1
|
Huynh NT, Zhang E, Francies O, Kuklis F, Allen T, Zhu J, Abeyakoon O, Lucka F, Betcke M, Jaros J, Arridge S, Cox B, Plumb AA, Beard P. A fast all-optical 3D photoacoustic scanner for clinical vascular imaging. Nat Biomed Eng 2024:10.1038/s41551-024-01247-x. [PMID: 39349585 DOI: 10.1038/s41551-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/28/2024] [Indexed: 10/25/2024]
Abstract
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Collapse
Affiliation(s)
- N T Huynh
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - E Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - O Francies
- University College London Hospital NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - F Kuklis
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - T Allen
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Zhu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - O Abeyakoon
- University College London Hospital NHS Foundation Trust, London, UK
| | - F Lucka
- Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - M Betcke
- Department of Computer Science, University College London, London, UK
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - S Arridge
- Department of Computer Science, University College London, London, UK
| | - B Cox
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - A A Plumb
- University College London Hospital NHS Foundation Trust, London, UK
| | - P Beard
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
2
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
3
|
Yang A, Wang Y, Feng Q, Fatima K, Zhang Q, Zhou X, He C. Integrating Fluorescence and Magnetic Resonance Imaging in Biocompatible Scaffold for Real-Time Bone Repair Monitoring and Assessment. Adv Healthc Mater 2024; 13:e2302687. [PMID: 37940192 DOI: 10.1002/adhm.202302687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Indexed: 11/10/2023]
Abstract
In situ monitoring of bone tissue regeneration progression is critical for the development of bone tissue engineering scaffold. However, engineered scaffolds that can stimulate osteogenic progress and allow for non-invasive monitoring of in vivo bone regeneration simultaneously are rarely reported. Based on a hard-and-soft integration strategy, a multifunctional scaffold composed of 3D printed microfilaments and a hydrogel network containing simvastatin (SV), indocyanine green-loaded superamphiphiles, and aminated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NH2 ) is fabricated. Both in vitro and in vivo results demonstrate that the as-prepared scaffold significantly promotes osteogenesis through controlled SV release. The biocomposite scaffold exhibits alkaline phosphatase-responsive near-infrared II fluorescence imaging. Meanwhile, USPIO-NH2 within the co-crosslinked nanocomposite network enables the visualization of scaffold degradation by magnetic resonance imaging. Therefore, the biocomposite scaffold enables or facilitates non-invasive in situ monitoring of neo-bone formation and scaffold degradation processes following osteogenic stimulation, offering a promising strategy to develop theranostic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Ai Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Kanwal Fatima
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Qianqian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
5
|
Dehari D, Chaudhuri A, Kumar DN, Patil R, Gangwar M, Rastogi S, Kumar D, Nath G, Agrawal AK. A Bacteriophage Microgel Effectively Treats the Multidrug-Resistant Acinetobacter baumannii Bacterial Infections in Burn Wounds. Pharmaceuticals (Basel) 2023; 16:942. [PMID: 37513854 PMCID: PMC10385199 DOI: 10.3390/ph16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is one of the major pathogens present in burn wound infections. Biofilm formation makes it further challenging to treat with clinically available antibiotics. In the current work, we isolated the A. baumannii-specific bacteriophages (BPABΦ1), loaded into the chitosan microparticles followed by dispersion in gel, and evaluated therapeutic efficacy against MDR A. baumannii clinical strains. Isolated BPABΦ1 were found to belong to the Corticoviridae family, with burst size 102.12 ± 2.65 PFUs per infected host cell. The BPABΦ1 loaded chitosan microparticles were evaluated for quality attributes viz. size, PDI, surface morphology, in vitro release, etc. The developed formulation exhibited excellent antibiofilm eradication potential in vitro and effective wound healing after topical application.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Mayank Gangwar
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Sonam Rastogi
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
6
|
