was likely due to distinct patterns of migration, with gingival cells demonstrating a form of sheet migration, in contrast to skin, where the leading edge was typically 1-2 cells thick. A candidate approach was used to identify several genes that were differentially expressed between gingival and skin keratinocytes. Knockdown of PITX1 resulted in reduced migration capacity of gingival cells. CONCLUSION Gingival keratinocytes retain in vivo superior wound healing capabilities in in vitro 2D and 3D environments. Intrinsic gene expression differences could result in gingival cells being 'primed' for healing and play a role in faster wound resolution. CLINICAL SIGNIFICANCE STATEMENT The successful development of organotypic models, that recapitulate re-epithelialisation, will underpin further studies to analyse the oral response to wound stimuli, and potential therapeutic interventions, in an in vitro environment.
Collapse
Affiliation(s)
- Chris J Smith
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Eric K Parkinson
- Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, E1 2AT
| | | | | | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Matthew P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK.
| |
Collapse
|
13
|
Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C. Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol 2022; 101:151253. [PMID: 35785635 DOI: 10.1016/j.ejcb.2022.151253] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell-ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell-ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
14
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
15
|
Salamonsen LA. Menstrual Fluid Factors Mediate Endometrial Repair. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:779979. [PMID: 36304016 PMCID: PMC9580638 DOI: 10.3389/frph.2021.779979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation is a process whereby the outer functionalis layer of the endometrium is shed each month in response to falling progesterone and estrogen levels in a non-conception cycle. Simultaneously with the tissue breakdown, the surface is re-epithelialized, protecting the wound from infection. Once menstruation is complete and estrogen levels start to rise, regeneration progresses throughout the proliferative phase of the cycle, to fully restore endometrial thickness. Endometrial repair is unique compared to tissue repair elsewhere in the adult, in that it is rapid, scar-free and occurs around 400 times during each modern woman's reproductive life. The shedding tissue and that undergoing repair is bathed in menstrual fluid, which contains live cells, cellular debris, fragments of extracellular matrix, activated leukocytes and their products, soluble cellular components and extracellular vesicles. Proteomic and other analyses have revealed some detail of these components. Menstrual fluid, along with a number of individual proteins enhances epithelial cell migration to cover the wound. This is shown in endometrial epithelial and keratinocyte cell culture models, in an ex vivo decellularized skin model and in pig wounds in vivo. Thus, the microenvironment provided by menstrual fluid, is likely responsible for the unique rapid and scar-free repair of this remarkable tissue. Insight gained from analysis of this fluid is likely to be of value not only for treating endometrial bleeding problems but also in providing potential new therapies for poorly repairing wounds such as those seen in the aged and in diabetics.
Collapse
|
16
|
Chen X, Lungova V, Zhang H, Mohanty C, Kendziorski C, Thibeault SL. Novel immortalized human vocal fold epithelial cell line: In vitro tool for mucosal biology. FASEB J 2021; 35:e21243. [PMID: 33428261 PMCID: PMC7839467 DOI: 10.1096/fj.202001423r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Study of vocal fold (VF) mucosal biology requires essential human vocal fold epithelial cell (hVFE) lines for use in appropriate model systems. We steadily transfected a retroviral construct containing human telomerase reverse transcriptase (hTERT) into primary normal hVFE to establish a continuously replicating hVFE cell line. Immortalized hVFE across passages have cobblestone morphology, express epithelial markers cytokeratin 4, 13 and 14, induced hTERT gene and protein expression, have similar RNAseq profiling, and can continuously grow for more than 8 months. DNA fingerprinting and karyotype analysis demonstrated that immortalized hVFE were consistent with the presence of a single cell line. Validation of the hVFE, in a three‐dimensional in vitro VF mucosal construct revealed a multilayered epithelial structure with VF epithelial cell markers. Wound scratch assay revealed higher migration capability of the immortalized hVFE on the surface of collagen‐fibronectin and collagen gel containing human vocal fold fibroblasts (hVFF). Collectively, our report demonstrates the first immortalized hVFE from true VFs providing a novel and invaluable tool for the study of epithelial cell‐fibroblast interactions that dictate disease and health of this specialized tissue.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Haiyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Chitrasen Mohanty
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, Madison, WI, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
17
|
Elastic Bioresorbable Polymeric Capsules for Osmosis-Driven Delayed Burst Delivery of Vaccines. Pharmaceutics 2021; 13:pharmaceutics13030434. [PMID: 33807062 PMCID: PMC8004877 DOI: 10.3390/pharmaceutics13030434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Single-administration vaccine delivery systems are intended to improve the efficiency and efficacy of immunisation programs in both human and veterinary medicine. In this work, an osmotically triggered delayed delivery device was developed that was able to release a payload after a delay of approximately 21 days, in a consistent and reproducible manner. The device was constructed out of a flexible poly(ε-caprolactone) photo-cured network fabricated into a hollow tubular shape, which expelled approximately 10% of its total payload within 2 days after bursting. Characterisation of the factors that control the delay of release demonstrated that it was advantageous to adjust material permeability and device wall thickness over manipulation of the osmogent concentration in order to maintain reproducibility in burst delay times. The photo-cured poly(ε-caprolactone) network was shown to be fully degradable in vitro, and there was no evidence of cytotoxicity after 11 days of direct contact with primary dermal fibroblasts. This study provides strong evidence to support further development of flexible biomaterials with the aim of continuing improvement of the device burst characteristics in order to provide the greatest chance of the devices succeeding with in vivo vaccine booster delivery.
