1
|
Lamb CD, Maitland B, Hepburn MS, Dargaville TR, Kennedy BF, Dalton PD, Keating A, De-Juan-Pardo EM. Understanding the Significance of Layer Bonding in Melt Electrowriting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407514. [PMID: 39447154 DOI: 10.1002/advs.202407514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Indexed: 10/26/2024]
Abstract
Melt electrowriting (MEW) is a high-resolution additive manufacturing technology capable of depositing micrometric fibers onto a moving collector to form 3D scaffolds of controlled mechanical properties. While the critical role of layer bonding to achieve mechanical integrity in fused deposition modeling has been widely reported, it remains largely unknown in MEW, in part due to a lack of methods to assess it. Here, a systematic framework is developed to unravel the significance of layer bonding in MEW scaffolds and its ultimate effect on their mechanical properties. Results show that printing parameters, scaffold design, and print path have a strong impact on layer bonding strength of poly(ɛ-caprolactone) MEW scaffolds. This study demonstrates that a small increase of 5 µm in fiber diameter can enhance the layer bonding strength by as much as 70%, greatly impacting the overall scaffold properties. A method is also established to control MEW scaffold layer bonding using a heated collector. Importantly, this study reveals that scaffold architecture alone is not responsible for the overall mechanical properties. Finally, a method to obtain tailored layer bond strengths within a given scaffold is established. This has significant implications as provides new possibilities to control mechanical properties of MEW scaffolds through layer bonding.
Collapse
Affiliation(s)
- Christopher D Lamb
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brooke Maitland
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matt S Hepburn
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, Torun, 87-100, Poland
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Brendan F Kennedy
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, Torun, 87-100, Poland
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Adrian Keating
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
2
|
Hall PC, Reid HW, Liashenko I, Tandon B, O'Neill KL, Paxton NC, Lindberg GCJ, Jasti R, Dalton PD. [n]Cycloparaphenylenes as Compatible Fluorophores for Melt Electrowriting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400882. [PMID: 38845075 DOI: 10.1002/smll.202400882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Indexed: 10/04/2024]
Abstract
Fluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt electrowriting (MEW) poses a challenge due to the sustained, elevated temperatures that this processing technique requires. In this context, [n]cycloparaphenylenes ([n]CPPs) serve as excellent fluorophores for MEW processing with the additional benefit of customizable emissions profiles with the same excitation wavelength. Three fluorescent blends are used with distinct [n]CPPs with emission wavelengths of either 466, 494, or 533 nm, identifying 0.01 wt% as the preferred concentration. It is discovered that [n]CPPs disperse well within poly(ε-caprolactone) (PCL) and maintain their fluorescence even after a week of continuous heating at 80 °C. The [n]CPP-PCL blends show no cytotoxicity and support counterstaining with commonly used DAPI (Ex/Em: 359 nm/457 nm), rhodamine- (Ex/Em: 542/565 nm), and fluorescein-tagged (Ex/Em: 490/515 nm) phalloidin stains. Using different color [n]CPP-PCL blends, different MEW fibers are sequentially deposited into a semi-woven scaffold and onto a solution electrospun membrane composed of [8]CPP-PCL as a contrasting substrate for the [10]CPP-PCL MEW fibers. In general, [n]CPPs are potent fluorophores for MEW, providing new imaging options for this technology.