Chen Z, Gezginer I, Augath MA, Ren W, Liu YH, Ni R, Deán-Ben XL, Razansky D. Hybrid magnetic resonance and optoacoustic tomography (MROT) for preclinical neuroimaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:332. [PMID: 36418860 PMCID: PMC9684112 DOI: 10.1038/s41377-022-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Multi-modal imaging is essential for advancing our understanding of brain function and unraveling pathophysiological processes underlying neurological and psychiatric disorders. Magnetic resonance (MR) and optoacoustic (OA) imaging have been shown to provide highly complementary contrasts and capabilities for preclinical neuroimaging. True integration between these modalities can thus offer unprecedented capabilities for studying the rodent brain in action. We report on a hybrid magnetic resonance and optoacoustic tomography (MROT) system for concurrent noninvasive structural and functional imaging of the mouse brain. Volumetric OA tomography was designed as an insert into a high-field MR scanner by integrating a customized MR-compatible spherical transducer array, an illumination module, and a dedicated radiofrequency coil. A tailored data processing pipeline has been developed to mitigate signal crosstalk and accurately register image volumes acquired with T1-weighted, angiography, and blood oxygenation level-dependent (BOLD) sequences onto the corresponding vascular and oxygenation data recorded with the OA modality. We demonstrate the concurrent acquisition of dual-mode anatomical and angiographic brain images with the scanner, as well as real-time functional readings of multiple hemodynamic parameters from animals subjected to oxygenation stress. Our approach combines the functional and molecular imaging advantages of OA with the superb soft-tissue contrast of MR, further providing an excellent platform for cross-validation of functional readings by the two modalities.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
| |
Collapse
|
7
|
Duan R, Wang Y, Su D, Wang Z, Zhang Y, Du B, Liu L, Li X, Zhang Q. The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds. BIOMATERIALS ADVANCES 2022; 138:212948. [PMID: 35913240 DOI: 10.1016/j.bioadv.2022.212948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Blending poly (l-lactic acid, PLLA) with poly (l-lactide-co-caprolactone, PLCL) is an effective strategy for developing new PLCL/PLLA blend based biomaterials. However, the effect of PLLA on in vivo performance of PLCL/PLLA blends is unclear yet. To address this issue, in this study, the effect of PLLA on in vivo biodegradability and biocompatibility of 3D-printed scaffolds of PLCL/PLLA blend was investigated. Three kinds of different 3D-printed PLCL/PLLA scaffolds using different blends with different mass ratios of the polymers, were prepared and implanted subcutaneously. The shrinkage and tissue responses were monitored by ultrasonography after the implantation. 2 months post-operation, the in vivo performances of the scaffolds were investigated histologically. All scaffolds showed good biocompatibility and allowed fast tissues ingrowth, however PLCL50/PLLA50 scaffold with the highest PLLA ratio induced the thickest the fibrous capsule surrounding the scaffolds and highest inflammatory scores. Furthermore, it was found that the fine porous structures of all scaffolds were well maintained, indicating the 3D-printed scaffolds were degraded through a surface erosion but not bulk erosion way. However, different scaffolds showed different shrinkage and degradation ratios, and PLCL50/PLLA50 scaffold resulted in a significant shrinkage, while PLCL90/PLLA10 scaffold showed the better structural stability. Therefore, PLLA at blending different ratio had different effects on the in vivo performance of 3D-printed PLCL/PLLA scaffolds. Particularly, PLCL/PLLA scaffolds blending with low ratio of PLLA, such as PLCL90/PLLA10 scaffold showed better application potential in tissue engineering. Our findings provide a new insight on the rational design, constrcution and application of the 3D-printed PLCL/PLLA scaffolds.
Collapse
Affiliation(s)
- Ruiping Duan
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Yimeng Wang
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Danning Su
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Ziqiang Wang
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Yiyun Zhang
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Bo Du
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Lingrong Liu
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China
| | - Xuemin Li
- The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
| | - Qiqing Zhang
- Institute of Biomedical Engineering, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, PR China.