Collapse
|
18
|
Letsiou S. Tracing skin aging process: a mini- review of in vitro approaches. Biogerontology 2021; 22:261-272. [PMID: 33721158 DOI: 10.1007/s10522-021-09916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Skin is a rather complex, yet useful organ of our body. Besides, skin aging is a complicated process that gains a growing interest as mediates many molecular processes in our body. Thus, an efficient skin model is important to understand skin aging function as well as to develop an effective innovative product for skin aging treatment. In this mini review, we present in vitro methods for assessments of skin aging in an attempt to pinpoint basic molecular mechanisms behind this process achieving both a better understanding of aging function and an effective evaluation of potential products or ingredients that counteract aging. Specifically, this study presents in vitro assays such as 2D or 3D skin models, to evaluate skin aging-related processes such as skin moisturization, photoaging, wound healing, menopause, and skin microbiome as novel efforts in the designing of efficacy assessments in the development of skincare products.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| |
Collapse
|
19
|
Park JR, Bolle ECL, Santos Cavalcanti AD, Podevyn A, Van Guyse JFR, Forget A, Hoogenboom R, Dargaville TR. Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. Biointerphases 2021; 16:011001. [PMID: 33401918 DOI: 10.1116/6.0000630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Eleonore C L Bolle
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Amanda Dos Santos Cavalcanti
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-St. 31, Freiburg, 79104, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
20
|
Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020; 10:E1607. [PMID: 33260936 PMCID: PMC7760980 DOI: 10.3390/biom10121607] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.
Collapse
Affiliation(s)
- Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
- Roger Gallet SAS, 4 rue Euler, 75008 Paris, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
| |
Collapse
|
21
|
Chen Q, Deng X, Qiang L, Yao M, Guan L, Xie N, Zhao D, Ma J, Ma L, Wu Y, Yan X. Investigating the effects of walnut ointment on non-healing burn wounds. Burns 2020; 47:455-465. [PMID: 32736884 DOI: 10.1016/j.burns.2020.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Effective treatments for non-healing burn wounds are an unmet need for 95% of burn sufferers. Approaches currently available to treat non-healing burn wounds are not satisfactory due to undesirable side-effects or expense. The anti-oxidation and antibacterial activities of walnuts are recommended for treating chronic diseases. Walnut ointment has been developed and successfully applied to treat non-healing burn wounds in our hospital for decades. We report herein a detailed retrospective case review examining patients' response to the walnut ointment. The walnut ointment has shortened healing time of non-healing burn wounds and improved clinical outcomes. In order to investigate the mechanism of action, walnut ointment has been applied on wounds of porcine full-thickness burn wound models. Histological and immunohistochemical analysis indicated our walnut ointment supports wound healing through promoting keratinocyte proliferation and differentiation. Taken together, we recommend the walnut ointment offers an effective and economical treatment for patients presenting with non-healing burn wounds.
Collapse
Affiliation(s)
- Qian Chen
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, Xinyang Central Hospital, Henan, China
| | - Xingwang Deng
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, The First People's Hospital of Shizuishan, Ningxia, China
| | - Lijuan Qiang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ming Yao
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lifeng Guan
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Clinical Medicine Research Center, National Health Commission, Beijing National Health Hospital, Beijing, China
| | - Dan Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jiaxiang Ma
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinsheng Wu
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xie Yan
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
22
|
Bolle ECL, Verderosa AD, Dhouib R, Parker TJ, Fraser JF, Dargaville TR, Totsika M. An in vitro Reconstructed Human Skin Equivalent Model to Study the Role of Skin Integration Around Percutaneous Devices Against Bacterial Infection. Front Microbiol 2020; 11:670. [PMID: 32477277 PMCID: PMC7240036 DOI: 10.3389/fmicb.2020.00670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
Percutaneous devices are a key technology in clinical practice, used to connect internal organs to external medical devices. Examples include prosthesis, catheters and electrical drivelines. Percutaneous devices breach the skin's natural barrier and create an entry point for pathogens, making device infections a widespread problem. Modification of the percutaneous implant surface to increase skin integration with the aim to reduce subsequent infection is attracting a great deal of attention. While novel surfaces have been tested in various in vitro models used to study skin integration around percutaneous devices, no skin model has been reported, for the study of bacterial infection around percutaneous devices. Here, we report the establishment of an in vitro human skin equivalent model for driveline infections caused by Staphylococcus aureus, the most common cause of driveline-related infections. Three types of mock drivelines manufactured using melt electrowriting (smooth or porous un-seeded and porous pre-seeded with human fibroblasts) were implanted in human skin constructs and challenged with S. aureus. Our results show a high and stable load of S. aureus in association with the skin surface and no signs of S. aureus-induced tissue damage. Furthermore, our results demonstrate that bacterial migration along the driveline surface occurs in micro-gaps caused by insufficient skin integration between the driveline and the surrounding skin consistent with clinical reports from explanted patient drivelines. Thus, the human skin-driveline infection model presented here provides a clinically-relevant and versatile experimental platform for testing novel device surfaces and infection therapeutics.
