1
|
Nokhbatolfoghahaei H, Baniameri S, Tabrizi R, Yousefi-Koma AA, Dehghan MM, Derakhshan S, Gharehdaghi N, Farzad-Mohajeri S, Behroozibakhsh M, Khojasteh A. Pre-vascularized porous gelatin-coated β-tricalcium phosphate scaffolds for bone regeneration: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00973-5. [PMID: 39382735 DOI: 10.1007/s11626-024-00973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/17/2024] [Indexed: 10/10/2024]
Abstract
Vascularization is vital in bone tissue engineering, supporting development, remodeling, and regeneration. Lack of vascularity leads to cell death, necessitating vascularization strategies. Angiogenesis, forming new blood vessels, provides crucial nutrients and oxygen. Pre-vascularized gelatin-coated β-tricalcium phosphate (G/β-TCP) scaffolds show promise in bone regeneration and vascularization. Our study evaluates G/β-TCP scaffolds' osteogenic and angiogenic potential in vitro and a canine model with vascular anastomosis. Channel-shaped G/β-TCP scaffolds were fabricated using foam casting and sintering of a calcium phosphate/silica slurry-coated polyurethane foam, then coated with cross-linked gelatin. Buccal fat pad-derived stem cells (BFPdSCs) were seeded onto scaffolds and assessed over time for adhesion, proliferation, and osteogenic capacity using scanning electron microscopy (SEM), 4,6-diamidino-2-phenylindole (DAPI) staining, Alamar blue, and alkaline phosphatase (ALP) assays. Scaffolds were implanted in a canine model to evaluate osteogenesis and angiogenesis by histology and CT scans at 12 wk. Our studies showed preliminary results for G/β-TCP scaffolds supporting angiogenesis and bone regeneration. In vitro analyses demonstrated excellent proliferation/viability, with BFPdSCs adhering and increasing on the scaffolds. ALP activity and protein levels increased, indicating osteogenic differentiation. Examination of tissue samples revealed granulation tissue with a well-developed vascular network, indicating successful angiogenesis and osteogenesis was further confirmed by a CT scan. In vivo, histology revealed scaffold resorption. However, scaffold placement beneath muscle tissue-restricted bone regeneration. Further optimization is needed for bone regeneration applications.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Ali Yousefi-Koma
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Preclinical Imaging Group, Preclinical Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Gharehdaghi
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Materials School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
3
|
Mazloomnejad R, Babajani A, Kasravi M, Ahmadi A, Shariatzadeh S, Bahrami S, Niknejad H. Angiogenesis and Re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering. Front Bioeng Biotechnol 2023; 11:1103727. [PMID: 36873356 PMCID: PMC9978201 DOI: 10.3389/fbioe.2023.1103727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Decellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure. In order to better understand and overcome this issue, complete and appropriate knowledge of endothelialization and its determining variables is required. Decellularization methods and their effectiveness, biological and mechanical characteristics of acellular scaffolds, artificial and biological bioreactors, and their possible applications, extracellular matrix surface modification, and different types of utilized cells are factors affecting endothelialization consequences. This review focuses on the characteristics of endothelialization and how to optimize them, as well as discussing recent developments in the process of re-endothelialization.