| |
Collapse
|
8
|
Lin Y, Zhou HC, Chen N, Ren Y, Gao R, Li Q, Deng Y, Han X, Zhang X, Xiang AP, Guo B, Liu C, Ren J. Unveiling the improved targeting migration of mesenchymal stem cells with CXC chemokine receptor 3-modification using intravital NIR-II photoacoustic imaging. J Nanobiotechnology 2022; 20:307. [PMID: 35764961 PMCID: PMC9238014 DOI: 10.1186/s12951-022-01513-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background Therapy with genetically modified mesenchymal stem cells (MSCs) has clinical translation promise. Optimizing the targeting migratory ability of MSCs relies on accurate imaging of the distribution and extravasation kinetics of MSCs, and the corresponding imaging results could be used to predict therapeutic outcomes and guide the optimization of the treatment program. Among the different imaging modalities, second near-infrared (NIR-II) optical-resolution photoacoustic microscopy (OR-PAM) has merits, including a fine resolution, a deep penetration, a high sensitivity, and a large signal-to-background ratio. It would be an ideal candidate for precise monitoring of MSCs, although it has not been tested for this purpose so far. Results Penetrating peptide-decorated conjugated polymer nanoparticles (TAT-CPNPs) with strong NIR-II absorbance were used to label chemokine-receptor genetically modified MSCs, which were subsequently evaluated under intravital NIR-II OR-PAM regarding their targeting migratory ability. Based on the upregulation of chemokine (C-X-C motif) ligand 10 in the inflamed ears of contact hypersensitivity mice, MSCs with overexpression of corresponding receptor, chemokine (C-X-C motif) receptor 3 (Cxcr3) were successfully generated (MSCCxcr3). TAT-CPNPs labeling enabled NIR-II photoacoustic imaging to discern MSCCxcr3 covered by 1.2 cm of chicken breast tissue. Longitudinal OR-PAM imaging revealed enhanced inflammation-targeting migration of MSCCxcr3 over time attributed to Cxcr3 gene modification, which was further validated by histological analysis. Conclusions TAT-CPNPs-assisted NIR-II PA imaging is promising for monitoring distribution and extravasation kinetics of MSCs, which would greatly facilitate optimizing MSC-based therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01513-7.
Collapse
Affiliation(s)
- Yuejun Lin
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hui-Chao Zhou
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaojia Li
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yiwen Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Han
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jie Ren
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Deán-Ben XL, Razansky D. Optoacoustic imaging of the skin. Exp Dermatol 2021; 30:1598-1609. [PMID: 33987867 DOI: 10.1111/exd.14386] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Ren W, Deán-Ben XL, Augath MA, Razansky D. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: A phantom feasibility study. JOURNAL OF BIOPHOTONICS 2021; 14:e202000293. [PMID: 33169918 DOI: 10.1002/jbio.202000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
Optoacoustic tomography (OAT) and magnetic resonance imaging (MRI) provide highly complementary capabilities for anatomical and functional imaging of living organisms. Herein, we investigate on the feasibility of combining both modalities to render concurrent images. This was achieved by introducing a specifically-designed copper-shielded spherical ultrasound array into a preclinical MRI scanner. Phantom experiments revealed that the OAT probe caused minimal distortion in the MRI images, while synchronization of the laser and the MRI pulse sequence enabled defining artifact-free acquisition windows for OAT. Good dynamic OAT contrast from superparamagnetic iron oxide nanoparticles, a commonly used agent for MRI contrast enhancement, was also observed. The hybrid OAT-MRI system thus provides an excellent platform for cross-validating functional readings of both modalities. Overall, this initial study serves to establish the technical feasibility of developing a hybrid OAT-MRI system for biomedical research.
Collapse
Affiliation(s)
- Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Oh MS, Lee SG, Lee GH, Kim CY, Kim EY, Song JH, Yu BY, Chung HM. In vivo tracking of 14C thymidine labeled mesenchymal stem cells using ultra-sensitive accelerator mass spectrometry. Sci Rep 2021; 11:1360. [PMID: 33446731 PMCID: PMC7809063 DOI: 10.1038/s41598-020-80416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of 14C-thymidine (5 nCi/ml, 24.2 ng/ml) into AD-MSCs without affecting key biological characteristics. These cells were then utilized to track and quantify the distribution of AD-MSCs delivered through the tail vein by AMS, revealing the number of AD-MSCs existing within different organs per mg and per organ at different time points. Notably, the results show that this highly sensitive approach can quantify one cell per mg which effectively means that AD-MSCs can be detected in various tissues at the single cell level. While the significance of these cells is yet to be elucidated, we show that it is possible to accurately depict the pattern of distribution and quantify AD-MSCs in living tissue. This approach can serve to incrementally build profiles of biodistribution for stem cells such as MSCs which is essential for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Eun-Young Kim
- Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea
| | - Jong Han Song
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea. .,Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea.