Collapse
Affiliation(s)
- Patrick C Hall
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Harrison W Reid
- Department of Chemistry and Biochemistry & Materials Science Institute, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Ievgenii Liashenko
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Biranche Tandon
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Kelly L O'Neill
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Naomi C Paxton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4000, Australia
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Ramesh Jasti
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
- Department of Chemistry and Biochemistry & Materials Science Institute, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| |
Collapse
|
3
|
Bikuna-Izagirre M, Aldazabal J, Moreno-Montañes J, De-Juan-Pardo E, Carnero E, Paredes J. Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning. Polymers (Basel) 2024; 16:2162. [PMID: 39125188 PMCID: PMC11314991 DOI: 10.3390/polym16152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The human trabecular meshwork (HTM) is responsible for regulating intraocular pressure (IOP) by means of gradient porosity. Changes in its physical properties, like increases in stiffness or alterations in the extracellular matrix (ECM), are associated with increases in the IOP, which is the primary cause of glaucoma. The complexity of its structure limits the engineered models to one-layered and simple approaches, which do not accurately replicate the biological and physiological cues related to glaucoma. Here, a combination of melt electrowriting (MEW) and solution electrospinning (SE) is explored as a biofabrication technique used to produce a gradient porous scaffold that mimics the multi-layered structure of the native HTM. Polycaprolactone (PCL) constructs with a height of 20-710 µm and fiber diameters of 0.7-37.5 µm were fabricated. After mechanical characterization, primary human trabecular meshwork cells (HTMCs) were seeded over the scaffolds within the subsequent 14-21 days. In order to validate the system's responsiveness, cells were treated with dexamethasone (Dex) and the rho inhibitor Netarsudil (Net). Scanning electron microscopy and immunochemistry staining were performed to evaluate the expected morphological changes caused by the drugs. Cells in the engineered membranes exhibited an HTMC-like morphology and a correct drug response. Although this work demonstrates the utility of combining MEW and SE in reconstructing complex morphological features like the HTM, new geometries and dimensions should be tested, and future works need to be directed towards perfusion studies.
Collapse
Affiliation(s)
- Maria Bikuna-Izagirre
- Tissue Engineering Group, Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
- T3mPLATE Harry Perkins Institute of Medical Research, QII Medical Center, 6 Verdun St., Nedlands, WA 6009, Australia;
- UWA Center of Medical Research, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Javier Aldazabal
- Tissue Engineering Group, Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
- Navarra Institute of Health Research, IdisNA, Calle Irunlarrea 3, 31088 Pamplona, Spain;
| | - Javier Moreno-Montañes
- Ophthalmology Department, University of Navarra Clinic, Avenida PIO XII, 31080 Pamplona, Spain;
| | - Elena De-Juan-Pardo
- T3mPLATE Harry Perkins Institute of Medical Research, QII Medical Center, 6 Verdun St., Nedlands, WA 6009, Australia;
- UWA Center of Medical Research, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Elena Carnero
- Navarra Institute of Health Research, IdisNA, Calle Irunlarrea 3, 31088 Pamplona, Spain;
- Ophthalmology Department, University of Navarra Clinic, Avenida PIO XII, 31080 Pamplona, Spain;
| | - Jacobo Paredes
- Tissue Engineering Group, Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
- Navarra Institute of Health Research, IdisNA, Calle Irunlarrea 3, 31088 Pamplona, Spain;
| |
Collapse
|
4
|
Norberg AE, Bakirci E, Lim KS, Dalton PD, Woodfield TBF, Lindberg GCJ. Bioassembly of hemoglobin-loaded photopolymerizable spheroids alleviates hypoxia-induced cell death. Biofabrication 2024; 16:025026. [PMID: 38373325 DOI: 10.1088/1758-5090/ad2a7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The delivery of oxygen within tissue engineered constructs is essential for cell survivability; however, achieving this within larger biofabricated constructs poses a significant challenge. Efforts to overcome this limitation often involve the delivery of synthetic oxygen generating compounds. The application of some of these compounds is problematic for the biofabrication of living tissues due to inherent issues such as cytotoxicity, hyperoxia and limited structural stability due to oxygen inhibition of radical-based crosslinking processes. This study aims to develop an oxygen delivering system relying on natural-derived components which are cytocompatible, allow for photopolymerization and advanced biofabrication processes, and improve cell survivability under hypoxia (1% O2). We explore the binding of human hemoglobin (Hb) as a natural oxygen deposit within photopolymerizable allylated gelatin (GelAGE) hydrogels through the spontaneous complex formation of Hb with negatively charged biomolecules (heparin, hyaluronic acid, and bovine serum albumin). We systematically study the effect of biomolecule inclusion on cytotoxicity, hydrogel network properties, Hb incorporation efficiency, oxygen carrying capacity, cell viability, and compatibility with 3D-bioassembly processes within melt electrowritten (MEW) scaffolds. All biomolecules were successfully incorporated within GelAGE hydrogels, displaying controllable mechanical properties and cytocompatibility. Results demonstrated efficient and tailorable Hb incorporation within GelAGE-Heparin hydrogels. The developed system was compatible with microfluidics and photopolymerization processes, allowing for the production of GelAGE-Heparin-Hb spheres. Hb-loaded spheres were assembled into MEW polycaprolactone scaffolds, significantly increasing the local oxygen levels. Ultimately, cells within Hb-loaded constructs demonstrated good cell survivability under hypoxia. Taken together, we successfully developed a hydrogel system that retains Hb as a natural oxygen deposit post-photopolymerization, protecting Hb from free-radical oxidation while remaining compatible with biofabrication of large constructs. The developed GelAGE-Heparin-Hb system allows for physoxic oxygen delivery and thus possesses a vast potential for use across broad tissue engineering and biofabrication strategies to help eliminate cell death due to hypoxia.
