1
|
Talebipour A, Saviz M, Vafaiee M, Faraji-Dana R. Facilitating long-term cell examinations and time-lapse recordings in cell biology research with CO 2 mini-incubators. Sci Rep 2024; 14:3418. [PMID: 38341451 PMCID: PMC10858865 DOI: 10.1038/s41598-024-52866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, microscopy has revolutionized the study of dynamic living cells. However, performing long-term live cell imaging requires stable environmental conditions such as temperature, pH, and humidity. While standard incubators have traditionally provided these conditions, other solutions, like stagetop incubators are available. To further enhance the accessibility of stable cell culture environments for live cell imaging, we developed a portable CO2 cell culture mini-incubator that can be easily adapted to any x-y inverted microscope stage, enabling long-term live cell imaging. This mini-incubator provides and maintains stable environmental conditions and supports cell viability comparable to standard incubators. Moreover, it allows for parallel experiments in the same environment, saving both time and resources. To demonstrate its functionality, different cell lines (VERO and MDA-MB-231) were cultured and evaluated using various assays, including crystal violet staining, MTT, and flow cytometry tests to assess cell adhesion, viability, and apoptosis, respectively. Time-lapse imaging was performed over an 85-h period with MDA-MB-231 cells cultured in the mini-incubator. The results indicate that this device is a viable solution for long-term imaging and can be applied in developmental biology, cell biology, and cancer biology research where long-term time-lapse recording is required.
Collapse
Affiliation(s)
- Ali Talebipour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Reza Faraji-Dana
- Center of Excellence on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Waqas M, Vierra C, Kaplan DL, Othman S. Feasibility of low field MRI and proteomics for the analysis of Tissue Engineered bone. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Kamberger R, Göbel-Guéniot K, Gerlach J, Gruschke OG, Hennig J, LeVan P, Haas C, Korvink JG. Improved method for MR microscopy of brain tissue cultured with the interface method combined with Lenz lenses. Magn Reson Imaging 2018; 52:24-32. [PMID: 29857037 DOI: 10.1016/j.mri.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022]
Abstract
MR in microscopy can non-invasively image the morphology of living tissue, which is of particular interest in studying the mammalian brain. Many studies use live animals for basic research on brain functions, disease pathogenesis, and drug development. However, in vitro systems are on the rise, due to advantages such as the absence of a blood-brain barrier, predictable pharmacokinetics, and reduced ethical restrictions. Hence, they present an inexpensive and adequate technique to answer scientific questions and to perform drug screenings. Some publications report the use of acute brain slices for MR microscopy studies, but these only permit single measurements over several hours. Repetitive MR measurements in longitudinal studies demand an MR-compatible setup which allows cultivation for several days or weeks, and hence properly functioning in vitro systems. Organotypic hippocampal slice cultures (OHSC) are a well-established and robust in vitro system which still exhibits most histological hallmarks of the hippocampal network in vivo. An MR compatible incubation platform is introduced in which OHSC are cultivated according to the interface method following Stoppini et al. In this cultivation method a tissue slice is placed onto a membrane with nutrition medium underneath and a gas atmosphere above, where the air-tissue interface perpendicular to the B0 field induces strong artefacts. We introduce a handling protocol that suppresses these artefacts and increases signal quality significantly to acquire high resolution images of tissue slices. An additional challenge is the lack of available of MR microscopy equipment suitable for small animal scanners. A Lenz lens with an attached capacitor can dramatically increase the SNR in these cases, and wirelessly bring the detection system in close proximity to the sample without compromising the OHSC system through the introduction of wired detectors. The resultant signal gain is demonstrated by imaging a PFA-fixed brain slice with a 72 mm diameter volume coil without a Lenz lens, and with a broadband and a self-resonant Lenz lens. In our setting, the self-resonant Lenz lens increases the SNR 10-fold over using the volume coil only.