| |
Collapse
|
12
|
Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Vis Comput Ind Biomed Art 2020; 3:24. [PMID: 33083889 PMCID: PMC7575676 DOI: 10.1186/s42492-020-00061-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Photoacoustic imaging (PAI) is often performed simultaneously with ultrasound imaging and can provide functional and cellular information regarding the tissues in the anatomical markers of the imaging. This paper describes in detail the basic principles of photoacoustic/ultrasound (PA/US) imaging and its application in recent years. It includes near-infrared-region PA, photothermal, photodynamic, and multimode imaging techniques. Particular attention is given to the relationship between PAI and ultrasonic imaging; the latest high-frequency PA/US imaging of small animals, which involves not only B-mode, but also color Doppler mode, power Doppler mode, and nonlinear imaging mode; the ultrasonic model combined with PAI, including the formation of multimodal imaging; the preclinical imaging methods; and the most effective detection methods for clinical research for the future.
Collapse
Affiliation(s)
- Shanshan Wang
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Beijing, 100026, China.
| | - Yunfeng Zhao
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| | - Ye Xu
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| |
Collapse
|
13
|
Liu K, Chen Z, Zhou W, Xing D. Towards quantitative assessment of burn based on photoacoustic and optical coherence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000126. [PMID: 32609427 DOI: 10.1002/jbio.202000126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Accurate and timely assessment of the severity of burn is essential for the treatment of burns. Currently, although most first-degree and third-degree burns are easily diagnosed through visual inspection or auxiliary diagnostic methods, the second-degree burn is still difficult to distinguish due to the ambiguity boundaries of second-degree with first-degree and third-degree burns. In this study, we proposed a non-invasive technique by combing photoacoustic imaging (PAI) and optical coherence tomography (OCT) to multi-parameter quantitatively assess the burns. The feasibility and capacity of the dual-mode PAT/OCT for assessing the burns was first testified by tissue-mimicking phantom and burn wounds in mouse pinna in vivo. The further experiments conducted on the back of rats showed that the changes in skin scattering structure, vascular morphology and blood flow provided by the dual-mode PAI/OCT system can determine distinct boundaries and depth of the burns. The experimental results prove that combined PAI/OCT as a novel method can be used to assess the severity of burn, which has the potential to diagnose the burns in clinic.
Collapse
Affiliation(s)
- Kang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhongjiang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wangting Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
14
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
15
|
Wu Z, Duan F, Zhang J, Li S, Ma H, Nie L. In vivo dual-scale photoacoustic surveillance and assessment of burn healing. BIOMEDICAL OPTICS EXPRESS 2019; 10:3425-3433. [PMID: 31467787 PMCID: PMC6706033 DOI: 10.1364/boe.10.003425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 05/11/2023]
Abstract
Accurate diagnoses of superficial and deep dermal burns are difficult to make even by experienced investigators due to slight differences in dermis damage. Many imaging technologies have been developed to improve the burn depth assessment. But these imaging tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid modality combining optical and ultrasound imaging that remains high resolution in deep imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional and volumetric images of the burn region. High-resolution PAM allowed for imaging of angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess the difference between the two damage degrees of burn injuries. Our proposed method suggests an effective tool to diagnose and monitor burn injury.
Collapse
|
16
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
17
|
Ogunlade O, Ho JO, Kalber TL, Hynds RE, Zhang E, Janes SM, Birchall MA, Butler CR, Beard P. Monitoring neovascularization and integration of decellularized human scaffolds using photoacoustic imaging. PHOTOACOUSTICS 2019; 13:76-84. [PMID: 30805295 PMCID: PMC6374504 DOI: 10.1016/j.pacs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 05/22/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that aims to manipulate cells and scaffolds to create bioartificial tissues and organs for patients. A major challenge lies in monitoring the blood supply to the new tissue following transplantation: the integration and neovascularization of scaffolds in vivo is critical to their functionality. Photoacoustic imaging (PAI) is a laser-generated ultrasound-based technique that is particularly well suited to visualising microvasculature due to the high optical absorption of haemoglobin. Here, we describe an early proof-of-concept study in which PAI in widefield tomography mode is used to image biological, decellularized human tracheal scaffolds. We found that PAI allowed the longitudinal tracking of scaffold integration into subcutaneous murine tissue with high spatial resolution at depth over an extended period of time. The results of the study were consistent with post-imaging histological analyses, demonstrating that PAI can be used to non-invasively monitor the extent of vascularization in biological tissue-engineered scaffolds. We propose that this technique may be a valuable tool for studies designed to test interventions aimed at improving the speed and extent of scaffold neovascularization in tissue engineering. With technological refinement, it could also permit in vivo monitoring of revascularization in patients, for example to determine timing of heterotopic graft transfer.