Collapse
Affiliation(s)
- Axel E Norberg
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Khoon S Lim
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Paul D Dalton
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Tim B F Woodfield
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Gabriella C J Lindberg
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
5
|
Zdraveva E, Bendelja K, Bočkor L, Dolenec T, Mijović B. Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds. Polymers (Basel) 2023; 15:polym15030777. [PMID: 36772078 PMCID: PMC9919663 DOI: 10.3390/polym15030777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, one of which is the transplantation of healthy cultured LSCs, usually onto a human amniotic membrane or onto bio-based engineered scaffolds in recent years. In this study, melt electrospun polylactic acid (PLA) was modified by silk fibroin or gelatin and further cultured with LSCs originating from three different donors. In terms of physicochemical properties, both modifications slightly increased PLA scaffold porosity (with a significantly larger pore area for the PLA/gelatin) and improved the scaffolds' swelling percentage, as well as their biodegradation rate. In terms of the scaffold application function, the aim was to detect/visualize whether LSCs adhered to the scaffolds and to further determine cell viability (total number), as well as to observe p63 and CK3 expressions in the LSCs. LSCs were attached to the surface of microfibers, showing flattened conformations or 3D spheres in the formation of colonies or agglomerations, respectively. All scaffolds showed the ability to bind the cells onto the surface of individual microfibers (PLA and PLA/gelatin), or in between the microfibers (PLA/silk fibroin), with the latter showing the most intense red fluorescence of the stained cells. All scaffolds proved to be biocompatible, while the PLA/silk fibroin scaffolds showed the highest 98% viability of 2.9 × 106 LSCs, with more than 98% of p63 and less than 20% of CK3 expressions in the LSCs, thus confirming the support of their growth, proliferation and corneal epithelial differentiation. The results show the potential of these bio-engineered scaffolds to be used as an alternative clinical approach.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Bočkor
- Center for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Tamara Dolenec
- Department of Transfusion and Regenerative Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Budimir Mijović
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
6
|
Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D Printing of Aqueous Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205255. [PMID: 36482162 DOI: 10.1002/smll.202205255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Biranche Tandon
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| |
Collapse
|
7
|
Janzen D, Bakirci E, Faber J, Andrade Mier M, Hauptstein J, Pal A, Forster L, Hazur J, Boccaccini AR, Detsch R, Teßmar J, Budday S, Blunk T, Dalton PD, Villmann C. Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation. Adv Healthc Mater 2022; 11:e2201826. [PMID: 35993391 PMCID: PMC11468248 DOI: 10.1002/adhm.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/28/2023]
Abstract
3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca2+ imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.