Collapse
Affiliation(s)
- Eleonore C. L. Bolle
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rabeb Dhouib
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony J. Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John F. Fraser
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tim R. Dargaville
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Poh SE, Goh JPZ, Fan C, Chua W, Gan SQ, Lim PLK, Sharma B, Leavesley DI, Dawson TL, Li H. Identification of Malassezia furfur Secreted Aspartyl Protease 1 (MfSAP1) and Its Role in Extracellular Matrix Degradation. Front Cell Infect Microbiol 2020; 10:148. [PMID: 32328468 PMCID: PMC7161080 DOI: 10.3389/fcimb.2020.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Malassezia is the most abundant eukaryotic microbial genus on human skin. Similar to many human-residing fungi, Malassezia has high metabolic potential and secretes a plethora of hydrolytic enzymes that can potentially modify and structure the external skin environment. Here we show that the dominant secreted Malassezia protease isolated from cultured Malassezia furfur is an aspartyl protease that is secreted and active at all phases of culture growth. We observed that this protease, herein named as MfSAP1 (M. furfur secreted aspartyl protease 1) has a broader substrate cleavage profile and higher catalytic efficiency than the previously reported protease homolog in Malassezia globosa. We demonstrate that MfSAP1 is capable of degrading a wide range of human skin associated extracellular matrix (ECM) proteins and ECM isolated directly from keratinocytes and fibroblasts. Using a 3-D wound model with primary keratinocytes grown on human de-epidermized dermis, we show that MfSAP1 protease can potentially interfere with wound re-epithelization in an acute wound model. Taken together, our work demonstrates that Malassezia proteases have host-associated substrates and play important roles in cutaneous wound healing.
Collapse
Affiliation(s)
- Si En Poh
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| | - Joleen P Z Goh
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Wisely Chua
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| | - Shi Qi Gan
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Priscilla Lay Keng Lim
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Bhavya Sharma
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - David I Leavesley
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,School of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Li
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| |
Collapse
|
24
|
Fractional CO 2 laser micropatterning of cell-seeded electrospun collagen scaffolds enables rete ridge formation in 3D engineered skin. Acta Biomater 2020; 102:287-297. [PMID: 31805407 DOI: 10.1016/j.actbio.2019.11.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Rete ridges are interdigitations of the epidermis and dermis of the skin that play multiple roles in homeostasis, including enhancing adhesion via increased contact area and acting as niches for epidermal stem cells. These structures, however, are generally absent from engineered skin (ES). To develop ES with rete ridges, human fibroblast-seeded dermal templates were treated with a fractional CO2 laser, creating consistently spaced wells at the surface. Constructs with and without laser treatment were seeded with keratinocytes, cultured for 10 days, and grafted onto athymic mice for four weeks. Rete-ridge like structures were observed in the laser-patterned (ridged) samples at the time of grafting and were maintained in vivo. Ridged grafts displayed improved barrier function over non-lasered (flat) grafts at the time of grafting and 4 weeks post-grafting. Presence of ridges in vivo corresponded with increased keratinocyte proliferation, epidermal area, and basement membrane length. These results suggest that this method can be utilized to develop engineered skin grafts with rete ridges, that the ridge pattern is stable for at least 4 weeks post-grafting, and that the presence of these ridges enhances epidermal proliferation and establishment of barrier function. STATEMENT OF SIGNIFICANCE: Rete ridges play a role in epidermal homeostasis, enhance epidermal-dermal adhesion and act as niches for epidermal stem cells. Despite their role in skin function, these structures are not directly engineered into synthetic skin. A new method to rapidly and reproducibly generate rete ridges in engineered skin was developed using fractional CO2 laser ablation. The resulting engineered rete ridges aided in the establishment of epidermal barrier function, basement membrane protein deposition and epidermal regeneration. This new model of engineered skin with rete ridges could be utilized as an in vitro system to study epidermal stem cells, a testbed for pharmaceutical evaluation or translated for clinical use in full-thickness wound repair.