Collapse
Affiliation(s)
- Olumide Ogunlade
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | | | - Tammy L. Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward Zhang
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Paul Beard
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| |
Collapse
|
18
|
Yoo J, Yun C, Bui N, Oh J, Nam S. Photoacoustic Monitoring of the Viability of Mesenchymal Stem Cells Labeled with Indocyanine Green. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Gao SQ, Chang C, Li JJ, Li Y, Niu XQ, Zhang DP, Li LJ, Gao JQ. Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis. Drug Deliv 2018; 25:1779-1789. [PMID: 30338719 PMCID: PMC6201774 DOI: 10.1080/10717544.2018.1513608] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nonhealing chronic wounds on foot induced by diabetes is a complicated pathologic process. They are mainly caused by impaired neovascularization, neuropathy, and excessive inflammation. A strategy, which can accelerate the vessel network formation as well as inhibit inflammatory response at the same time, makes it possible for effective diabetic ulcers treatment. Co-delivery of multiple drugs with complementary bioactivity offers a strategy to properly treat diabetic wound. We previously demonstrated that hydroxysafflor yellow A (HSYA) could accelerate diabetic wound healing through promoting angiogenesis and reducing inflammatory response. In order to further enhance blood vessel formation, a pro-angiogenic molecular called deferoxamine (DFO) was topically co-administrated with HSYA. The in vitro results showed that the combination of DFO and HSYA exerted synergistic effect on enhancing angiogenesis by upregulation of hypoxia inducible factor-1 alpha (HIF-1α) expression. The interpenetrating polymer networks hydrogels, characterized by good breathability and water absorption, were designed for co-loading of DFO and HSYA aiming to recruit angiogenesis relative cells and upgrade wound healing in vivo. Both DFO and HSYA in hydrogel have achieved sustained release. The in vivo studies indicated that HSYA/DFO hydrogel could accelerate diabetic wound healing. With a high expression of Hif-1α which is similar to that of normal tissue. The noninvasive US/PA imaging revealed that the wound could be recovered completely with abundant blood perfusion in dermis after given HSYA/DFO hydrogel for 28 days. In conclusion, combination of pro-angiogenic small molecule DFO and HSYA in hydrogel provides a promising strategy to productively promote diabetic wound healing as well as better the repair quality.
Collapse
Affiliation(s)
- Si-Qian Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chen Chang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun-Jun Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Qian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dan-Ping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Long-Jian Li
- Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Forces, Jiaxing, Zhejiang, P.R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou, P.R. China
| |
Collapse
|
20
|
Yao J, Wang LV. Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol 2018; 45:104-112. [PMID: 29631120 PMCID: PMC6076847 DOI: 10.1016/j.cbpa.2018.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
By acoustically detecting the optical absorption contrast, photoacoustic (PA) tomography (PAT) has broken the penetration limits of traditional high-resolution optical imaging. Through spectroscopic analysis of the target's optical absorption, PAT can identify a wealth of endogenous and exogenous molecules and thus is inherently capable of molecular imaging with high sensitivity. PAT's molecular sensitivity is uniquely accompanied by non-ionizing radiation, high spatial resolution, and deep penetration in biological tissues, which other optical imaging modalities cannot achieve yet. In this concise review, we summarize the most recent technological advancements in PA molecular imaging and highlight the novel molecular probes specifically made for PAT in deep tissues. We conclude with a brief discussion of the opportunities for future advancements.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Zheng S, Lan Z. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging. Comput Biol Med 2018; 97:37-49. [DOI: 10.1016/j.compbiomed.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
|
22
|
Petrosyan T, Theodorou M, Bamber J, Frenz M, Jaeger M. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT. PHOTOACOUSTICS 2018; 10:20-30. [PMID: 29755937 PMCID: PMC5945922 DOI: 10.1016/j.pacs.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 05/07/2023]
Abstract
Epi-style optoacoustic (OA) imaging provides flexibility by integrating the irradiation optics and ultrasound receiver, yet clutter generated by optical absorption near the probe obscures deep OA sources. Localised vibration tagging (LOVIT) retrieves OA signal from images that are acquired with and without a preceding ultrasonic pushing beam: Radiation force leads to a phase shift of signals coming from the focal area resulting in their visibility in a difference image, whereas clutter from outside the pushing beam is eliminated. Disadvantages of a single-focus approach are residual clutter from inside the pushing beam above the focus, and time-intensive scanning of the focus to retrieve a large field-of-view. To speed up acquisition, we propose to create multiple foci in parallel, forming comb-shaped ARF patterns. By subtracting OA images obtained with interleaved combs, this technique moreover results in greatly improved clutter reduction in phantoms mimicking optical, acoustic and elastic properties of breast tissue.