Collapse
Affiliation(s)
- Dieter Janzen
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Jessica Faber
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander University of Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Mateo Andrade Mier
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Julia Hauptstein
- Department of TraumaHand, Plastic and Reconstructive SurgeryUniversity Hospital WürzburgOberdürrbacher Str. 697080WürzburgGermany
| | - Arindam Pal
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Jonas Hazur
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Rainer Detsch
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander University of Erlangen‐NürnbergCauerstr. 691058ErlangenGermany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Silvia Budday
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander University of Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Torsten Blunk
- Department of TraumaHand, Plastic and Reconstructive SurgeryUniversity Hospital WürzburgOberdürrbacher Str. 697080WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of Oregon1505 Franklin BlvdEugeneOR97403USA
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| |
Collapse
|
8
|
John P, Antony IR, Whenish R, Jinoop AN. A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications. Proc Inst Mech Eng H 2022; 236:1583-1594. [DOI: 10.1177/09544119221122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human body comprises of different internal and external biological components. Human organs tend to fail due to continuous or sudden stress which leads to deterioration, failure, and dislocation. The choice of selection and fabrication of materials for tissue engineering play a key role in terms of suitability, sensitivity, and functioning with other organs as a replacement for failed organs. The progressive improvement of the additive manufacturing (AM) approach in healthcare made it possible to print multi-material and customized complex/intricate geometries in a layer-by-layer fashion. The customized or patient-specific implant fabrication can be easily produced with a high success rate due to the development of AM technologies with tailorable properties. The structural behavior of 3D printed biomaterials is a crucial factor in tissue engineering as they affect the functionality of the implants. Various techniques have been developed in appraising the important features and the effects of the subsequent design of the biomaterial implants. The behavior of the AM built biomaterial implants can be understood visually by an imaging system with a high spatial and spectral resolution. This review intends to present an overview of various biomaterials used in implants, followed by a detailed description of optical 3D printing procedures and evaluation of the performance of 3D printed biomaterials using optical characterization.
Collapse
Affiliation(s)
- Pauline John
- Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, TN, India
| | - Irene Rose Antony
- School of Bio-sciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - Ruban Whenish
- Center for Biomaterials, Cellular and molecular Theranostics, Vellore Institute of Technology, Vellore, TN, India
| | - Arackal Narayanan Jinoop
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
9
|
Włodarczyk-Biegun MK, Villiou M, Koch M, Muth C, Wang P, Ott J, del Campo A. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomater Sci Eng 2022; 8:3899-3911. [PMID: 35984428 PMCID: PMC9472227 DOI: 10.1021/acsbiomaterials.2c00623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
Collapse
Affiliation(s)
| | - Maria Villiou
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christina Muth
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Peixi Wang
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Jenna Ott
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aranzazu del Campo
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Eichholz K, Freeman F, Pitacco P, Nulty J, Ahern D, Burdis R, Browe D, Garcia O, Hoey D, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication 2022; 14. [PMID: 35947963 DOI: 10.1088/1758-5090/ac88a1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
Collapse
Affiliation(s)
- Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons Building, Dublin, IRELAND
| | - Fiona Freeman
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Pierluca Pitacco
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Jessica Nulty
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Daniel Ahern
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - David Browe
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services Inc, Irvine, California, 0000, UNITED STATES
| | - David Hoey
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons building, Dublin, 2, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| |
Collapse
|
11
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Zhang F, Cao K, Zaeri A, Zgeib R, Chang RC. Design, fabrication, and analysis of spatially heterogeneous scaffold by melt electrospinning writing of poly(ε‐Caprolactone). J Appl Polym Sci 2022. [DOI: 10.1002/app.52235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fucheng Zhang
- Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey USA
| | - Kai Cao
- Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey USA
| | - Ahmadreza Zaeri
- Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey USA
| | - Ralf Zgeib
- Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey USA
| | - Robert C. Chang
- Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey USA
| |
Collapse
|
13
|
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, Rnjak-Kovacina J, Gawlitta D, Woodfield TBF, Lim KS. Development and Characterization of Gelatin-Norbornene Bioink to Understand the Interplay between Physical Architecture and Micro-Capillary Formation in Biofabricated Vascularized Constructs. Adv Healthc Mater 2022; 11:e2101873. [PMID: 34710291 DOI: 10.1002/adhm.202101873] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Gretel S Major
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Pau Atienza-Roca
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Alessia Longoni
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Cesar R Alcala-Orozco
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2006, Australia
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| |
Collapse
|
14
|
Böhm C, Stahlhut P, Weichhold J, Hrynevich A, Teßmar J, Dalton PD. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104193. [PMID: 34741411 DOI: 10.1002/smll.202104193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(ε-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 µm over the entire 25-d period.