Collapse
Affiliation(s)
- Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abstract
Chronic lung disease remains a leading cause of morbidity and mortality. Given the dearth of definitive therapeutic options, there is an urgent need to augment the pool of donor organs for transplantation. One strategy entails building a lung ex vivo in the laboratory. The past decade of whole lung tissue engineering has laid a foundation of systems and strategies for this approach. Meanwhile, tremendous progress in lung stem cell biology is elucidating cues contributing to alveolar repair, and speaks to the potential of whole lung regeneration in the future. This perspective discusses the key challenges facing the field and highlights opportunities to combine insights from biology with engineering strategies to adopt a more deliberate, and ultimately successful, approach to lung engineering.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06511
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06511
| |
Collapse
|
5
|
Ahmadipour M, Taniguchi D, Duchesneau P, Aoki FG, Phillips G, Sinderby C, Waddell TK, Karoubi G. Use of High-Rate Ventilation Results in Enhanced Recellularization of Bioengineered Lung Scaffolds. Tissue Eng Part C Methods 2021; 27:661-671. [PMID: 34847779 DOI: 10.1089/ten.tec.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While transplantation is a viable treatment option for end-stage lung diseases, this option is highly constrained by the availability of organs and postoperative complications. A potential solution is the use of bioengineered lungs generated from repopulated acellular scaffolds. Effective recellularization, however, remains a challenge. In this proof-of-concept study, mice lung scaffolds were decellurized and recellurized using human bronchial epithelial cells (BEAS2B). We present a novel liquid ventilation protocol enabling control over tidal volume and high rates of ventilation. The use of a physiological tidal volume (300 μL) for mice and a higher ventilation rate (40 breaths per minute vs. 1 breath per minute) resulted in higher cell numbers and enhanced cell surface coverage in mouse lung scaffolds as determined via histological evaluation, genomic polymerase chain reaction (PCR) analysis, and immunohistochemistry. A biomimetic lung bioreactor system was designed to include the new ventilation protocol and allow for simultaneous vascular perfusion. We compared the lungs cultured in our dual system to lungs cultured with a bioreactor allowing vascular perfusion only and showed that our system significantly enhances cell numbers and surface coverage. In summary, our results demonstrate the importance of the physical environment and forces for lung recellularization. Impact statement New bioreactor systems are required to further enhance the regeneration process of bioengineered lungs. This proof-of-concept study describes a novel ventilation protocol that allows for control over ventilation parameters such as rate and tidal volume. Our data show that a higher rate of ventilation is correlated with higher cell numbers and increased surface coverage. We designed a new biomimetic bioreactor system that allows for ventilation and simultaneous perfusion. Compared to a traditional perfusion only system, recellularization was enhanced in lungs recellularized with our new biomimetic bioreactor.
Collapse
Affiliation(s)
- MohammadAli Ahmadipour
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Pascal Duchesneau
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, and University of Toronto, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Becerra D, Wu T, Jeffs S, Ott HC. High-Throughput Culture Method of Induced Pluripotent Stem Cell Derived Alveolar Epithelial Cells. Tissue Eng Part C Methods 2021; 27:639-648. [PMID: 34751582 DOI: 10.1089/ten.tec.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung regeneration is dependent on the availability of progenitor lung cells. Large numbers of self-renewing, patient-specific induced pluripotent stem cell derived alveolar epithelial cells (iPSC-AECs) are needed to adequately recellularize whole organ constructs. Prior methods to generated functional iPSC-AECs are not feasible for large-scale cell production. We present a novel protocol to produce iPSC-AECs which is scalable for whole organ regeneration. Differentiation of iPSCs was performed with genetically modified iPSCs with fluorescent reporters which underwent differentiation in a stepwise protocol mimicking lung development. Cells were purified, sorted, and embedded in a liquid Matrigel precursor to form either adherent droplets or to form cell-laden Matrigel spheroids which were subsequently transferred to spinner flasks with media as floating droplets. After culture, monolayer spheres of iPSC-AECs were isolated to form single cell suspensions. Equal numbers of iPSC-AECs from the two culture conditions were seeded into decellularized lung scaffolds. IPSC-AECs cultured in floating droplets were significantly more proliferative than those in adherent droplets, with significantly higher total cell counts and Ki67 expression. Equivalent expression of the distal lung markers was observed for both culture conditions. Lungs recellularized from both culture groups had similar histologic appearance. Media changes took significantly less time with the floating droplet method and was more cost effective. The floating droplet culture method demonstrated enhanced proliferative capacity, stable distal lung epithelial phenotype, and reduced resources compared to prior culture methods. Here we provide a means for iPSC-AEC production for regeneration of whole lung constructs.