Collapse
|
25
|
Park JR, Sarwat M, Bolle ECL, de Laat MA, Van Guyse JFR, Podevyn A, Hoogenboom R, Dargaville TR. Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00602e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A shift in cloud point temperatures of poly(2-oxazoline)/ACE inhibitor polymer drug conjugates occurs on release of the drug.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Mariah Sarwat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Eleonore C. L. Bolle
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Melody A. de Laat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Annelore Podevyn
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Tim R. Dargaville
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| |
Collapse
|
26
|
Park JR, Van Guyse JF, Podevyn A, Bolle EC, Bock N, Linde E, Celina M, Hoogenboom R, Dargaville TR. Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Bolle ECL, Bartnikowski N, Haridas P, Parker TJ, Fraser JF, Gregory SD, Dargaville TR. Improving skin integration around long-term percutaneous devices using fibrous scaffolds in a reconstructed human skin equivalent model. J Biomed Mater Res B Appl Biomater 2019; 108:738-749. [PMID: 31169980 DOI: 10.1002/jbm.b.34428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
The interface between synthetic percutaneous devices and skin is a common area for bacterial infection, which may ultimately result in failure of the device. Better integration of percutaneous devices with skin may help reduce infection rates due to the creation of a dermal seal. However, the mismatch in material and chemical properties of devices and skin presents a challenge for closing the dermal gap at the skin-device interface. Here, we have used a tissue engineering approach to tissue integration by creating a highly fibrous poly(ε-caprolactone) scaffold using melt electrowriting and seeding this with dermal fibroblasts, followed by maturation and insertion into a full-thickness defect made in an ex vivo skin model. The integration of seeded scaffolds was compared with controls including a non-seeded scaffold and a polymer tube with a smooth surface. Dermal fibroblast inclusion in the scaffold and epidermal upgrowth versus downgrowth/marsupialization around the device were used as measures of integration. Based on these measures, almost all pre-seeded scaffolds performed better than both the non-seeded scaffolds and smooth tubes. The hypothesis is that the fibroblasts act as a barrier to epithelial downward migration, and provide healthy tissue for nascent epidermal development.
Collapse
Affiliation(s)
- Eleonore C L Bolle
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Nicole Bartnikowski
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Parvathi Haridas
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - John F Fraser
- Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tim R Dargaville
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Iyer K, Chen Z, Ganapa T, Wu BM, Tawil B, Linsley CS. Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts. Tissue Eng Regen Med 2018; 15:721-733. [PMID: 30603591 DOI: 10.1007/s13770-018-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
Background Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. Methods Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the alamarBlue® assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. Results Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. Conclusion This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.
Collapse
Affiliation(s)
- Kritika Iyer
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Zhuo Chen
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Teja Ganapa
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Benjamin M Wu
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA.,2Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Bill Tawil
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Chase S Linsley
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| |
Collapse
|
29
|
Savoji H, Godau B, Hassani MS, Akbari M. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Front Bioeng Biotechnol 2018; 6:86. [PMID: 30094235 PMCID: PMC6070628 DOI: 10.3389/fbioe.2018.00086] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tremendous progress has been made over the past few decades to develop skin substitutes for the management of acute and chronic wounds. With the advent of tissue engineering and the ability to combine advanced manufacturing technologies with biomaterials and cell culture systems, more biomimetic tissue constructs have been emerged. Synthetic and natural biomaterials are the main constituents of these skin-like constructs, which play a significant role in tissue grafting, the body's immune response, and the healing process. The act of implanting biomaterials into the human body is subject to the body's immune response, and the complex nature of the immune system involves many different cell types and biological processes that will ultimately determine the success of a skin graft. As such, a large body of recent studies has been focused on the evaluation of the performance and risk assessment of these substitutes. This review summarizes the past and present advances in in vitro, in vivo and clinical applications of tissue-engineered skins. We discuss the role of immunomodulatory biomaterials and biomaterials risk assessment in skin tissue engineering. We will finally offer a roadmap for regulating tissue engineered skin substitutes.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Evans J, Infusini G, Mcgovern J, Cuttle L, Webb A, Nebl T, Milla L, Kimble R, Kempf M, Andrews CJ, Leavesley D, Salamonsen LA. Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair. FASEB J 2018; 33:584-605. [DOI: 10.1096/fj.201800086r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jemma Evans
- The Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational MedicineMonash University Clayton Victoria Australia
| | | | - Jacqui Mcgovern
- Institute of Health and Biomedical Innovation Brisbane Queensland Australia
| | - Leila Cuttle
- Centre for Children's Burns and Trauma ResearchSchool of Biomedical SciencesInstitute of Health and Biomedical InnovationCentre for Children's Health ResearchQueensland University of Technology Brisbane Queensland Australia
| | - Andrew Webb
- Walter and Eliza Hall Institute Parkville Victoria Australia
| | - Thomas Nebl
- Walter and Eliza Hall Institute Parkville Victoria Australia
| | - Liz Milla
- Walter and Eliza Hall Institute Parkville Victoria Australia
| | - Roy Kimble
- Centre for Children's Burns and Trauma ResearchCentre for Children's Health ResearchThe University of Queensland South Brisbane Queensland Australia
| | - Margit Kempf
- Centre for Children's Burns and Trauma ResearchCentre for Children's Health ResearchThe University of Queensland South Brisbane Queensland Australia
| | - Christine J. Andrews
- Centre for Children's Burns and Trauma ResearchCentre for Children's Health ResearchThe University of Queensland South Brisbane Queensland Australia
| | - David Leavesley
- Institute of Health and Biomedical Innovation Brisbane Queensland Australia
- Skin Research Institute of Singapore Singapore
| | - Lois A. Salamonsen
- The Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational MedicineMonash University Clayton Victoria Australia
| |
Collapse
|
31
|
Pupovac A, Senturk B, Griffoni C, Maniura-Weber K, Rottmar M, McArthur SL. Toward Immunocompetent 3D Skin Models. Adv Healthc Mater 2018. [PMID: 29542274 DOI: 10.1002/adhm.201701405] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D human skin models provide a platform for toxicity testing, biomaterials evaluation, and investigation of fundamental biological processes. However, the majority of current in vitro models lack an inflammatory system, vasculature, and other characteristics of native skin, indicating scope for more physiologically complex models. Looking at the immune system, there are a variety of cells that could be integrated to create novel skin models, but to do this effectively it is also necessary to understand the interface between skin biology and tissue engineering as well as the different roles the immune system plays in specific health and disease states. Here, a progress report on skin immunity and current immunocompetent skin models with a focus on construction methods is presented; scaffold and cell choice as well as the requirements of physiologically relevant models are elaborated. The wide range of technological and fundamental challenges that need to be addressed to successfully generate immunocompetent skin models and the steps currently being made globally by researchers as they develop new models are explored. Induced pluripotent stem cells, microfluidic platforms to control the model environment, and new real-time monitoring techniques capable of probing biochemical processes within the models are discussed.