Collapse
Affiliation(s)
- R Kamberger
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany
| | - K Göbel-Guéniot
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Germany
| | - J Gerlach
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Experimental Epilepsy Laboratory, Department of Neurosurgery, Medical Center - University of Freiburg, Germany
| | - O G Gruschke
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany
| | - J Hennig
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Germany
| | - P LeVan
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Germany
| | - C Haas
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Experimental Epilepsy Laboratory, Department of Neurosurgery, Medical Center - University of Freiburg, Germany
| | - J G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany.
| |
Collapse
|
4
|
Tourell MC, Pop IA, Brown LJ, Brown RCD, Pileio G. Singlet-assisted diffusion-NMR (SAD-NMR): redefining the limits when measuring tortuosity in porous media. Phys Chem Chem Phys 2018; 20:13705-13713. [DOI: 10.1039/c8cp00145f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-lived singlet order is exploited in diffusion NMR experiments to successfully measure the tortuosity of randomly packed spheres with diameters ranging from 500 to 1000 μm.
Collapse
|
5
|
Vila OF, Garrido C, Cano I, Guerra-Rebollo M, Navarro M, Meca-Cortés O, Ma SP, Engel E, Rubio N, Blanco J. Real-Time Bioluminescence Imaging of Cell Distribution, Growth, and Differentiation in a Three-Dimensional Scaffold Under Interstitial Perfusion for Tissue Engineering. Tissue Eng Part C Methods 2016; 22:864-72. [PMID: 27339005 DOI: 10.1089/ten.tec.2014.0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bioreactor systems allow safe and reproducible production of tissue constructs and functional analysis of cell behavior in biomaterials. However, current procedures for the analysis of tissue generated in biomaterials are destructive. We describe a transparent perfusion system that allows real-time bioluminescence imaging of luciferase expressing cells seeded in scaffolds for the study of cell-biomaterial interactions and bioreactor performance. A prototype provided with a poly(lactic) acid scaffold was used for "proof of principle" studies to monitor cell survival in the scaffold (up to 22 days). Moreover, using cells expressing a luciferase reporter under the control of inducible tissue-specific promoters, it was possible to monitor changes in gene expression resulting from hypoxic state and endothelial cell differentiation. This system should be useful in numerous tissue engineering applications, the optimization of bioreactor operation conditions, and the analysis of cell behavior in three-dimensional scaffolds.
Collapse
Affiliation(s)
- Olaia F Vila
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Cristina Garrido
- 2 Cell Therapy Group, Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain .,3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Irene Cano
- 3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain .,4 Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Marta Guerra-Rebollo
- 2 Cell Therapy Group, Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain .,3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Melba Navarro
- 3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain .,4 Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Oscar Meca-Cortés
- 2 Cell Therapy Group, Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain .,3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Stephen P Ma
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Elisabeth Engel
- 3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain .,4 Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Nuria Rubio
- 2 Cell Therapy Group, Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain .,3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jerónimo Blanco
- 2 Cell Therapy Group, Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain .,3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
6
|
Khalilzad-Sharghi V, Xu H. Design and Fabrication of an MRI-Compatible, Autonomous Incubation System. Ann Biomed Eng 2015; 43:2406-15. [PMID: 25749975 DOI: 10.1007/s10439-015-1289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Tissue engineers have long sought access to an autonomous, imaging-compatible tissue incubation system that, with minimum operator handling, can provide real-time visualization and quantification of cells, tissue constructs, and organs. This type of screening system, capable of operating noninvasively to validate tissue, can overcome current limitations like temperature shock, unsustainable cellular environments, sample contamination, and handling/stress. However, this type of system has been a major challenge, until now. Here, we describe the design, fabrication, and characterization of an innovative, autonomous incubation system that is compatible with a 9.4 T magnetic resonance imaging (MRI) scanner. Termed the e-incubator (patent pending; application number: 13/953,984), this microcontroller-based system is integrated into an MRI scanner and noninvasively screens cells and tissue cultures in an environment where temperature, pH, and media/gas handling are regulated. The 4-week study discussed herein details the continuous operation of the e-incubator for a tissue-engineered osteogenic construct, validated by LIVE/DEAD(®) cell assays and histology. The evolving MR quantitative parameters of the osteogenic construct were used as biomarkers for bone tissue engineering and to further validate the quality of the product noninvasively before harvesting. Importantly, the e-incubator reliably facilitates culturing cells and tissue constructs to create engineered tissues and/or investigate disease therapies.
Collapse
Affiliation(s)
- Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Huihui Xu
- School of Engineering and Computer Science, University of the Pacific, 203 Anderson Hall, Stockton, CA, 95211, USA.
| |
Collapse
|