Collapse
Affiliation(s)
- David Becerra
- Duke University Medical Center, 22957, Surgery, Durham, North Carolina, United States;
| | - Tong Wu
- Massachusetts General Hospital , Center for Regenerative Medicine, Boston, Massachusetts, United States.,Harvard Medical School, 1811, Boston, Massachusetts, United States;
| | - Sydney Jeffs
- Duke University School of Medicine, 12277, Durham, North Carolina, United States;
| | - Harald C Ott
- Harvard Medical School, 1811, Thoracic Surgery, 55 Fruit Street, Founders 7, Boston, Massachusetts, United States, 02115;
| |
Collapse
|
7
|
Mahfouzi SH, Safiabadi Tali SH, Amoabediny G. Decellularized human-sized pulmonary scaffolds for lung tissue engineering: a comprehensive review. Regen Med 2021; 16:757-774. [PMID: 34431331 DOI: 10.2217/rme-2020-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ultimate goal of lung bioengineering is to produce transplantable lungs for human beings. Therefore, large-scale studies are of high importance. In this paper, we review the investigations on decellularization and recellularization of human-sized lung scaffolds. First, studies that introduce new ways to enhance the decellularization of large-scale lungs are reviewed, followed by the investigations on the xenogeneic sources of lung scaffolds. Then, decellularization and recellularization of diseased lung scaffolds are discussed to assess their usefulness for tissue engineering applications. Next, the use of stem cells in recellularizing acellular lung scaffolds is reviewed, followed by the case studies on the transplantation of bioengineered lungs. Finally, the remaining challenges are discussed, and future directions are highlighted.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran.,Department of Biotechnology & Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| |
Collapse
|
8
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Engler AJ, Raredon MSB, Le AV, Yuan Y, Oczkowicz YA, Kan EL, Baevova P, Niklason LE. Non-invasive and real-time measurement of microvascular barrier in intact lungs. Biomaterials 2019; 217:119313. [PMID: 31280072 PMCID: PMC6863174 DOI: 10.1016/j.biomaterials.2019.119313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Microvascular leak is a phenomenon witnessed in multiple disease states. In organ engineering, regaining a functional barrier is the most crucial step towards creating an implantable organ. All previous methods of measuring microvascular permeability were either invasive, lengthy, introduced exogenous macromolecules, or relied on extrapolations from cultured cells. We present here a system that enables real-time measurement of microvascular permeability in intact rat lungs. Our unique system design allows direct, non-invasive measurement of average alveolar and capillary pressures, tracks flow paths within the organ, and enables calculation of lumped internal resistances including microvascular barrier. We first describe the physiology of native and decellularized lungs and the inherent properties of the extracellular matrix as functions of perfusion rate. We next track changing internal resistances and flows in injured native rat lungs, resolving the onset of microvascular leak, quantifying changing vascular resistances, and identifying distinct phases of organ failure. Finally, we measure changes in permeability within engineered lungs seeded with microvascular endothelial cells, quantifying cellular effects on internal vascular and barrier resistances over time. This system marks considerable progress in bioreactor design for intact organs and may be used to monitor and garner physiological insights into native, decellularized, and engineered tissues.
Collapse
Affiliation(s)
- Alexander J Engler
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Andrew V Le
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yan A Oczkowicz
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Ellen L Kan
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA; Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Daneshgar A, Tang P, Remde C, Lommel M, Moosburner S, Kertzscher U, Klein O, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH. Teburu—Open source 3D printable bioreactor for tissue slices as dynamic three‐dimensional cell culture models. Artif Organs 2019; 43:1035-1041. [DOI: 10.1111/aor.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Assal Daneshgar
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Peter Tang
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christopher Remde
- Cluster of Excellence, Interdisciplinary Laboratory Image Knowledge Gestaltung Humboldt‐Universität zu Berlin Berlin Germany
| | - Michael Lommel
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Simon Moosburner
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrich Kertzscher
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Oliver Klein
- Berlin‐Brandenburg Center for Regenerative Therapies Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Marie Weinhart
- Institute for Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Johann Pratschke
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Igor M. Sauer
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl H. Hillebrandt
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
11
|
Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release 2019; 306:40-58. [DOI: 10.1016/j.jconrel.2019.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
|