Collapse
Affiliation(s)
- Aleta Pupovac
- Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria 3122 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO); Probing Biosystems Future Science Platform and Manufacturing; Clayton Victoria 3168 Australia
| | - Berna Senturk
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Chiara Griffoni
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Sally L. McArthur
- Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria 3122 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO); Probing Biosystems Future Science Platform and Manufacturing; Clayton Victoria 3168 Australia
| |
Collapse
|
32
|
Khan TK, Wender PA, Alkon DL. Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents. J Cell Physiol 2018; 233:1523-1534. [PMID: 28590053 PMCID: PMC5673504 DOI: 10.1002/jcp.26043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Abstract
Skin health is associated with the day-to-day activity of fibroblasts. The primary function of fibroblasts is to synthesize structural proteins, such as collagen, extracellular matrix proteins, and other proteins that support the structural integrity of the skin and are associated with younger, firmer, and more elastic skin that is better able to resist and recover from injury. At sub-nanomolar concentrations (0.03-0.3 nM), bryostatin-1 and its synthetic analog, picolog (0.1-10 nM) sustained the survival and activation of human dermal fibroblasts cultured under the stressful condition of prolonged serum deprivation. Bryostatin-1 treatment stabilized human skin equivalents (HSEs), a bioengineered combination of primary human skin cells (keratinocytes and dermal fibroblasts) on an extracellular matrix composed of mainly collagen. Fibroblasts activated by bryostatin-1 protected the structural integrity of HSEs. Bryostatin-1 and picolog prolonged activation of Erk in fibroblasts to promote cell survival. Chronic stress promotes the progression of apoptosis. Dermal fibroblasts constitutively express all components of Fas associated apoptosis, including caspase-8, an initiator enzyme of apoptosis. Prolong bryostatin-1 treatment reduced apoptosis by decreasing caspase-8 and protected dermal fibroblasts. Our data suggest that bryostatin-1 and picolog could be useful in anti-aging skincare, and could have applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative diseases, Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, WV 26506, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel L. Alkon
- Neurotrope BioScience, 205 East 42nd Street, 16th Floor, New York, NY 10017, USA
| |
Collapse
|
33
|
Dugdale B, Kato M, Deo P, Plan M, Harrison M, Lloyd R, Walsh T, Harding R, Dale J. Production of human vitronectin in Nicotiana benthamiana using the INPACT hyperexpression platform. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:394-403. [PMID: 28640945 PMCID: PMC5787849 DOI: 10.1111/pbi.12779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 05/29/2023]
Abstract
Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 μg/cm2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications.
Collapse
Affiliation(s)
- Benjamin Dugdale
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Maiko Kato
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Pradeep Deo
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Manuel Plan
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
- Present address:
Metabolomics Australia (UQ Node)Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Mark Harrison
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Robyn Lloyd
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Terry Walsh
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Robert Harding
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - James Dale
- Centre for Tropical Crops and BiocommoditiesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| |
Collapse
|
34
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Haridas P, McGovern JA, McElwain SD, Simpson MJ. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model. PeerJ 2017; 5:e3754. [PMID: 28890854 PMCID: PMC5590551 DOI: 10.7717/peerj.3754] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. METHODS 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. RESULTS Both HSE and MSE models are similar to native skin in vivo, with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE invade deeper into the tissues. Interestingly, both the WM35 and SK-MEL-28 melanoma cells lead to a breakdown of the basement membrane and eventually enter the dermis. However, these two cell lines invade at different rates, with the SK-MEL-28 melanoma cells invading faster than the WM35 cells. DISCUSSION The MSE and HSE models are a reliable platform for studying melanoma invasion in a 3D tissue that is similar to native human skin. Interestingly, we find that the WM35 cell line, that is thought to be associated with radial spreading only, is able to invade into the dermis. The vertical invasion of melanoma cells into the dermal region appears to be associated with a localised disruption of the basement membrane. Presenting our results in terms of time course data, along with images and quantitative measurements of the depth of invasion extends previous 3D work that has often been reported without these details.
Collapse
Affiliation(s)
- Parvathi Haridas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jacqui A. McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sean D.L. McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0003-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Lombardi B, Casale C, Imparato G, Urciuolo F, Netti PA. Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent. Adv Healthc Mater 2017; 6. [PMID: 28407433 DOI: 10.1002/adhm.201601422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing.