Collapse
Affiliation(s)
- Tigran Petrosyan
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Maria Theodorou
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jeff Bamber
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| |
Collapse
|
23
|
Petrosyan T, Theodorou M, Bamber J, Frenz M, Jaeger M. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT. PHOTOACOUSTICS 2018; 10:20-30. [PMID: 29755937 DOI: 10.1109/ultsym.2017.8092699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Epi-style optoacoustic (OA) imaging provides flexibility by integrating the irradiation optics and ultrasound receiver, yet clutter generated by optical absorption near the probe obscures deep OA sources. Localised vibration tagging (LOVIT) retrieves OA signal from images that are acquired with and without a preceding ultrasonic pushing beam: Radiation force leads to a phase shift of signals coming from the focal area resulting in their visibility in a difference image, whereas clutter from outside the pushing beam is eliminated. Disadvantages of a single-focus approach are residual clutter from inside the pushing beam above the focus, and time-intensive scanning of the focus to retrieve a large field-of-view. To speed up acquisition, we propose to create multiple foci in parallel, forming comb-shaped ARF patterns. By subtracting OA images obtained with interleaved combs, this technique moreover results in greatly improved clutter reduction in phantoms mimicking optical, acoustic and elastic properties of breast tissue.
Collapse
Affiliation(s)
- Tigran Petrosyan
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Maria Theodorou
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jeff Bamber
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| |
Collapse
|
24
|
Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2017; 2:28. [PMID: 29302362 PMCID: PMC5677988 DOI: 10.1038/s41536-017-0029-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - J. Dinesh Kumar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Noura Ali
- College of Health Science, University of Duhok, Duhok, Iraq
| | - Ahmed Alrumayh
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Mohammed Amali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Barbellion
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Vendula Jones
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Marije Niemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sophie Potdevin
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Gautier Roussignol
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Anatoly Vaganov
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - John Connell
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-Oncology, King’s College London, London, UK
| | | | - Neil S. French
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Julie Holder
- Roslin Cells, University of Cambridge, Cambridge, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Cerys Lovatt
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Sara Patel
- ReNeuron Ltd, Pencoed Business Park, Pencoed, Bridgend, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Jacqueline Piner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | | | - Emanuelle Ricci
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | - Glyn N. Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards Control, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gareth Sullivan
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Blindern, Oslo, Norway
- Institute of Immunology, Oslo University Hospital-Rikshospitalet, Nydalen, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Ye H, De S. Thermal injury of skin and subcutaneous tissues: A review of experimental approaches and numerical models. Burns 2017; 43:909-932. [PMID: 27931765 PMCID: PMC5459687 DOI: 10.1016/j.burns.2016.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 01/16/2023]
Abstract
Thermal injury to skin and subcutaneous tissue is common in both civilian and combat scenarios. Understanding the change in tissue morphologies and properties and the underlying mechanisms of thermal injury are of vital importance to clinical determination of the degree of burn and treatment approach. This review aims at summarizing the research involving experimental and numerical studies of skin and subcutaneous tissue subjected to thermal injury. The review consists of two parts. The first part deals with experimental studies including burn protocols and prevailing imaging approaches. The second part deals with existing numerical models for burns of tissue and related computational simulations. Based on this review, we conclude that though there is literature contributing to the knowledge of the pathology and pathogenesis of tissue burn, there is scant quantitative information regarding changes in tissue properties including mechanical, thermal, electrical and optical properties as a result of burns that are linked to altered tissue morphology.