Collapse
Affiliation(s)
- Christoph Böhm
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jan Weichhold
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Andrei Hrynevich
- Department of Veterinary Science, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, Netherlands
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403-6231, USA
| |
Collapse
|
15
|
Blum C, Weichhold J, Hochleitner G, Stepanenko V, Würthner F, Groll J, Jungst T. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:315-321. [PMID: 36654937 PMCID: PMC9828622 DOI: 10.1089/3dp.2020.0290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Melt electrowriting (MEW) is an aspiring 3D printing technology with an unprecedented resolution among fiber-based printing technologies. It offers the ability to direct-write predefined designs utilizing a jet of molten polymer to fabricate constructs composed of fibers with diameters of only a few micrometers. These dimensions enable unique construct properties. Poly(ɛ-caprolactone) (PCL), a semicrystalline polymer mainly used for biomedical and life science applications, is the most prominent material for MEW and exhibits excellent printing properties. Despite the wealth of melt electrowritten constructs that have been fabricated by MEW, a detailed investigation, especially regarding fiber analysis on a macro- and microlevel is still lacking. Hence, this study systematically examines the influence of process parameters such as spinneret diameter, feeding pressure, and collector velocity on the diameter and particularly the topography of PCL fibers and sheds light on how these parameters affect the mechanical properties and crystallinity. A correlation between the mechanical properties, crystallite size, and roughness of the deposited fiber, depending on the collector velocity and applied feeding pressure, is revealed. These findings are used to print constructs composed of fibers with different microtopography without affecting the fiber diameter and thus the macroscopic assembly of the printed constructs.
Collapse
Affiliation(s)
- Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Jan Weichhold
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Gernot Hochleitner
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | | | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute, Universität Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| |
Collapse
|
16
|
Han Y, Lian M, Wu Q, Qiao Z, Sun B, Dai K. Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Front Bioeng Biotechnol 2021; 9:629270. [PMID: 34277578 PMCID: PMC8283809 DOI: 10.3389/fbioe.2021.629270] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering technology has made major advances with respect to the repair of injured tissues, for which scaffolds and cells are key factors. However, there are still some issues with respect to the relationship between scaffold and cell growth parameters, especially that between the pore size and cells. In this study, we prepared scaffolds with different pore sizes by melt electrowritten (MEW) and used bone marrow mensenchymal stem cells (BMSCs), chondrocytes (CCs), and tendon stem cells (TCs) to study the effect of the scaffold pore size on cell adhesion, proliferation, and differentiation. It was evident that different cells demonstrated different adhesion and proliferation rates on the scaffold. Furthermore, different cell types showed differential preferences for scaffold pore sizes, as evidenced by variations in cell viability. The pore size also affected the differentiation and gene expression pattern of cells. Among the tested cells, BMSCs exhibited the greatest viability on the 200-μm-pore-size scaffold, CCs on the 200- and 100-μm scaffold, and TCs on the 300-μm scaffold. The scaffolds with 100- and 200-μm pore sizes induced a significantly higher proliferation, chondrogenic gene expression, and cartilage-like matrix deposition after in vitro culture relative to the scaffolds with smaller or large pore sizes (especially 50 and 400 μm). Taken together, these results show that the architecture of 10 layers of MEW scaffolds for different tissues should be different and that the pore size is critical for the development of advanced tissue engineering strategies for tissue repair.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qiang Wu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Hrynevich A, Achenbach P, Jungst T, Brook GA, Dalton PD. Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth. Macromol Biosci 2021; 21:e2000439. [PMID: 33951291 DOI: 10.1002/mabi.202000439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/21/2023]
Abstract
In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a "wedge-design" melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers. All the measured parameters impact the probability that a fiber is suspended over multimillimeter distances. The height of the suspended fibers can be controlled by a concurrently fabricated fiber wall and the 3D suspended PCL fiber arrays investigated with early post-natal mouse dorsal root ganglion explants. The resulting Schwann cell and neurite outgrowth extends substantial distances by 21 d, following the orientation of the suspended fibers and the supporting walls, often generating circular whorls of high density Schwann cells between the suspended fibers. This research provides a design perspective and the fundamental parametric basis for suspending individual melt electrowritten fibers into a form that facilitates cell culture.