Collapse
Affiliation(s)
- Bernadette Lombardi
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| |
Collapse
|
38
|
Haridas P, Penington CJ, McGovern JA, McElwain DLS, Simpson MJ. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion. J Theor Biol 2017; 423:13-25. [PMID: 28433392 DOI: 10.1016/j.jtbi.2017.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects.
Collapse
Affiliation(s)
- Parvathi Haridas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia
| | | | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia
| | - D L Sean McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia
| | - Matthew J Simpson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia.
| |
Collapse
|
39
|
Chen Q, Zhou H, Yang Y, Chi M, Xie N, Zhang H, Deng X, Leavesley D, Shi H, Xie Y. Investigating the potential of Oxymatrine as a psoriasis therapy. Chem Biol Interact 2017; 271:59-66. [PMID: 28450041 DOI: 10.1016/j.cbi.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease, stubbornly intractable, with substantial consequences for patient physical and mental welfare. Approaches currently available to treat psoriasis are not satisfactory due to undesirable side-effects or expense. Psoriasis is characterized by hyperproliferation and inflammation. Oxymatrine, an active component extracted from Sophora flavescens, has been demonstrated to possess anti-proliferation, anti-inflammatory, anti-tumorigenic, immune regulation and pro-apoptotic properties. This investigation presents a detailed retrospective review examining the effect of Oxymatrine on psoriasis and investigates the mechanisms underlying patient responses to Oxymatrine. We confirm that Oxymatrine administration significantly reduced the Psoriasis Area Severity Index score, with high efficacy compared to the control group. In addition, we have found that Oxymatrine significantly inhibits the viability, proliferation and differentiation of human keratinocyte in vitro. Immunohistochemical analysis indicates Oxymatrine significantly suppresses the expression of Pan-Cytokeratin, p63 and keratin 10. The results indicate that the suppression of p63 expression may lead to the anti-proliferation effect of Oxymatrine on human skin keratinocytes. Oxymatrine does not affect the formation of basement membrane, which is very important to maintain the normal function of human skin keratinocytes. In summary, Oxymatrine offers an effective, economical, and safe treatment for patients presenting with intractable psoriasis vulgaris.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Medical University, Ningxia, China
| | - Hui Zhou
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinxue Yang
- President of General Hospital of Ningxia Medical University, Ningxia, China
| | - Mingwei Chi
- Medical Affairs Office, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hong Zhang
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - David Leavesley
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; Tissue Technologies, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Lee Kong Chain School of Medicine, Nanyang Technological University, Singapore
| | - Huijuan Shi
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
40
|
Ud-Din S, Bayat A. Non-animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair Regen 2017; 25:164-176. [DOI: 10.1111/wrr.12513] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research; University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research; University of Manchester; Manchester United Kingdom
- Bioengineering Research Group, School of Materials, Faculty of Engineering & Physical Sciences; The University of Manchester; Manchester United Kingdom
| |
Collapse
|
41
|
Koehler J, Wallmeyer L, Hedtrich S, Goepferich AM, Brandl FP. pH-Modulating Poly(ethylene glycol)/Alginate Hydrogel Dressings for the Treatment of Chronic Wounds. Macromol Biosci 2016; 17. [PMID: 27995736 DOI: 10.1002/mabi.201600369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/25/2016] [Indexed: 12/20/2022]
Abstract
The development of chronic wounds has been frequently associated with alkaline pH values. The application of pH-modulating wound dressings can, therefore, be a promising treatment option to promote normal wound healing. This study reports on the development and characterization of acidic hydrogel dressings based on interpenetrating poly(ethylene glycol) diacrylate/acrylic acid/alginate networks. The incorporation of ionizable carboxylic acid groups results in high liquid uptake up to 500%. The combination of two separate polymer networks significantly improves the tensile and compressive stability. In a 2D cell migration assay, the application of hydrogels (0% to 1.5% acrylic acid) results in complete "wound" closure; hydrogels with 0.25% acrylic acid significantly increase the cell migration velocity to 19.8 ± 1.9 µm h-1 . The most promising formulation (hydrogels with 0.25% acrylic acid) is tested on 3D human skin constructs, increasing keratinocyte ingrowth into the wound by 164%.
Collapse
Affiliation(s)
- Julia Koehler
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Leonie Wallmeyer
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ferdinand P Brandl
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
42
|
Naves L, Dhand C, Almeida L, Rajamani L, Ramakrishna S. In vitro skin models and tissue engineering protocols for skin graft applications. Essays Biochem 2016; 60:357-369. [DOI: 10.1042/ebc20160043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In this review, we present a brief introduction of the skin structure, a concise compilation of skin-related disorders, and a thorough discussion of different in vitro skin models, artificial skin substitutes, skin grafts, and dermal tissue engineering protocols. The advantages of the development of in vitro skin disorder models, such as UV radiation and the prototype model, melanoma model, wound healing model, psoriasis model, and full-thickness model are also discussed. Different types of skin grafts including allografts, autografts, allogeneic, and xenogeneic are described in detail with their associated applications. We also discuss different tissue engineering protocols for the design of various types of skin substitutes and their commercial outcomes. Brief highlights are given of the new generation three-dimensional printed scaffolds for tissue regeneration applications.