Collapse
Affiliation(s)
- Hanglin Ye
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
26
|
Mukai K, Zhu W, Nakajima Y, Kobayashi M, Nakatani T. Non-invasive longitudinal monitoring of angiogenesis in a murine full-thickness cutaneous wound healing model using high-resolution three-dimensional ultrasound imaging. Skin Res Technol 2017; 23:581-587. [DOI: 10.1111/srt.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- K. Mukai
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - W. Zhu
- Department of Quantum Medical Technology; Graduate Course of Medical Science and Technology; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Y. Nakajima
- Department of Clinical Nursing; Graduate Course of Nursing Science; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - M. Kobayashi
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - T. Nakatani
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| |
Collapse
|
27
|
Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A. Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. JOURNAL OF BIOPHOTONICS 2017; 10:24-45. [PMID: 27110674 DOI: 10.1002/jbio.201600049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Tissue engineering/regenerative medicine (TERM) is an interdisciplinary field that applies the principle of engineering and life sciences to restore/replace damaged tissues/organs with in vitro artificially-created ones. Research on TERM quickly moves forward. Today newest technologies and discoveries, such as 3D-/bio-printing, allow in vitro fabrication of ex-novo made tissues/organs, opening the door to wide and probably never-ending application possibilities, from organ transplant to drug discovery, high content screening and replacement of laboratory animals. Imaging techniques are fundamental tools for the characterization of tissue engineering (TE) products at any stage, from biomaterial/scaffold to construct/organ analysis. Indeed, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular features, allowing three-dimensional (3D) and time-lapse in vivo analysis, in a non-destructive, quantitative, multidimensional analysis of TE constructs, to analyze their pre-implantation quality assessment and their fate after implantation. This review focuses on the newest developments in imaging technologies and applications in the context of requirements of the different steps of the TERM field, describing strengths and weaknesses of the current imaging approaches.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
| | - Annunziata Crupi
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
- Fondazione San Raffaele, S.S. Ceglie San Michele km 1200, 72013, Ceglie Messapica, Italy
| | - Alessandra Costa
- University of Pittsburgh McGowan Institute, 3550 Terrace St 5606, Pittsburgh, PA 15261, USA
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy
- Nikon Imaging Center, Genova, Italy, www.nic.iit.it
| | - Susanne Melzer
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| | - Attila Tarnok
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| |
Collapse
|
28
|
van den Berg PJ, Bansal R, Daoudi K, Steenbergen W, Prakash J. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system. BIOMEDICAL OPTICS EXPRESS 2016; 7:5081-5091. [PMID: 28018726 PMCID: PMC5175553 DOI: 10.1364/boe.7.005081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Liver fibrosis is a major cause for increasing mortality worldwide. Preclinical research using animal models is required for the discovery of new anti-fibrotic therapies, but currently relies on endpoint liver histology. In this study, we investigated a cost-effective and portable photoacoustic/ultrasound (PA/US) imaging system as a potential non-invasive alternative. Fibrosis was induced in mice using CCl4 followed by liver imaging and histological analysis. Imaging showed significantly increased PA features with higher frequency signals in fibrotic livers versus healthy livers. This corresponds to more heterogeneous liver structure resulting from collagen deposition and angiogenesis. Importantly, PA response and its frequency were highly correlated with histological parameters. These results demonstrate the preclinical feasibility of the PA imaging approach and applicability of dual PA/US system.
Collapse
Affiliation(s)
- Pim J van den Berg
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Khalid Daoudi
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| |
Collapse
|
29
|
Chung E, Rybalko VY, Hsieh P, Leal SL, Samano MA, Willauer AN, Stowers RS, Natesan S, Zamora DO, Christy RJ, Suggs LJ. Fibrin‐based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen 2016; 24:810-819. [DOI: 10.1111/wrr.12459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Eunna Chung
- The University of Texas at AustinAustin Texas
- NCRICENYonsei UniversitySeoul South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2015; 2016:7920358. [PMID: 26839568 PMCID: PMC4709786 DOI: 10.1155/2016/7920358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.
Collapse
|
31
|
Dalecki D, Mercado KP, Hocking DC. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials. Ann Biomed Eng 2015; 44:636-48. [PMID: 26581347 DOI: 10.1007/s10439-015-1515-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 310 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA.
| | - Karla P Mercado
- Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| |
Collapse
|
32
|
Non-invasive Assessments of Adipose Tissue Metabolism In Vitro. Ann Biomed Eng 2015; 44:725-32. [PMID: 26399988 DOI: 10.1007/s10439-015-1438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022]
Abstract
Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.
Collapse
|