Collapse
Affiliation(s)
- Andrei Hrynevich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, Julius Maximilians University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany.,Department of Veterinary Science, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, Netherlands.,Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
| | - Pascal Achenbach
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, Julius Maximilians University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Gary A Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, Julius Maximilians University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany.,Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403-6231, USA
| |
Collapse
|
18
|
von Witzleben M, Stoppe T, Ahlfeld T, Bernhardt A, Polk ML, Bornitz M, Neudert M, Gelinsky M. Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting. Adv Healthc Mater 2021; 10:e2002089. [PMID: 33506636 PMCID: PMC11468533 DOI: 10.1002/adhm.202002089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Indexed: 12/17/2022]
Abstract
The tympanic membrane (TM) transfers sound waves from the air into mechanical motion for the ossicular chain. This requires a high sensitivity to small dynamic pressure changes and resistance to large quasi-static pressure differences. The TM achieves this by providing a layered structure of about 100µm in thickness, a low flexural stiffness, and a high tensile strength. Chronically infected middle ears require reconstruction of a large area of the TM. However, current clinical treatment can cause a reduction in hearing. With the novel additive manufacturing technique of melt electrowriting (MEW), it is for the first time possible to fabricate highly organized and biodegradable membranes within the dimensions of the TM. Scaffold designs of various fiber composition are analyzed mechanically and acoustically. It can be demonstrated that by customizing fiber orientation, fiber diameter, and number of layers the desired properties of the TM can be met. An applied thin collagen layer seals the micropores of the MEW-printed membrane while keeping the favorable mechanical and acoustical characteristics. The determined properties are beneficial for implantation, closely match those of the human TM, and support the growth of a neo-epithelial layer. This proves the possibilities to create a biomimimetic TM replacement using MEW.
Collapse
Affiliation(s)
- Max von Witzleben
- Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Thomas Stoppe
- Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Tilman Ahlfeld
- Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Anne Bernhardt
- Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Marie-Luise Polk
- Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Matthias Bornitz
- Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Marcus Neudert
- Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Michael Gelinsky
- Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| |
Collapse
|
19
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
20
|
Constante G, Apsite I, Alkhamis H, Dulle M, Schwarzer M, Caspari A, Synytska A, Salehi S, Ionov L. 4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12767-12776. [PMID: 33389997 DOI: 10.1021/acsami.0c18608] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the fabrication of scroll-like scaffolds with anisotropic topography using 4D printing based on a combination of 3D extrusion printing of methacrylated alginate, melt-electrowriting of polycaprolactone fibers, and shape-morphing of the fabricated object. A combination of 3D extrusion printing and melt-electrowriting allows programmed deposition of different materials and fabrication of structures with high resolution. Shape-morphing allows the transformation of a patterned surface of a printed structure in a pattern on inner surface of a folded object that is used to align cells. We demonstrate that the concentration of calcium ions, the environment media, and the geometrical shape of the scaffold influences shape-morphing that allows it to be efficiently programmed. Myoblasts cultured inside a scrolled bilayer scaffold demonstrate excellent viability and proliferation. Moreover, the patterned surface generated by PCL fibers allow a very high degree of orientation of cells, which cannot be achieved on the alginate layer without fibers.
Collapse
Affiliation(s)
- Gissela Constante
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Strasse 36A, Bayreuth 95447, Germany
| | - Indra Apsite
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Strasse 36A, Bayreuth 95447, Germany
| | - Hanin Alkhamis
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Strasse 36A, Bayreuth 95447, Germany
| | - Martin Dulle
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Jülich 52425, Germany
| | - Madeleine Schwarzer
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Anja Caspari
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
- Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics, Dresden University of Technology, Dresden 01062, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Strasse 1, Bayreuth 95447, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
21
|
D'Amato AR, Ding X, Wang Y. Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomater Sci Eng 2021; 7:400-407. [PMID: 33464035 DOI: 10.1021/acsbiomaterials.0c01419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple additive manufacturing techniques have been developed in recent years to produce structures with tunable physical, chemical, and mechanical properties and defined architecture. Solution electrospinning, although an older and more established technique, normally cannot achieve the pattern resolution and tunability of these newer manufacturing techniques. In this study, we present solution electrowriting as a method to produce fibrous conduits from various polymers with tunable patterns, dimensions, and scaffold porosity. We demonstrate the importance of solvent selection during solution electrowriting and discuss how solvent polarity and volatility can be exploited to controllably alter the structure of the resulting scaffolds. The technique can be readily implemented with equipment for conventional electrospinning and offers versatility, control, and customization that is uncommon in the solution electrospinning field.