Collapse
Affiliation(s)
- Lucas B. Naves
- CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Luis Almeida
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
| | | | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
43
|
Boone M, Draye JP, Verween G, Pirnay JP, Verbeken G, De Vos D, Rose T, Jennes S, Jemec GBE, Del Marmol V. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography. Exp Dermatol 2016; 23:725-30. [PMID: 25047067 DOI: 10.1111/exd.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment, the epidermis was not removed. In conclusion, HD-OCT imaging permits real-time 3-D visualization of the impact of selected agents on human skin allografts.
Collapse
Affiliation(s)
- Marc Boone
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
In vitro and ex vivo analysis of hyaluronan supplementation of Integra® dermal template on human dermal fibroblasts and keratinocytes. J Appl Biomater Funct Mater 2016; 14:e9-18. [PMID: 26689817 DOI: 10.5301/jabfm.5000259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Widespread application of collagen-glycosaminoglycan dermal templates in the treatment of cutaneous defects has identified the interval between initial engraftment and skin graft application as important for improvement. The aim of this study was to evaluate the effect of hyaluronan supplementation of Integra® dermal template on human dermal fibroblasts and keratinocytes in both in vitro and ex vivo models. METHODS This study utilized in vitro and ex vivo cell culture techniques to investigate supplementing Integra® Regeneration Template with hyaluronan (HA), as a strategy to decrease this interval. In vitro, Integra® was HA supplemented at 0.15, 1, 1.5 and 2 mg/mL-1. Primary human dermal fibroblast (PHDF) and keratinocyte proliferation, PHDF viability, migration and HA-induced signal transduction (phosphor-MAPK Array) were assessed. Ex vivo, wound models (wound diameter 4 mm) were created within 8 mm skin biopsies. Wounds were filled with Integra® or HA supplemented Integra®. Re-epithelialization was compared through hematoxylin and eosin-stained cross-sections at 7, 14 and 21 days in culture. Model viability was assessed through lactate dehydrogenase (LDH) assays. RESULTS In vitro, PHDF and keratinocyte proliferation were enhanced significantly (p<0.001) when supplemented with HA. S-Phase and G2/M PHDFs in HA supplemented scaffolds increased. PHDF viability was enhanced to 72 hours culture with 1.5 mg/mL-1 HA (p = 0.016). PHDF migration was maximally enhanced at 1 mg/mL-1 and 1.5 mg/mL-1, whilst increased levels of phosphorylated Erk/MAPK proteins indicated increased metabolic activity. In ex vivo models, HA supplementation accelerated re-epithelialization at all concentrations. This ex vivo model provides a robust model for preclinical assessment of skin substitutes. CONCLUSIONS HA supplementation to Integra® demonstrates increased in vitro growth, viability and migration. Whilst ex vivo data suggest HA supplementation of Integra® may increase rapidity of wound closure.
Collapse
|
45
|
Fatemi SA, Jafarian-Dehkordi A, Hajhashemi V, Asilian-Mahabadi A. Biomimetic proopiomelanocortin suppresses capsaicin-induced sensory irritation in humans. Res Pharm Sci 2016; 11:484-490. [PMID: 28003842 PMCID: PMC5168885 DOI: 10.4103/1735-5362.194890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sensitive skin is a frequently mentioned cosmetic complaint. Addition of a biomimetic of neuromediator has recently appeared as a promising new way to cure skin care product problems. This study was aimed to assess the inhibitory effect of a biomimetic lipopeptide derived from proopiomelanocortin (bPOMC) on capsaicin-induced sensory irritation in human volunteers and also to compare its protective effect with that of the well-known anti irritant strontium chloride. The effect of each test compound was studied on 28 selected healthy volunteers with sensitive skin in accordance with a double-blind vehicle-controlled protocol. From day 1 to day 13 each group was applied the test compound (bPOMC or strontium chloride) to one wing of the nose and the corresponding placebo (vehicle) to the other side twice daily. On days 0 and 14, acute skin irritation was induced by capsaicin solution and quantified using clinical stinging test assessments. Following the application of capsaicin solution, sensory irritation was evaluated using a 4-point numeric scale. The sensations perceived before and after treatment (on days 0 and 14) was calculated for the two zones (test materials and vehicle). Ultimately the percentage of variation between each sample and the placebo and also the inhibitory effect of bPOMC compared to that of strontium chloride were reported. Clinical results showed that after two weeks treatment, the levels of skin comfort reported in the group treated with bPOMC were significantly higher than those obtained in the placebo group and the inhibitory effect of bPOMC was about 47% higher than that of strontium chloride. The results of the present study support the hypothesis that biomimetic peptides may be effective on sensitive skin.
Collapse
Affiliation(s)
- Sayed Ali Fatemi
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Abbas Jafarian-Dehkordi
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Asilian-Mahabadi
- Department of Dermatology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
46
|
An Y, Ma C, Tian C, Zhao L, Pang L, Tu Q, Xu J, Wang J. On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing. BIOMICROFLUIDICS 2015; 9:064112. [PMID: 26649132 PMCID: PMC4670448 DOI: 10.1063/1.4936927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Wound healing is an essential physiological process for tissue homeostasis, involving multiple types of cells, extracellular matrices, and growth factor/chemokine interactions. Many in vitro studies have investigated the interactions between cues mentioned above; however, most of them only focused on a single factor. In the present study, we design a wound healing device to recapitulate in vivo complex microenvironments and heterogeneous cell situations to investigate how three types of physiologically related cells interact with their microenvironments around and with each other during a wound healing process. Briefly, a microfluidic device with a micropillar substrate, where diameter and interspacing can be tuned to mimic the topographical features of the 3D extracellular matrix, was designed to perform positional cell loading on the micropillar substrate, co-culture of three types of physiologically related cells, keratinocytes, dermal fibroblasts, and human umbilical vein endothelial cells, as well as an investigation of their interactions during wound healing. The result showed that cell attachment, morphology, cytoskeleton distribution, and nucleus shape were strongly affected by the micropillars, and these cells showed collaborative response to heal the wound. Taken together, these findings highlight the dynamic relationship between cells and their microenvironments. Also, this reproducible device may facilitate the in vitro investigation of numerous physiological and pathological processes such as cancer metastasis, angiogenesis, and tissue engineering.
Collapse
Affiliation(s)
| | - Chao Ma
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Chang Tian
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Zhao
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Long Pang
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Qin Tu
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Juan Xu
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | - Jinyi Wang
- Colleges of Science and Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
47
|
Hardman JA. Skin equivalents for studying the secrets of skin: from development to disease. Br J Dermatol 2015; 173:320-1. [PMID: 26346075 DOI: 10.1111/bjd.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J A Hardman
- Faculty of Medical and Human Sciences, Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, U.K.
| |
Collapse
|
48
|
Fan C, Xie Y, Dong Y, Su Y, Upton Z. Investigating the potential of Shikonin as a novel hypertrophic scar treatment. J Biomed Sci 2015; 22:70. [PMID: 26275605 PMCID: PMC4537585 DOI: 10.1186/s12929-015-0172-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022] Open
Abstract
Background Hypertrophic scarring is a highly prevalent condition clinically and results from a decreased number of apoptotic fibroblasts and over-abundant production of collagen during scar formation following wound healing. Our previous studies indicated that Shikonin, an active component extracted from Radix Arnebiae, induces apoptosis and reduces collagen production in hypertrophic scar-derived fibroblasts. In the study reported here, we further evaluate the potential use of Shikonin as a novel scar remediation therapy by examining the effects of Shikonin on both keratinocytes and fibroblasts using Transwell® co-culture techniques. The underlying mechanisms were also revealed. In addition, effects of Shikonin on the expression of cytokines in Transwell co-culture “conditioned” medium were investigated. Results Our results indicate that Shikonin preferentially inhibits cell proliferation and induces apoptosis in fibroblasts without affecting keratinocyte function. In addition, we found that the proliferation-inhibiting and apoptosis-inducing abilities of SHI might be triggered via MAPK and Bcl-2/Caspase 3 signalling pathways. Furthermore, SHI has been found to attenuate the expression of TGF-β1 in Transwell co-cultured “conditioned” medium. Conclusions The data generated from this study provides further evidence that supports the potential use of Shikonin as a novel scar remediation therapy.
Collapse
Affiliation(s)
- Chen Fan
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.
| | - Yan Xie
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia. .,Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Ying Dong
- Cancer Research Program, Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| | - Yonghua Su
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China.
| | - Zee Upton
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
49
|
Reijnders CMA, van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part A 2015; 21:2448-59. [PMID: 26135533 PMCID: PMC4554934 DOI: 10.1089/ten.tea.2015.0139] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Collapse
Affiliation(s)
| | - Amanda van Lier
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Sanne Roffel
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Duco Kramer
- 2 Department of Dermatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands .,4 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
50
|
Boone MALM, Draye JP, Verween G, Aiti A, Pirnay JP, Verbeken G, De Vos D, Rose T, Jennes S, Jemec GBE, del Marmol V. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography. Exp Dermatol 2015; 24:349-54. [DOI: 10.1111/exd.12662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Marc A. L. M. Boone
- Department of Dermatology; Hôpital Erasme; Université Libre de Bruxelles; Brussels Belgium
| | - Jean Pierre Draye
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Gunther Verween
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Annalisa Aiti
- Regional Skin Bank; Emilia Romagna and Cell Factory; Burn Center; Bufalini Hospital; Cesena Italy
| | - Jean-Paul Pirnay
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Gilbert Verbeken
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Daniel De Vos
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Thomas Rose
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Serge Jennes
- Human Cell and Tissue Banks; Laboratory for Molecular and Cellular Technology; Burn Wound Centre; Queen Astrid Military Hospital; Brussels Belgium
| | - Gregor B. E. Jemec
- Department of Dermatology; Roskilde Hospital; Health Sciences Faculty; University of Copenhagen; Roskilde Denmark
| | - Veronique del Marmol
- Department of Dermatology; Hôpital Erasme; Université Libre de Bruxelles; Brussels Belgium
| |
Collapse
|