Collapse
Affiliation(s)
- Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| | - Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| |
Collapse
|
22
|
Kade JC, Dalton PD. Polymers for Melt Electrowriting. Adv Healthc Mater 2021; 10:e2001232. [PMID: 32940962 PMCID: PMC11469188 DOI: 10.1002/adhm.202001232] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(ε-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.
Collapse
Affiliation(s)
- Juliane C. Kade
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
23
|
Mridha AR, Dargaville TR, Dalton PD, Carroll L, Morris MB, Vaithilingam V, Tuch BE. Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Eng Part A 2020; 28:212-224. [PMID: 33081600 DOI: 10.1089/ten.tea.2020.0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.
Collapse
Affiliation(s)
- Auvro R Mridha
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Luke Carroll
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Now Based at NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Michael B Morris
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Vijayaganapathy Vaithilingam
- Australian Foundation for Diabetes Research, Sydney, Australia.,Cell Biology Inspired Tissue Engineering (CBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Bernard E Tuch
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia
| |
Collapse
|
24
|
Bakirci E, Schaefer N, Dahri O, Hrynevich A, Strissel P, Strick R, Dalton PD, Villmann C. Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration. ACTA ACUST UNITED AC 2020; 4:e2000077. [PMID: 32875734 DOI: 10.1002/adbi.202000077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The development of in vitro assays for 3D microenvironments is essential for understanding cell migration processes. A 3D-printed in vitro competitive radial device is developed to identify preferred Matrigel concentration for glioblastoma migration. Melt electrowriting (MEW) is used to fabricate the structural device with defined and intricate radial structures that are filled with Matrigel. Controlling the printing path is necessary to account for the distance lag in the molten jet, the applied electric field, and the continuous direct-writing nature of MEW. Circular printing below a diameter threshold results in substantial inward tilting of the MEW fiber wall. An eight-chamber radial device with a diameter of 9.4 mm is printed. Four different concentrations of Matrigel are dispensed into the radial chambers. Glioblastoma cells are seeded into the center and grow into all chambers within 8 days. The cell spreading area demonstrates that 6 and 8 mg mL-1 of Matrigel are preferred over 2 and 4 mg mL-1 . Furthermore, topographical cues via the MEW fiber wall are observed to promote migration even further away from the cell seeding depot. Previous studies implement MEW to fabricate cell invasive scaffolds whereas here it is applied to 3D-print in vitro tools to study cell migration.
Collapse
Affiliation(s)
- Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Natascha Schaefer
- Department of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany
| | - Ouafa Dahri
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Andrei Hrynevich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Pamela Strissel
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, University Str. 21-23, Erlangen, 91054, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, University Str. 21-23, Erlangen, 91054, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Carmen Villmann
- Department of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany
| |
Collapse
|
25
|
He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 2020; 12:042002. [PMID: 32615543 DOI: 10.1088/1758-5090/aba1fa] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrohydrodynamic (EHD) printing is a newly emerging additive manufacturing strategy for the controlled fabrication of three-dimensional (3D) micro/nanoscale architectures. This unique superiority makes it particularly suitable for the biofabrication of artificial tissue analogs with biomimetic structural organizations similar to the scales of native extracellular matrix (ECM) or living cells, which shows great potentials to precisely regulate cellular behaviors and tissue regeneration. Here the state-of-the-art advancements of high-resolution EHD bioprinting were reviewed mainly including melt-based and solution-based processes for the fabrication of micro/nanoscale fibrous scaffolds and living tissues constructs. The related printing materials, innovations on structure design and printing processes, functionalization of the resultant architectures as well as their effects on the mechanical and biological properties of the EHD-printed structures were introduced and analyzed. The recent explorations on the EHD cell printing for high-resolution cell-laden microgel patterning and 3D construct fabrication were highlighted. The major challenges as well as possible solutions to translate EHD bioprinting into a mature and prevalent biofabrication strategy were finally discussed.
Collapse
Affiliation(s)
- Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Rapid manufacturing research center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
26
|
Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F, Dalton PD, Blunk T, Flynn LE, Groll J. Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform. ACS Biomater Sci Eng 2019; 5:6655-6666. [DOI: 10.1021/acsbiomaterials.9b00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carina Blum
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Katrin Schlegelmilch
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Tatjana Schilling
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Maximilian Rudert
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Franz Jakob
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|